polars-df 0.9.0-x86_64-darwin → 0.11.0-x86_64-darwin

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +23 -0
  3. data/Cargo.lock +144 -57
  4. data/LICENSE-THIRD-PARTY.txt +629 -29
  5. data/README.md +7 -6
  6. data/lib/polars/3.1/polars.bundle +0 -0
  7. data/lib/polars/3.2/polars.bundle +0 -0
  8. data/lib/polars/3.3/polars.bundle +0 -0
  9. data/lib/polars/array_expr.rb +6 -2
  10. data/lib/polars/batched_csv_reader.rb +11 -3
  11. data/lib/polars/convert.rb +6 -1
  12. data/lib/polars/data_frame.rb +225 -370
  13. data/lib/polars/date_time_expr.rb +11 -4
  14. data/lib/polars/date_time_name_space.rb +14 -4
  15. data/lib/polars/dynamic_group_by.rb +2 -2
  16. data/lib/polars/exceptions.rb +4 -0
  17. data/lib/polars/expr.rb +1171 -54
  18. data/lib/polars/functions/lazy.rb +3 -3
  19. data/lib/polars/functions/range/date_range.rb +92 -0
  20. data/lib/polars/functions/range/datetime_range.rb +149 -0
  21. data/lib/polars/functions/range/time_range.rb +141 -0
  22. data/lib/polars/functions/whenthen.rb +74 -5
  23. data/lib/polars/group_by.rb +88 -23
  24. data/lib/polars/io/avro.rb +24 -0
  25. data/lib/polars/{io.rb → io/csv.rb} +307 -489
  26. data/lib/polars/io/database.rb +73 -0
  27. data/lib/polars/io/ipc.rb +247 -0
  28. data/lib/polars/io/json.rb +18 -0
  29. data/lib/polars/io/ndjson.rb +69 -0
  30. data/lib/polars/io/parquet.rb +226 -0
  31. data/lib/polars/lazy_frame.rb +55 -195
  32. data/lib/polars/lazy_group_by.rb +100 -3
  33. data/lib/polars/list_expr.rb +6 -2
  34. data/lib/polars/rolling_group_by.rb +2 -2
  35. data/lib/polars/series.rb +14 -12
  36. data/lib/polars/string_expr.rb +38 -36
  37. data/lib/polars/utils.rb +89 -1
  38. data/lib/polars/version.rb +1 -1
  39. data/lib/polars/whenthen.rb +83 -0
  40. data/lib/polars.rb +10 -3
  41. metadata +13 -6
  42. data/lib/polars/when.rb +0 -16
  43. data/lib/polars/when_then.rb +0 -19
data/lib/polars/expr.rb CHANGED
@@ -1345,9 +1345,9 @@ module Polars
1345
1345
  # # │ 3 ┆ 4 │
1346
1346
  # # │ 2 ┆ 98 │
1347
1347
  # # └───────┴──────────┘
1348
- def top_k(k: 5)
1348
+ def top_k(k: 5, nulls_last: false, multithreaded: true)
1349
1349
  k = Utils.parse_as_expression(k)
1350
- _from_rbexpr(_rbexpr.top_k(k))
1350
+ _from_rbexpr(_rbexpr.top_k(k, nulls_last, multithreaded))
1351
1351
  end
1352
1352
 
1353
1353
  # Return the `k` smallest elements.
@@ -1384,9 +1384,9 @@ module Polars
1384
1384
  # # │ 3 ┆ 4 │
1385
1385
  # # │ 2 ┆ 98 │
1386
1386
  # # └───────┴──────────┘
1387
- def bottom_k(k: 5)
1387
+ def bottom_k(k: 5, nulls_last: false, multithreaded: true)
1388
1388
  k = Utils.parse_as_expression(k)
1389
- _from_rbexpr(_rbexpr.bottom_k(k))
1389
+ _from_rbexpr(_rbexpr.bottom_k(k, nulls_last, multithreaded))
1390
1390
  end
1391
1391
 
1392
1392
  # Get the index values that would sort this column.
@@ -1544,16 +1544,14 @@ module Polars
1544
1544
  # # │ one │
1545
1545
  # # │ two │
1546
1546
  # # └───────┘
1547
- def sort_by(by, reverse: false)
1548
- if !by.is_a?(::Array)
1549
- by = [by]
1550
- end
1547
+ def sort_by(by, *more_by, reverse: false, nulls_last: false, multithreaded: true, maintain_order: false)
1548
+ by = Utils.parse_as_list_of_expressions(by, *more_by)
1551
1549
  if !reverse.is_a?(::Array)
1552
1550
  reverse = [reverse]
1551
+ elsif by.length != reverse.length
1552
+ raise ArgumentError, "the length of `reverse` (#{reverse.length}) does not match the length of `by` (#{by.length})"
1553
1553
  end
1554
- by = Utils.selection_to_rbexpr_list(by)
1555
-
1556
- _from_rbexpr(_rbexpr.sort_by(by, reverse))
1554
+ _from_rbexpr(_rbexpr.sort_by(by, reverse, nulls_last, multithreaded, maintain_order))
1557
1555
  end
1558
1556
 
1559
1557
  # Take values by index.
@@ -2766,6 +2764,9 @@ module Polars
2766
2764
  # Dtype of the output Series.
2767
2765
  # @param agg_list [Boolean]
2768
2766
  # Aggregate list.
2767
+ # @param is_elementwise [Boolean]
2768
+ # If set to true this can run in the streaming engine, but may yield
2769
+ # incorrect results in group-by. Ensure you know what you are doing!
2769
2770
  #
2770
2771
  # @return [Expr]
2771
2772
  #
@@ -2786,12 +2787,21 @@ module Polars
2786
2787
  # # ╞══════╪════════╡
2787
2788
  # # │ 1 ┆ 0 │
2788
2789
  # # └──────┴────────┘
2789
- # def map(return_dtype: nil, agg_list: false, &f)
2790
+ # def map_batches(return_dtype: nil, agg_list: false, is_elementwise: false, &f)
2790
2791
  # if !return_dtype.nil?
2791
2792
  # return_dtype = Utils.rb_type_to_dtype(return_dtype)
2792
2793
  # end
2793
- # _from_rbexpr(_rbexpr.map(f, return_dtype, agg_list))
2794
+ # _from_rbexpr(
2795
+ # _rbexpr.map_batches(
2796
+ # # TODO _map_batches_wrapper
2797
+ # f,
2798
+ # return_dtype,
2799
+ # agg_list,
2800
+ # is_elementwise
2801
+ # )
2802
+ # )
2794
2803
  # end
2804
+ # alias_method :map, :map_batches
2795
2805
 
2796
2806
  # Apply a custom/user-defined function (UDF) in a GroupBy or Projection context.
2797
2807
  #
@@ -2833,7 +2843,7 @@ module Polars
2833
2843
  #
2834
2844
  # @example In a selection context, the function is applied by row.
2835
2845
  # df.with_column(
2836
- # Polars.col("a").apply { |x| x * 2 }.alias("a_times_2")
2846
+ # Polars.col("a").map_elements { |x| x * 2 }.alias("a_times_2")
2837
2847
  # )
2838
2848
  # # =>
2839
2849
  # # shape: (4, 3)
@@ -2853,7 +2863,7 @@ module Polars
2853
2863
  # .group_by("b", maintain_order: true)
2854
2864
  # .agg(
2855
2865
  # [
2856
- # Polars.col("a").apply { |x| x.sum }
2866
+ # Polars.col("a").map_elements { |x| x.sum }
2857
2867
  # ]
2858
2868
  # )
2859
2869
  # .collect
@@ -2868,12 +2878,23 @@ module Polars
2868
2878
  # # │ b ┆ 2 │
2869
2879
  # # │ c ┆ 4 │
2870
2880
  # # └─────┴─────┘
2871
- # def apply(return_dtype: nil, &f)
2872
- # wrap_f = lambda do |x|
2873
- # x.apply(return_dtype: return_dtype, &f)
2881
+ # def map_elements(
2882
+ # return_dtype: nil,
2883
+ # skip_nulls: true,
2884
+ # pass_name: false,
2885
+ # strategy: "thread_local",
2886
+ # &f
2887
+ # )
2888
+ # if pass_name
2889
+ # raise Todo
2890
+ # else
2891
+ # wrap_f = lambda do |x|
2892
+ # x.map_elements(return_dtype: return_dtype, skip_nulls: skip_nulls, &f)
2893
+ # end
2874
2894
  # end
2875
- # map(agg_list: true, return_dtype: return_dtype, &wrap_f)
2895
+ # map_batches(agg_list: true, return_dtype: return_dtype, &wrap_f)
2876
2896
  # end
2897
+ # alias_method :apply, :map_elements
2877
2898
 
2878
2899
  # Explode a list or utf8 Series. This means that every item is expanded to a new
2879
2900
  # row.
@@ -3515,20 +3536,23 @@ module Polars
3515
3536
  # @return [Expr]
3516
3537
  #
3517
3538
  # @example
3518
- # df = Polars::DataFrame.new({"foo" => [1, 2, 3, 4]})
3519
- # df.select(Polars.col("foo").pow(3))
3539
+ # df = Polars::DataFrame.new({"x" => [1, 2, 4, 8]})
3540
+ # df.with_columns(
3541
+ # Polars.col("x").pow(3).alias("cube"),
3542
+ # Polars.col("x").pow(Polars.col("x").log(2)).alias("x ** xlog2")
3543
+ # )
3520
3544
  # # =>
3521
- # # shape: (4, 1)
3522
- # # ┌──────┐
3523
- # # │ foo
3524
- # # │ --- │
3525
- # # │ f64
3526
- # # ╞══════╡
3527
- # # │ 1.0
3528
- # # │ 8.0
3529
- # # │ 27.0
3530
- # # │ 64.0
3531
- # # └──────┘
3545
+ # # shape: (4, 3)
3546
+ # # ┌─────┬──────┬────────────┐
3547
+ # # │ x ┆ cube ┆ x ** xlog2
3548
+ # # │ --- ┆ --- ┆ ---
3549
+ # # │ i64 ┆ i64 ┆ f64
3550
+ # # ╞═════╪══════╪════════════╡
3551
+ # # │ 1 ┆ 1 ┆ 1.0
3552
+ # # │ 2 ┆ 8 ┆ 2.0
3553
+ # # │ 4 ┆ 64 ┆ 16.0
3554
+ # # │ 8 ┆ 512 ┆ 512.0
3555
+ # # └─────┴──────┴────────────┘
3532
3556
  def pow(exponent)
3533
3557
  self**exponent
3534
3558
  end
@@ -3856,6 +3880,1002 @@ module Polars
3856
3880
  _from_rbexpr(_rbexpr.interpolate(method))
3857
3881
  end
3858
3882
 
3883
+ # Apply a rolling min based on another column.
3884
+ #
3885
+ # @param by [String]
3886
+ # This column must be of dtype Datetime or Date.
3887
+ # @param window_size [String]
3888
+ # The length of the window. Can be a dynamic temporal
3889
+ # size indicated by a timedelta or the following string language:
3890
+ #
3891
+ # - 1ns (1 nanosecond)
3892
+ # - 1us (1 microsecond)
3893
+ # - 1ms (1 millisecond)
3894
+ # - 1s (1 second)
3895
+ # - 1m (1 minute)
3896
+ # - 1h (1 hour)
3897
+ # - 1d (1 calendar day)
3898
+ # - 1w (1 calendar week)
3899
+ # - 1mo (1 calendar month)
3900
+ # - 1q (1 calendar quarter)
3901
+ # - 1y (1 calendar year)
3902
+ #
3903
+ # By "calendar day", we mean the corresponding time on the next day
3904
+ # (which may not be 24 hours, due to daylight savings). Similarly for
3905
+ # "calendar week", "calendar month", "calendar quarter", and
3906
+ # "calendar year".
3907
+ # @param min_periods [Integer]
3908
+ # The number of values in the window that should be non-null before computing
3909
+ # a result.
3910
+ # @param closed ['left', 'right', 'both', 'none']
3911
+ # Define which sides of the temporal interval are closed (inclusive),
3912
+ # defaults to `'right'`.
3913
+ # @param warn_if_unsorted [Boolean]
3914
+ # Warn if data is not known to be sorted by `by` column.
3915
+ #
3916
+ # @return [Expr]
3917
+ #
3918
+ # @note
3919
+ # If you want to compute multiple aggregation statistics over the same dynamic
3920
+ # window, consider using `rolling` - this method can cache the window size
3921
+ # computation.
3922
+ #
3923
+ # @example Create a DataFrame with a datetime column and a row number column
3924
+ # start = DateTime.new(2001, 1, 1)
3925
+ # stop = DateTime.new(2001, 1, 2)
3926
+ # df_temporal = Polars::DataFrame.new(
3927
+ # {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
3928
+ # ).with_row_index
3929
+ # # =>
3930
+ # # shape: (25, 2)
3931
+ # # ┌───────┬─────────────────────┐
3932
+ # # │ index ┆ date │
3933
+ # # │ --- ┆ --- │
3934
+ # # │ u32 ┆ datetime[ns] │
3935
+ # # ╞═══════╪═════════════════════╡
3936
+ # # │ 0 ┆ 2001-01-01 00:00:00 │
3937
+ # # │ 1 ┆ 2001-01-01 01:00:00 │
3938
+ # # │ 2 ┆ 2001-01-01 02:00:00 │
3939
+ # # │ 3 ┆ 2001-01-01 03:00:00 │
3940
+ # # │ 4 ┆ 2001-01-01 04:00:00 │
3941
+ # # │ … ┆ … │
3942
+ # # │ 20 ┆ 2001-01-01 20:00:00 │
3943
+ # # │ 21 ┆ 2001-01-01 21:00:00 │
3944
+ # # │ 22 ┆ 2001-01-01 22:00:00 │
3945
+ # # │ 23 ┆ 2001-01-01 23:00:00 │
3946
+ # # │ 24 ┆ 2001-01-02 00:00:00 │
3947
+ # # └───────┴─────────────────────┘
3948
+ #
3949
+ # @example Compute the rolling min with the temporal windows closed on the right (default)
3950
+ # df_temporal.with_columns(
3951
+ # rolling_row_min: Polars.col("index").rolling_min_by("date", "2h")
3952
+ # )
3953
+ # # =>
3954
+ # # shape: (25, 3)
3955
+ # # ┌───────┬─────────────────────┬─────────────────┐
3956
+ # # │ index ┆ date ┆ rolling_row_min │
3957
+ # # │ --- ┆ --- ┆ --- │
3958
+ # # │ u32 ┆ datetime[ns] ┆ u32 │
3959
+ # # ╞═══════╪═════════════════════╪═════════════════╡
3960
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
3961
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0 │
3962
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1 │
3963
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2 │
3964
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3 │
3965
+ # # │ … ┆ … ┆ … │
3966
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19 │
3967
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20 │
3968
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21 │
3969
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22 │
3970
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23 │
3971
+ # # └───────┴─────────────────────┴─────────────────┘
3972
+ def rolling_min_by(
3973
+ by,
3974
+ window_size,
3975
+ min_periods: 1,
3976
+ closed: "right",
3977
+ warn_if_unsorted: nil
3978
+ )
3979
+ window_size = _prepare_rolling_by_window_args(window_size)
3980
+ by = Utils.parse_as_expression(by)
3981
+ _from_rbexpr(
3982
+ _rbexpr.rolling_min_by(by, window_size, min_periods, closed)
3983
+ )
3984
+ end
3985
+
3986
+ # Apply a rolling max based on another column.
3987
+ #
3988
+ # @param by [String]
3989
+ # This column must be of dtype Datetime or Date.
3990
+ # @param window_size [String]
3991
+ # The length of the window. Can be a dynamic temporal
3992
+ # size indicated by a timedelta or the following string language:
3993
+ #
3994
+ # - 1ns (1 nanosecond)
3995
+ # - 1us (1 microsecond)
3996
+ # - 1ms (1 millisecond)
3997
+ # - 1s (1 second)
3998
+ # - 1m (1 minute)
3999
+ # - 1h (1 hour)
4000
+ # - 1d (1 calendar day)
4001
+ # - 1w (1 calendar week)
4002
+ # - 1mo (1 calendar month)
4003
+ # - 1q (1 calendar quarter)
4004
+ # - 1y (1 calendar year)
4005
+ #
4006
+ # By "calendar day", we mean the corresponding time on the next day
4007
+ # (which may not be 24 hours, due to daylight savings). Similarly for
4008
+ # "calendar week", "calendar month", "calendar quarter", and
4009
+ # "calendar year".
4010
+ # @param min_periods [Integer]
4011
+ # The number of values in the window that should be non-null before computing
4012
+ # a result.
4013
+ # @param closed ['left', 'right', 'both', 'none']
4014
+ # Define which sides of the temporal interval are closed (inclusive),
4015
+ # defaults to `'right'`.
4016
+ # @param warn_if_unsorted [Boolean]
4017
+ # Warn if data is not known to be sorted by `by` column.
4018
+ #
4019
+ # @return [Expr]
4020
+ #
4021
+ # @note
4022
+ # If you want to compute multiple aggregation statistics over the same dynamic
4023
+ # window, consider using `rolling` - this method can cache the window size
4024
+ # computation.
4025
+ #
4026
+ # @example Create a DataFrame with a datetime column and a row number column
4027
+ # start = DateTime.new(2001, 1, 1)
4028
+ # stop = DateTime.new(2001, 1, 2)
4029
+ # df_temporal = Polars::DataFrame.new(
4030
+ # {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
4031
+ # ).with_row_index
4032
+ # # =>
4033
+ # # shape: (25, 2)
4034
+ # # ┌───────┬─────────────────────┐
4035
+ # # │ index ┆ date │
4036
+ # # │ --- ┆ --- │
4037
+ # # │ u32 ┆ datetime[ns] │
4038
+ # # ╞═══════╪═════════════════════╡
4039
+ # # │ 0 ┆ 2001-01-01 00:00:00 │
4040
+ # # │ 1 ┆ 2001-01-01 01:00:00 │
4041
+ # # │ 2 ┆ 2001-01-01 02:00:00 │
4042
+ # # │ 3 ┆ 2001-01-01 03:00:00 │
4043
+ # # │ 4 ┆ 2001-01-01 04:00:00 │
4044
+ # # │ … ┆ … │
4045
+ # # │ 20 ┆ 2001-01-01 20:00:00 │
4046
+ # # │ 21 ┆ 2001-01-01 21:00:00 │
4047
+ # # │ 22 ┆ 2001-01-01 22:00:00 │
4048
+ # # │ 23 ┆ 2001-01-01 23:00:00 │
4049
+ # # │ 24 ┆ 2001-01-02 00:00:00 │
4050
+ # # └───────┴─────────────────────┘
4051
+ #
4052
+ # @example Compute the rolling max with the temporal windows closed on the right (default)
4053
+ # df_temporal.with_columns(
4054
+ # rolling_row_max: Polars.col("index").rolling_max_by("date", "2h")
4055
+ # )
4056
+ # # =>
4057
+ # # shape: (25, 3)
4058
+ # # ┌───────┬─────────────────────┬─────────────────┐
4059
+ # # │ index ┆ date ┆ rolling_row_max │
4060
+ # # │ --- ┆ --- ┆ --- │
4061
+ # # │ u32 ┆ datetime[ns] ┆ u32 │
4062
+ # # ╞═══════╪═════════════════════╪═════════════════╡
4063
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
4064
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
4065
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 2 │
4066
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 3 │
4067
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 4 │
4068
+ # # │ … ┆ … ┆ … │
4069
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 20 │
4070
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 21 │
4071
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 22 │
4072
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 23 │
4073
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 24 │
4074
+ # # └───────┴─────────────────────┴─────────────────┘
4075
+ #
4076
+ # @example Compute the rolling max with the closure of windows on both sides
4077
+ # df_temporal.with_columns(
4078
+ # rolling_row_max: Polars.col("index").rolling_max_by(
4079
+ # "date", "2h", closed: "both"
4080
+ # )
4081
+ # )
4082
+ # # =>
4083
+ # # shape: (25, 3)
4084
+ # # ┌───────┬─────────────────────┬─────────────────┐
4085
+ # # │ index ┆ date ┆ rolling_row_max │
4086
+ # # │ --- ┆ --- ┆ --- │
4087
+ # # │ u32 ┆ datetime[ns] ┆ u32 │
4088
+ # # ╞═══════╪═════════════════════╪═════════════════╡
4089
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
4090
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
4091
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 2 │
4092
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 3 │
4093
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 4 │
4094
+ # # │ … ┆ … ┆ … │
4095
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 20 │
4096
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 21 │
4097
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 22 │
4098
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 23 │
4099
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 24 │
4100
+ # # └───────┴─────────────────────┴─────────────────┘
4101
+ def rolling_max_by(
4102
+ by,
4103
+ window_size,
4104
+ min_periods: 1,
4105
+ closed: "right",
4106
+ warn_if_unsorted: nil
4107
+ )
4108
+ window_size = _prepare_rolling_by_window_args(window_size)
4109
+ by = Utils.parse_as_expression(by)
4110
+ _from_rbexpr(
4111
+ _rbexpr.rolling_max_by(by, window_size, min_periods, closed)
4112
+ )
4113
+ end
4114
+
4115
+ # Apply a rolling mean based on another column.
4116
+ #
4117
+ # @param by [String]
4118
+ # This column must be of dtype Datetime or Date.
4119
+ # @param window_size [String]
4120
+ # The length of the window. Can be a dynamic temporal
4121
+ # size indicated by a timedelta or the following string language:
4122
+ #
4123
+ # - 1ns (1 nanosecond)
4124
+ # - 1us (1 microsecond)
4125
+ # - 1ms (1 millisecond)
4126
+ # - 1s (1 second)
4127
+ # - 1m (1 minute)
4128
+ # - 1h (1 hour)
4129
+ # - 1d (1 calendar day)
4130
+ # - 1w (1 calendar week)
4131
+ # - 1mo (1 calendar month)
4132
+ # - 1q (1 calendar quarter)
4133
+ # - 1y (1 calendar year)
4134
+ #
4135
+ # By "calendar day", we mean the corresponding time on the next day
4136
+ # (which may not be 24 hours, due to daylight savings). Similarly for
4137
+ # "calendar week", "calendar month", "calendar quarter", and
4138
+ # "calendar year".
4139
+ # @param min_periods [Integer]
4140
+ # The number of values in the window that should be non-null before computing
4141
+ # a result.
4142
+ # @param closed ['left', 'right', 'both', 'none']
4143
+ # Define which sides of the temporal interval are closed (inclusive),
4144
+ # defaults to `'right'`.
4145
+ # @param warn_if_unsorted [Boolean]
4146
+ # Warn if data is not known to be sorted by `by` column.
4147
+ #
4148
+ # @return [Expr]
4149
+ #
4150
+ # @note
4151
+ # If you want to compute multiple aggregation statistics over the same dynamic
4152
+ # window, consider using `rolling` - this method can cache the window size
4153
+ # computation.
4154
+ #
4155
+ # @example Create a DataFrame with a datetime column and a row number column
4156
+ # start = DateTime.new(2001, 1, 1)
4157
+ # stop = DateTime.new(2001, 1, 2)
4158
+ # df_temporal = Polars::DataFrame.new(
4159
+ # {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
4160
+ # ).with_row_index
4161
+ # # =>
4162
+ # # shape: (25, 2)
4163
+ # # ┌───────┬─────────────────────┐
4164
+ # # │ index ┆ date │
4165
+ # # │ --- ┆ --- │
4166
+ # # │ u32 ┆ datetime[ns] │
4167
+ # # ╞═══════╪═════════════════════╡
4168
+ # # │ 0 ┆ 2001-01-01 00:00:00 │
4169
+ # # │ 1 ┆ 2001-01-01 01:00:00 │
4170
+ # # │ 2 ┆ 2001-01-01 02:00:00 │
4171
+ # # │ 3 ┆ 2001-01-01 03:00:00 │
4172
+ # # │ 4 ┆ 2001-01-01 04:00:00 │
4173
+ # # │ … ┆ … │
4174
+ # # │ 20 ┆ 2001-01-01 20:00:00 │
4175
+ # # │ 21 ┆ 2001-01-01 21:00:00 │
4176
+ # # │ 22 ┆ 2001-01-01 22:00:00 │
4177
+ # # │ 23 ┆ 2001-01-01 23:00:00 │
4178
+ # # │ 24 ┆ 2001-01-02 00:00:00 │
4179
+ # # └───────┴─────────────────────┘
4180
+ #
4181
+ # @example Compute the rolling mean with the temporal windows closed on the right (default)
4182
+ # df_temporal.with_columns(
4183
+ # rolling_row_mean: Polars.col("index").rolling_mean_by(
4184
+ # "date", "2h"
4185
+ # )
4186
+ # )
4187
+ # # =>
4188
+ # # shape: (25, 3)
4189
+ # # ┌───────┬─────────────────────┬──────────────────┐
4190
+ # # │ index ┆ date ┆ rolling_row_mean │
4191
+ # # │ --- ┆ --- ┆ --- │
4192
+ # # │ u32 ┆ datetime[ns] ┆ f64 │
4193
+ # # ╞═══════╪═════════════════════╪══════════════════╡
4194
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
4195
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
4196
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.5 │
4197
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.5 │
4198
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.5 │
4199
+ # # │ … ┆ … ┆ … │
4200
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.5 │
4201
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.5 │
4202
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.5 │
4203
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.5 │
4204
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.5 │
4205
+ # # └───────┴─────────────────────┴──────────────────┘
4206
+ #
4207
+ # @example Compute the rolling mean with the closure of windows on both sides
4208
+ # df_temporal.with_columns(
4209
+ # rolling_row_mean: Polars.col("index").rolling_mean_by(
4210
+ # "date", "2h", closed: "both"
4211
+ # )
4212
+ # )
4213
+ # # =>
4214
+ # # shape: (25, 3)
4215
+ # # ┌───────┬─────────────────────┬──────────────────┐
4216
+ # # │ index ┆ date ┆ rolling_row_mean │
4217
+ # # │ --- ┆ --- ┆ --- │
4218
+ # # │ u32 ┆ datetime[ns] ┆ f64 │
4219
+ # # ╞═══════╪═════════════════════╪══════════════════╡
4220
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
4221
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
4222
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
4223
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.0 │
4224
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.0 │
4225
+ # # │ … ┆ … ┆ … │
4226
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.0 │
4227
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.0 │
4228
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.0 │
4229
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.0 │
4230
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.0 │
4231
+ # # └───────┴─────────────────────┴──────────────────┘
4232
+ def rolling_mean_by(
4233
+ by,
4234
+ window_size,
4235
+ min_periods: 1,
4236
+ closed: "right",
4237
+ warn_if_unsorted: nil
4238
+ )
4239
+ window_size = _prepare_rolling_by_window_args(window_size)
4240
+ by = Utils.parse_as_expression(by)
4241
+ _from_rbexpr(
4242
+ _rbexpr.rolling_mean_by(
4243
+ by,
4244
+ window_size,
4245
+ min_periods,
4246
+ closed
4247
+ )
4248
+ )
4249
+ end
4250
+
4251
+ # Apply a rolling sum based on another column.
4252
+ #
4253
+ # @param by [String]
4254
+ # This column must of dtype `{Date, Datetime}`
4255
+ # @param window_size [String]
4256
+ # The length of the window. Can be a dynamic temporal
4257
+ # size indicated by a timedelta or the following string language:
4258
+ #
4259
+ # - 1ns (1 nanosecond)
4260
+ # - 1us (1 microsecond)
4261
+ # - 1ms (1 millisecond)
4262
+ # - 1s (1 second)
4263
+ # - 1m (1 minute)
4264
+ # - 1h (1 hour)
4265
+ # - 1d (1 calendar day)
4266
+ # - 1w (1 calendar week)
4267
+ # - 1mo (1 calendar month)
4268
+ # - 1q (1 calendar quarter)
4269
+ # - 1y (1 calendar year)
4270
+ #
4271
+ # By "calendar day", we mean the corresponding time on the next day
4272
+ # (which may not be 24 hours, due to daylight savings). Similarly for
4273
+ # "calendar week", "calendar month", "calendar quarter", and
4274
+ # "calendar year".
4275
+ # @param min_periods [Integer]
4276
+ # The number of values in the window that should be non-null before computing
4277
+ # a result.
4278
+ # @param closed ['left', 'right', 'both', 'none']
4279
+ # Define which sides of the temporal interval are closed (inclusive),
4280
+ # defaults to `'right'`.
4281
+ # @param warn_if_unsorted [Boolean]
4282
+ # Warn if data is not known to be sorted by `by` column.
4283
+ #
4284
+ # @return [Expr]
4285
+ #
4286
+ # @note
4287
+ # If you want to compute multiple aggregation statistics over the same dynamic
4288
+ # window, consider using `rolling` - this method can cache the window size
4289
+ # computation.
4290
+ #
4291
+ # @example Create a DataFrame with a datetime column and a row number column
4292
+ # start = DateTime.new(2001, 1, 1)
4293
+ # stop = DateTime.new(2001, 1, 2)
4294
+ # df_temporal = Polars::DataFrame.new(
4295
+ # {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
4296
+ # ).with_row_index
4297
+ # # =>
4298
+ # # shape: (25, 2)
4299
+ # # ┌───────┬─────────────────────┐
4300
+ # # │ index ┆ date │
4301
+ # # │ --- ┆ --- │
4302
+ # # │ u32 ┆ datetime[ns] │
4303
+ # # ╞═══════╪═════════════════════╡
4304
+ # # │ 0 ┆ 2001-01-01 00:00:00 │
4305
+ # # │ 1 ┆ 2001-01-01 01:00:00 │
4306
+ # # │ 2 ┆ 2001-01-01 02:00:00 │
4307
+ # # │ 3 ┆ 2001-01-01 03:00:00 │
4308
+ # # │ 4 ┆ 2001-01-01 04:00:00 │
4309
+ # # │ … ┆ … │
4310
+ # # │ 20 ┆ 2001-01-01 20:00:00 │
4311
+ # # │ 21 ┆ 2001-01-01 21:00:00 │
4312
+ # # │ 22 ┆ 2001-01-01 22:00:00 │
4313
+ # # │ 23 ┆ 2001-01-01 23:00:00 │
4314
+ # # │ 24 ┆ 2001-01-02 00:00:00 │
4315
+ # # └───────┴─────────────────────┘
4316
+ #
4317
+ # @example Compute the rolling sum with the temporal windows closed on the right (default)
4318
+ # df_temporal.with_columns(
4319
+ # rolling_row_sum: Polars.col("index").rolling_sum_by("date", "2h")
4320
+ # )
4321
+ # # =>
4322
+ # # shape: (25, 3)
4323
+ # # ┌───────┬─────────────────────┬─────────────────┐
4324
+ # # │ index ┆ date ┆ rolling_row_sum │
4325
+ # # │ --- ┆ --- ┆ --- │
4326
+ # # │ u32 ┆ datetime[ns] ┆ u32 │
4327
+ # # ╞═══════╪═════════════════════╪═════════════════╡
4328
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
4329
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
4330
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 3 │
4331
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 5 │
4332
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 7 │
4333
+ # # │ … ┆ … ┆ … │
4334
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 39 │
4335
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 41 │
4336
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 43 │
4337
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 45 │
4338
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 47 │
4339
+ # # └───────┴─────────────────────┴─────────────────┘
4340
+ #
4341
+ # @example Compute the rolling sum with the closure of windows on both sides
4342
+ # df_temporal.with_columns(
4343
+ # rolling_row_sum: Polars.col("index").rolling_sum_by(
4344
+ # "date", "2h", closed: "both"
4345
+ # )
4346
+ # )
4347
+ # # =>
4348
+ # # shape: (25, 3)
4349
+ # # ┌───────┬─────────────────────┬─────────────────┐
4350
+ # # │ index ┆ date ┆ rolling_row_sum │
4351
+ # # │ --- ┆ --- ┆ --- │
4352
+ # # │ u32 ┆ datetime[ns] ┆ u32 │
4353
+ # # ╞═══════╪═════════════════════╪═════════════════╡
4354
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
4355
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
4356
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 3 │
4357
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 6 │
4358
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 9 │
4359
+ # # │ … ┆ … ┆ … │
4360
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 57 │
4361
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 60 │
4362
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 63 │
4363
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 66 │
4364
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 69 │
4365
+ # # └───────┴─────────────────────┴─────────────────┘
4366
+ def rolling_sum_by(
4367
+ by,
4368
+ window_size,
4369
+ min_periods: 1,
4370
+ closed: "right",
4371
+ warn_if_unsorted: nil
4372
+ )
4373
+ window_size = _prepare_rolling_by_window_args(window_size)
4374
+ by = Utils.parse_as_expression(by)
4375
+ _from_rbexpr(
4376
+ _rbexpr.rolling_sum_by(by, window_size, min_periods, closed)
4377
+ )
4378
+ end
4379
+
4380
+ # Compute a rolling standard deviation based on another column.
4381
+ #
4382
+ # @param by [String]
4383
+ # This column must be of dtype Datetime or Date.
4384
+ # @param window_size [String]
4385
+ # The length of the window. Can be a dynamic temporal
4386
+ # size indicated by a timedelta or the following string language:
4387
+ #
4388
+ # - 1ns (1 nanosecond)
4389
+ # - 1us (1 microsecond)
4390
+ # - 1ms (1 millisecond)
4391
+ # - 1s (1 second)
4392
+ # - 1m (1 minute)
4393
+ # - 1h (1 hour)
4394
+ # - 1d (1 calendar day)
4395
+ # - 1w (1 calendar week)
4396
+ # - 1mo (1 calendar month)
4397
+ # - 1q (1 calendar quarter)
4398
+ # - 1y (1 calendar year)
4399
+ #
4400
+ # By "calendar day", we mean the corresponding time on the next day
4401
+ # (which may not be 24 hours, due to daylight savings). Similarly for
4402
+ # "calendar week", "calendar month", "calendar quarter", and
4403
+ # "calendar year".
4404
+ # @param min_periods [Integer]
4405
+ # The number of values in the window that should be non-null before computing
4406
+ # a result.
4407
+ # @param closed ['left', 'right', 'both', 'none']
4408
+ # Define which sides of the temporal interval are closed (inclusive),
4409
+ # defaults to `'right'`.
4410
+ # @param ddof [Integer]
4411
+ # "Delta Degrees of Freedom": The divisor for a length N window is N - ddof
4412
+ # @param warn_if_unsorted [Boolean]
4413
+ # Warn if data is not known to be sorted by `by` column.
4414
+ #
4415
+ # @return [Expr]
4416
+ #
4417
+ # @note
4418
+ # If you want to compute multiple aggregation statistics over the same dynamic
4419
+ # window, consider using `rolling` - this method can cache the window size
4420
+ # computation.
4421
+ #
4422
+ # @example Create a DataFrame with a datetime column and a row number column
4423
+ # start = DateTime.new(2001, 1, 1)
4424
+ # stop = DateTime.new(2001, 1, 2)
4425
+ # df_temporal = Polars::DataFrame.new(
4426
+ # {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
4427
+ # ).with_row_index
4428
+ # # =>
4429
+ # # shape: (25, 2)
4430
+ # # ┌───────┬─────────────────────┐
4431
+ # # │ index ┆ date │
4432
+ # # │ --- ┆ --- │
4433
+ # # │ u32 ┆ datetime[ns] │
4434
+ # # ╞═══════╪═════════════════════╡
4435
+ # # │ 0 ┆ 2001-01-01 00:00:00 │
4436
+ # # │ 1 ┆ 2001-01-01 01:00:00 │
4437
+ # # │ 2 ┆ 2001-01-01 02:00:00 │
4438
+ # # │ 3 ┆ 2001-01-01 03:00:00 │
4439
+ # # │ 4 ┆ 2001-01-01 04:00:00 │
4440
+ # # │ … ┆ … │
4441
+ # # │ 20 ┆ 2001-01-01 20:00:00 │
4442
+ # # │ 21 ┆ 2001-01-01 21:00:00 │
4443
+ # # │ 22 ┆ 2001-01-01 22:00:00 │
4444
+ # # │ 23 ┆ 2001-01-01 23:00:00 │
4445
+ # # │ 24 ┆ 2001-01-02 00:00:00 │
4446
+ # # └───────┴─────────────────────┘
4447
+ #
4448
+ # @example Compute the rolling std with the temporal windows closed on the right (default)
4449
+ # df_temporal.with_columns(
4450
+ # rolling_row_std: Polars.col("index").rolling_std_by("date", "2h")
4451
+ # )
4452
+ # # =>
4453
+ # # shape: (25, 3)
4454
+ # # ┌───────┬─────────────────────┬─────────────────┐
4455
+ # # │ index ┆ date ┆ rolling_row_std │
4456
+ # # │ --- ┆ --- ┆ --- │
4457
+ # # │ u32 ┆ datetime[ns] ┆ f64 │
4458
+ # # ╞═══════╪═════════════════════╪═════════════════╡
4459
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
4460
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.707107 │
4461
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 0.707107 │
4462
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 0.707107 │
4463
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 0.707107 │
4464
+ # # │ … ┆ … ┆ … │
4465
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 0.707107 │
4466
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 0.707107 │
4467
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 0.707107 │
4468
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 0.707107 │
4469
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 0.707107 │
4470
+ # # └───────┴─────────────────────┴─────────────────┘
4471
+ #
4472
+ # @example Compute the rolling std with the closure of windows on both sides
4473
+ # df_temporal.with_columns(
4474
+ # rolling_row_std: Polars.col("index").rolling_std_by(
4475
+ # "date", "2h", closed: "both"
4476
+ # )
4477
+ # )
4478
+ # # =>
4479
+ # # shape: (25, 3)
4480
+ # # ┌───────┬─────────────────────┬─────────────────┐
4481
+ # # │ index ┆ date ┆ rolling_row_std │
4482
+ # # │ --- ┆ --- ┆ --- │
4483
+ # # │ u32 ┆ datetime[ns] ┆ f64 │
4484
+ # # ╞═══════╪═════════════════════╪═════════════════╡
4485
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
4486
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.707107 │
4487
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
4488
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 1.0 │
4489
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 1.0 │
4490
+ # # │ … ┆ … ┆ … │
4491
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 1.0 │
4492
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 1.0 │
4493
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 1.0 │
4494
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 1.0 │
4495
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 1.0 │
4496
+ # # └───────┴─────────────────────┴─────────────────┘
4497
+ def rolling_std_by(
4498
+ by,
4499
+ window_size,
4500
+ min_periods: 1,
4501
+ closed: "right",
4502
+ ddof: 1,
4503
+ warn_if_unsorted: nil
4504
+ )
4505
+ window_size = _prepare_rolling_by_window_args(window_size)
4506
+ by = Utils.parse_as_expression(by)
4507
+ _from_rbexpr(
4508
+ _rbexpr.rolling_std_by(
4509
+ by,
4510
+ window_size,
4511
+ min_periods,
4512
+ closed,
4513
+ ddof
4514
+ )
4515
+ )
4516
+ end
4517
+
4518
+ # Compute a rolling variance based on another column.
4519
+ #
4520
+ # @param by [String]
4521
+ # This column must be of dtype Datetime or Date.
4522
+ # @param window_size [String]
4523
+ # The length of the window. Can be a dynamic temporal
4524
+ # size indicated by a timedelta or the following string language:
4525
+ #
4526
+ # - 1ns (1 nanosecond)
4527
+ # - 1us (1 microsecond)
4528
+ # - 1ms (1 millisecond)
4529
+ # - 1s (1 second)
4530
+ # - 1m (1 minute)
4531
+ # - 1h (1 hour)
4532
+ # - 1d (1 calendar day)
4533
+ # - 1w (1 calendar week)
4534
+ # - 1mo (1 calendar month)
4535
+ # - 1q (1 calendar quarter)
4536
+ # - 1y (1 calendar year)
4537
+ #
4538
+ # By "calendar day", we mean the corresponding time on the next day
4539
+ # (which may not be 24 hours, due to daylight savings). Similarly for
4540
+ # "calendar week", "calendar month", "calendar quarter", and
4541
+ # "calendar year".
4542
+ # @param min_periods [Integer]
4543
+ # The number of values in the window that should be non-null before computing
4544
+ # a result.
4545
+ # @param closed ['left', 'right', 'both', 'none']
4546
+ # Define which sides of the temporal interval are closed (inclusive),
4547
+ # defaults to `'right'`.
4548
+ # @param ddof [Integer]
4549
+ # "Delta Degrees of Freedom": The divisor for a length N window is N - ddof
4550
+ # @param warn_if_unsorted [Boolean]
4551
+ # Warn if data is not known to be sorted by `by` column.
4552
+ #
4553
+ # @return [Expr]
4554
+ #
4555
+ # @note
4556
+ # If you want to compute multiple aggregation statistics over the same dynamic
4557
+ # window, consider using `rolling` - this method can cache the window size
4558
+ # computation.
4559
+ #
4560
+ # @example Create a DataFrame with a datetime column and a row number column
4561
+ # start = DateTime.new(2001, 1, 1)
4562
+ # stop = DateTime.new(2001, 1, 2)
4563
+ # df_temporal = Polars::DataFrame.new(
4564
+ # {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
4565
+ # ).with_row_index
4566
+ # # =>
4567
+ # # shape: (25, 2)
4568
+ # # ┌───────┬─────────────────────┐
4569
+ # # │ index ┆ date │
4570
+ # # │ --- ┆ --- │
4571
+ # # │ u32 ┆ datetime[ns] │
4572
+ # # ╞═══════╪═════════════════════╡
4573
+ # # │ 0 ┆ 2001-01-01 00:00:00 │
4574
+ # # │ 1 ┆ 2001-01-01 01:00:00 │
4575
+ # # │ 2 ┆ 2001-01-01 02:00:00 │
4576
+ # # │ 3 ┆ 2001-01-01 03:00:00 │
4577
+ # # │ 4 ┆ 2001-01-01 04:00:00 │
4578
+ # # │ … ┆ … │
4579
+ # # │ 20 ┆ 2001-01-01 20:00:00 │
4580
+ # # │ 21 ┆ 2001-01-01 21:00:00 │
4581
+ # # │ 22 ┆ 2001-01-01 22:00:00 │
4582
+ # # │ 23 ┆ 2001-01-01 23:00:00 │
4583
+ # # │ 24 ┆ 2001-01-02 00:00:00 │
4584
+ # # └───────┴─────────────────────┘
4585
+ #
4586
+ # @example Compute the rolling var with the temporal windows closed on the right (default)
4587
+ # df_temporal.with_columns(
4588
+ # rolling_row_var: Polars.col("index").rolling_var_by("date", "2h")
4589
+ # )
4590
+ # # =>
4591
+ # # shape: (25, 3)
4592
+ # # ┌───────┬─────────────────────┬─────────────────┐
4593
+ # # │ index ┆ date ┆ rolling_row_var │
4594
+ # # │ --- ┆ --- ┆ --- │
4595
+ # # │ u32 ┆ datetime[ns] ┆ f64 │
4596
+ # # ╞═══════╪═════════════════════╪═════════════════╡
4597
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
4598
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
4599
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 0.5 │
4600
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 0.5 │
4601
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 0.5 │
4602
+ # # │ … ┆ … ┆ … │
4603
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 0.5 │
4604
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 0.5 │
4605
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 0.5 │
4606
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 0.5 │
4607
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 0.5 │
4608
+ # # └───────┴─────────────────────┴─────────────────┘
4609
+ #
4610
+ # @example Compute the rolling var with the closure of windows on both sides
4611
+ # df_temporal.with_columns(
4612
+ # rolling_row_var: Polars.col("index").rolling_var_by(
4613
+ # "date", "2h", closed: "both"
4614
+ # )
4615
+ # )
4616
+ # # =>
4617
+ # # shape: (25, 3)
4618
+ # # ┌───────┬─────────────────────┬─────────────────┐
4619
+ # # │ index ┆ date ┆ rolling_row_var │
4620
+ # # │ --- ┆ --- ┆ --- │
4621
+ # # │ u32 ┆ datetime[ns] ┆ f64 │
4622
+ # # ╞═══════╪═════════════════════╪═════════════════╡
4623
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
4624
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
4625
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
4626
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 1.0 │
4627
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 1.0 │
4628
+ # # │ … ┆ … ┆ … │
4629
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 1.0 │
4630
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 1.0 │
4631
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 1.0 │
4632
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 1.0 │
4633
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 1.0 │
4634
+ # # └───────┴─────────────────────┴─────────────────┘
4635
+ def rolling_var_by(
4636
+ by,
4637
+ window_size,
4638
+ min_periods: 1,
4639
+ closed: "right",
4640
+ ddof: 1,
4641
+ warn_if_unsorted: nil
4642
+ )
4643
+ window_size = _prepare_rolling_by_window_args(window_size)
4644
+ by = Utils.parse_as_expression(by)
4645
+ _from_rbexpr(
4646
+ _rbexpr.rolling_var_by(
4647
+ by,
4648
+ window_size,
4649
+ min_periods,
4650
+ closed,
4651
+ ddof
4652
+ )
4653
+ )
4654
+ end
4655
+
4656
+ # Compute a rolling median based on another column.
4657
+ #
4658
+ # @param by [String]
4659
+ # This column must be of dtype Datetime or Date.
4660
+ # @param window_size [String]
4661
+ # The length of the window. Can be a dynamic temporal
4662
+ # size indicated by a timedelta or the following string language:
4663
+ #
4664
+ # - 1ns (1 nanosecond)
4665
+ # - 1us (1 microsecond)
4666
+ # - 1ms (1 millisecond)
4667
+ # - 1s (1 second)
4668
+ # - 1m (1 minute)
4669
+ # - 1h (1 hour)
4670
+ # - 1d (1 calendar day)
4671
+ # - 1w (1 calendar week)
4672
+ # - 1mo (1 calendar month)
4673
+ # - 1q (1 calendar quarter)
4674
+ # - 1y (1 calendar year)
4675
+ #
4676
+ # By "calendar day", we mean the corresponding time on the next day
4677
+ # (which may not be 24 hours, due to daylight savings). Similarly for
4678
+ # "calendar week", "calendar month", "calendar quarter", and
4679
+ # "calendar year".
4680
+ # @param min_periods [Integer]
4681
+ # The number of values in the window that should be non-null before computing
4682
+ # a result.
4683
+ # @param closed ['left', 'right', 'both', 'none']
4684
+ # Define which sides of the temporal interval are closed (inclusive),
4685
+ # defaults to `'right'`.
4686
+ # @param warn_if_unsorted [Boolean]
4687
+ # Warn if data is not known to be sorted by `by` column.
4688
+ #
4689
+ # @return [Expr]
4690
+ #
4691
+ # @note
4692
+ # If you want to compute multiple aggregation statistics over the same dynamic
4693
+ # window, consider using `rolling` - this method can cache the window size
4694
+ # computation.
4695
+ #
4696
+ # @example Create a DataFrame with a datetime column and a row number column
4697
+ # start = DateTime.new(2001, 1, 1)
4698
+ # stop = DateTime.new(2001, 1, 2)
4699
+ # df_temporal = Polars::DataFrame.new(
4700
+ # {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
4701
+ # ).with_row_index
4702
+ # # =>
4703
+ # # shape: (25, 2)
4704
+ # # ┌───────┬─────────────────────┐
4705
+ # # │ index ┆ date │
4706
+ # # │ --- ┆ --- │
4707
+ # # │ u32 ┆ datetime[ns] │
4708
+ # # ╞═══════╪═════════════════════╡
4709
+ # # │ 0 ┆ 2001-01-01 00:00:00 │
4710
+ # # │ 1 ┆ 2001-01-01 01:00:00 │
4711
+ # # │ 2 ┆ 2001-01-01 02:00:00 │
4712
+ # # │ 3 ┆ 2001-01-01 03:00:00 │
4713
+ # # │ 4 ┆ 2001-01-01 04:00:00 │
4714
+ # # │ … ┆ … │
4715
+ # # │ 20 ┆ 2001-01-01 20:00:00 │
4716
+ # # │ 21 ┆ 2001-01-01 21:00:00 │
4717
+ # # │ 22 ┆ 2001-01-01 22:00:00 │
4718
+ # # │ 23 ┆ 2001-01-01 23:00:00 │
4719
+ # # │ 24 ┆ 2001-01-02 00:00:00 │
4720
+ # # └───────┴─────────────────────┘
4721
+ #
4722
+ # @example Compute the rolling median with the temporal windows closed on the right:
4723
+ # df_temporal.with_columns(
4724
+ # rolling_row_median: Polars.col("index").rolling_median_by(
4725
+ # "date", "2h"
4726
+ # )
4727
+ # )
4728
+ # # =>
4729
+ # # shape: (25, 3)
4730
+ # # ┌───────┬─────────────────────┬────────────────────┐
4731
+ # # │ index ┆ date ┆ rolling_row_median │
4732
+ # # │ --- ┆ --- ┆ --- │
4733
+ # # │ u32 ┆ datetime[ns] ┆ f64 │
4734
+ # # ╞═══════╪═════════════════════╪════════════════════╡
4735
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
4736
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
4737
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.5 │
4738
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.5 │
4739
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.5 │
4740
+ # # │ … ┆ … ┆ … │
4741
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.5 │
4742
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.5 │
4743
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.5 │
4744
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.5 │
4745
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.5 │
4746
+ # # └───────┴─────────────────────┴────────────────────┘
4747
+ def rolling_median_by(
4748
+ by,
4749
+ window_size,
4750
+ min_periods: 1,
4751
+ closed: "right",
4752
+ warn_if_unsorted: nil
4753
+ )
4754
+ window_size = _prepare_rolling_by_window_args(window_size)
4755
+ by = Utils.parse_as_expression(by)
4756
+ _from_rbexpr(
4757
+ _rbexpr.rolling_median_by(by, window_size, min_periods, closed)
4758
+ )
4759
+ end
4760
+
4761
+ # Compute a rolling quantile based on another column.
4762
+ #
4763
+ # @param by [String]
4764
+ # This column must be of dtype Datetime or Date.
4765
+ # @param quantile [Float]
4766
+ # Quantile between 0.0 and 1.0.
4767
+ # @param interpolation ['nearest', 'higher', 'lower', 'midpoint', 'linear']
4768
+ # Interpolation method.
4769
+ # @param window_size [String]
4770
+ # The length of the window. Can be a dynamic
4771
+ # temporal size indicated by a timedelta or the following string language:
4772
+ #
4773
+ # - 1ns (1 nanosecond)
4774
+ # - 1us (1 microsecond)
4775
+ # - 1ms (1 millisecond)
4776
+ # - 1s (1 second)
4777
+ # - 1m (1 minute)
4778
+ # - 1h (1 hour)
4779
+ # - 1d (1 calendar day)
4780
+ # - 1w (1 calendar week)
4781
+ # - 1mo (1 calendar month)
4782
+ # - 1q (1 calendar quarter)
4783
+ # - 1y (1 calendar year)
4784
+ #
4785
+ # By "calendar day", we mean the corresponding time on the next day
4786
+ # (which may not be 24 hours, due to daylight savings). Similarly for
4787
+ # "calendar week", "calendar month", "calendar quarter", and
4788
+ # "calendar year".
4789
+ # @param min_periods [Integer]
4790
+ # The number of values in the window that should be non-null before computing
4791
+ # a result.
4792
+ # @param closed ['left', 'right', 'both', 'none']
4793
+ # Define which sides of the temporal interval are closed (inclusive),
4794
+ # defaults to `'right'`.
4795
+ # @param warn_if_unsorted [Boolean]
4796
+ # Warn if data is not known to be sorted by `by` column.
4797
+ #
4798
+ # @return [Expr]
4799
+ #
4800
+ # @note
4801
+ # If you want to compute multiple aggregation statistics over the same dynamic
4802
+ # window, consider using `rolling` - this method can cache the window size
4803
+ # computation.
4804
+ #
4805
+ # @example Create a DataFrame with a datetime column and a row number column
4806
+ # start = DateTime.new(2001, 1, 1)
4807
+ # stop = DateTime.new(2001, 1, 2)
4808
+ # df_temporal = Polars::DataFrame.new(
4809
+ # {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
4810
+ # ).with_row_index
4811
+ # # =>
4812
+ # # shape: (25, 2)
4813
+ # # ┌───────┬─────────────────────┐
4814
+ # # │ index ┆ date │
4815
+ # # │ --- ┆ --- │
4816
+ # # │ u32 ┆ datetime[ns] │
4817
+ # # ╞═══════╪═════════════════════╡
4818
+ # # │ 0 ┆ 2001-01-01 00:00:00 │
4819
+ # # │ 1 ┆ 2001-01-01 01:00:00 │
4820
+ # # │ 2 ┆ 2001-01-01 02:00:00 │
4821
+ # # │ 3 ┆ 2001-01-01 03:00:00 │
4822
+ # # │ 4 ┆ 2001-01-01 04:00:00 │
4823
+ # # │ … ┆ … │
4824
+ # # │ 20 ┆ 2001-01-01 20:00:00 │
4825
+ # # │ 21 ┆ 2001-01-01 21:00:00 │
4826
+ # # │ 22 ┆ 2001-01-01 22:00:00 │
4827
+ # # │ 23 ┆ 2001-01-01 23:00:00 │
4828
+ # # │ 24 ┆ 2001-01-02 00:00:00 │
4829
+ # # └───────┴─────────────────────┘
4830
+ #
4831
+ # @example Compute the rolling quantile with the temporal windows closed on the right:
4832
+ # df_temporal.with_columns(
4833
+ # rolling_row_quantile: Polars.col("index").rolling_quantile_by(
4834
+ # "date", "2h", quantile: 0.3
4835
+ # )
4836
+ # )
4837
+ # # =>
4838
+ # # shape: (25, 3)
4839
+ # # ┌───────┬─────────────────────┬──────────────────────┐
4840
+ # # │ index ┆ date ┆ rolling_row_quantile │
4841
+ # # │ --- ┆ --- ┆ --- │
4842
+ # # │ u32 ┆ datetime[ns] ┆ f64 │
4843
+ # # ╞═══════╪═════════════════════╪══════════════════════╡
4844
+ # # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
4845
+ # # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.0 │
4846
+ # # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
4847
+ # # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.0 │
4848
+ # # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.0 │
4849
+ # # │ … ┆ … ┆ … │
4850
+ # # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.0 │
4851
+ # # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.0 │
4852
+ # # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.0 │
4853
+ # # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.0 │
4854
+ # # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.0 │
4855
+ # # └───────┴─────────────────────┴──────────────────────┘
4856
+ def rolling_quantile_by(
4857
+ by,
4858
+ window_size,
4859
+ quantile:,
4860
+ interpolation: "nearest",
4861
+ min_periods: 1,
4862
+ closed: "right",
4863
+ warn_if_unsorted: nil
4864
+ )
4865
+ window_size = _prepare_rolling_by_window_args(window_size)
4866
+ by = Utils.parse_as_expression(by)
4867
+ _from_rbexpr(
4868
+ _rbexpr.rolling_quantile_by(
4869
+ by,
4870
+ quantile,
4871
+ interpolation,
4872
+ window_size,
4873
+ min_periods,
4874
+ closed,
4875
+ )
4876
+ )
4877
+ end
4878
+
3859
4879
  # Apply a rolling min (moving min) over the values in this array.
3860
4880
  #
3861
4881
  # A window of length `window_size` will traverse the array. The values that fill
@@ -3933,14 +4953,25 @@ module Polars
3933
4953
  min_periods: nil,
3934
4954
  center: false,
3935
4955
  by: nil,
3936
- closed: "left"
4956
+ closed: nil
3937
4957
  )
3938
4958
  window_size, min_periods = _prepare_rolling_window_args(
3939
4959
  window_size, min_periods
3940
4960
  )
4961
+ if !by.nil?
4962
+ Utils.validate_rolling_by_aggs_arguments(weights, center: center)
4963
+ return rolling_min_by(
4964
+ by,
4965
+ window_size,
4966
+ min_periods: min_periods,
4967
+ closed: closed || "right",
4968
+ warn_if_unsorted: warn_if_unsorted
4969
+ )
4970
+ end
4971
+ window_size = Utils.validate_rolling_aggs_arguments(window_size, closed)
3941
4972
  _from_rbexpr(
3942
4973
  _rbexpr.rolling_min(
3943
- window_size, weights, min_periods, center, by, closed
4974
+ window_size, weights, min_periods, center
3944
4975
  )
3945
4976
  )
3946
4977
  end
@@ -4022,14 +5053,25 @@ module Polars
4022
5053
  min_periods: nil,
4023
5054
  center: false,
4024
5055
  by: nil,
4025
- closed: "left"
5056
+ closed: nil
4026
5057
  )
4027
5058
  window_size, min_periods = _prepare_rolling_window_args(
4028
5059
  window_size, min_periods
4029
5060
  )
5061
+ if !by.nil?
5062
+ Utils.validate_rolling_by_aggs_arguments(weights, center: center)
5063
+ return rolling_max_by(
5064
+ by,
5065
+ window_size,
5066
+ min_periods: min_periods,
5067
+ closed: closed || "right",
5068
+ warn_if_unsorted: warn_if_unsorted
5069
+ )
5070
+ end
5071
+ window_size = Utils.validate_rolling_aggs_arguments(window_size, closed)
4030
5072
  _from_rbexpr(
4031
5073
  _rbexpr.rolling_max(
4032
- window_size, weights, min_periods, center, by, closed
5074
+ window_size, weights, min_periods, center
4033
5075
  )
4034
5076
  )
4035
5077
  end
@@ -4111,14 +5153,25 @@ module Polars
4111
5153
  min_periods: nil,
4112
5154
  center: false,
4113
5155
  by: nil,
4114
- closed: "left"
5156
+ closed: nil
4115
5157
  )
4116
5158
  window_size, min_periods = _prepare_rolling_window_args(
4117
5159
  window_size, min_periods
4118
5160
  )
5161
+ if !by.nil?
5162
+ Utils.validate_rolling_by_aggs_arguments(weights, center: center)
5163
+ return rolling_mean_by(
5164
+ by,
5165
+ window_size,
5166
+ min_periods: min_periods,
5167
+ closed: closed || "right",
5168
+ warn_if_unsorted: warn_if_unsorted
5169
+ )
5170
+ end
5171
+ window_size = Utils.validate_rolling_aggs_arguments(window_size, closed)
4119
5172
  _from_rbexpr(
4120
5173
  _rbexpr.rolling_mean(
4121
- window_size, weights, min_periods, center, by, closed
5174
+ window_size, weights, min_periods, center
4122
5175
  )
4123
5176
  )
4124
5177
  end
@@ -4200,14 +5253,25 @@ module Polars
4200
5253
  min_periods: nil,
4201
5254
  center: false,
4202
5255
  by: nil,
4203
- closed: "left"
5256
+ closed: nil
4204
5257
  )
4205
5258
  window_size, min_periods = _prepare_rolling_window_args(
4206
5259
  window_size, min_periods
4207
5260
  )
5261
+ if !by.nil?
5262
+ Utils.validate_rolling_by_aggs_arguments(weights, center: center)
5263
+ return rolling_sum_by(
5264
+ by,
5265
+ window_size,
5266
+ min_periods: min_periods,
5267
+ closed: closed || "right",
5268
+ warn_if_unsorted: warn_if_unsorted
5269
+ )
5270
+ end
5271
+ window_size = Utils.validate_rolling_aggs_arguments(window_size, closed)
4208
5272
  _from_rbexpr(
4209
5273
  _rbexpr.rolling_sum(
4210
- window_size, weights, min_periods, center, by, closed
5274
+ window_size, weights, min_periods, center
4211
5275
  )
4212
5276
  )
4213
5277
  end
@@ -4289,16 +5353,28 @@ module Polars
4289
5353
  min_periods: nil,
4290
5354
  center: false,
4291
5355
  by: nil,
4292
- closed: "left",
5356
+ closed: nil,
4293
5357
  ddof: 1,
4294
5358
  warn_if_unsorted: true
4295
5359
  )
4296
5360
  window_size, min_periods = _prepare_rolling_window_args(
4297
5361
  window_size, min_periods
4298
5362
  )
5363
+ if !by.nil?
5364
+ Utils.validate_rolling_by_aggs_arguments(weights, center: center)
5365
+ return rolling_std_by(
5366
+ by,
5367
+ window_size,
5368
+ min_periods: min_periods,
5369
+ closed: closed || "right",
5370
+ ddof: ddof,
5371
+ warn_if_unsorted: warn_if_unsorted
5372
+ )
5373
+ end
5374
+ window_size = Utils.validate_rolling_aggs_arguments(window_size, closed)
4299
5375
  _from_rbexpr(
4300
5376
  _rbexpr.rolling_std(
4301
- window_size, weights, min_periods, center, by, closed, ddof, warn_if_unsorted
5377
+ window_size, weights, min_periods, center, ddof
4302
5378
  )
4303
5379
  )
4304
5380
  end
@@ -4380,16 +5456,28 @@ module Polars
4380
5456
  min_periods: nil,
4381
5457
  center: false,
4382
5458
  by: nil,
4383
- closed: "left",
5459
+ closed: nil,
4384
5460
  ddof: 1,
4385
5461
  warn_if_unsorted: true
4386
5462
  )
4387
5463
  window_size, min_periods = _prepare_rolling_window_args(
4388
5464
  window_size, min_periods
4389
5465
  )
5466
+ if !by.nil?
5467
+ Utils.validate_rolling_by_aggs_arguments(weights, center: center)
5468
+ return rolling_var_by(
5469
+ by,
5470
+ window_size,
5471
+ min_periods: min_periods,
5472
+ closed: closed || "right",
5473
+ ddof: ddof,
5474
+ warn_if_unsorted: warn_if_unsorted
5475
+ )
5476
+ end
5477
+ window_size = Utils.validate_rolling_aggs_arguments(window_size, closed)
4390
5478
  _from_rbexpr(
4391
5479
  _rbexpr.rolling_var(
4392
- window_size, weights, min_periods, center, by, closed, ddof, warn_if_unsorted
5480
+ window_size, weights, min_periods, center, ddof
4393
5481
  )
4394
5482
  )
4395
5483
  end
@@ -4467,15 +5555,26 @@ module Polars
4467
5555
  min_periods: nil,
4468
5556
  center: false,
4469
5557
  by: nil,
4470
- closed: "left",
5558
+ closed: nil,
4471
5559
  warn_if_unsorted: true
4472
5560
  )
4473
5561
  window_size, min_periods = _prepare_rolling_window_args(
4474
5562
  window_size, min_periods
4475
5563
  )
5564
+ if !by.nil?
5565
+ Utils.validate_rolling_by_aggs_arguments(weights, center: center)
5566
+ return rolling_median_by(
5567
+ by,
5568
+ window_size,
5569
+ min_periods: min_periods,
5570
+ closed: closed || "right",
5571
+ warn_if_unsorted: warn_if_unsorted
5572
+ )
5573
+ end
5574
+ window_size = Utils.validate_rolling_aggs_arguments(window_size, closed)
4476
5575
  _from_rbexpr(
4477
5576
  _rbexpr.rolling_median(
4478
- window_size, weights, min_periods, center, by, closed, warn_if_unsorted
5577
+ window_size, weights, min_periods, center
4479
5578
  )
4480
5579
  )
4481
5580
  end
@@ -4559,15 +5658,27 @@ module Polars
4559
5658
  min_periods: nil,
4560
5659
  center: false,
4561
5660
  by: nil,
4562
- closed: "left",
5661
+ closed: nil,
4563
5662
  warn_if_unsorted: true
4564
5663
  )
4565
5664
  window_size, min_periods = _prepare_rolling_window_args(
4566
5665
  window_size, min_periods
4567
5666
  )
5667
+ if !by.nil?
5668
+ Utils.validate_rolling_by_aggs_arguments(weights, center: center)
5669
+ return rolling_quantile_by(
5670
+ by,
5671
+ window_size,
5672
+ min_periods: min_periods,
5673
+ closed: closed || "right",
5674
+ warn_if_unsorted: warn_if_unsorted,
5675
+ quantile: quantile
5676
+ )
5677
+ end
5678
+ window_size = Utils.validate_rolling_aggs_arguments(window_size, closed)
4568
5679
  _from_rbexpr(
4569
5680
  _rbexpr.rolling_quantile(
4570
- quantile, interpolation, window_size, weights, min_periods, center, by, closed, warn_if_unsorted
5681
+ quantile, interpolation, window_size, weights, min_periods, center
4571
5682
  )
4572
5683
  )
4573
5684
  end
@@ -4730,6 +5841,8 @@ module Polars
4730
5841
  # on the order that the values occur in the Series.
4731
5842
  # @param reverse [Boolean]
4732
5843
  # Reverse the operation.
5844
+ # @param seed [Integer]
5845
+ # If `method: "random"`, use this as seed.
4733
5846
  #
4734
5847
  # @return [Expr]
4735
5848
  #
@@ -5711,13 +6824,13 @@ module Polars
5711
6824
  # # ┌────────┐
5712
6825
  # # │ values │
5713
6826
  # # │ --- │
5714
- # # │ f64
6827
+ # # │ i64
5715
6828
  # # ╞════════╡
5716
- # # │ 0.0
5717
- # # │ -3.0
5718
- # # │ -8.0
5719
- # # │ -15.0
5720
- # # │ -24.0
6829
+ # # │ 0
6830
+ # # │ -3
6831
+ # # │ -8
6832
+ # # │ -15
6833
+ # # │ -24
5721
6834
  # # └────────┘
5722
6835
  def cumulative_eval(expr, min_periods: 1, parallel: false)
5723
6836
  _from_rbexpr(
@@ -6098,5 +7211,9 @@ module Polars
6098
7211
  end
6099
7212
  [window_size, min_periods]
6100
7213
  end
7214
+
7215
+ def _prepare_rolling_by_window_args(window_size)
7216
+ window_size
7217
+ end
6101
7218
  end
6102
7219
  end