polars-df 0.8.0-aarch64-linux → 0.10.0-aarch64-linux
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +42 -1
- data/Cargo.lock +159 -66
- data/Cargo.toml +0 -3
- data/LICENSE-THIRD-PARTY.txt +3112 -1613
- data/LICENSE.txt +1 -1
- data/README.md +3 -2
- data/lib/polars/3.1/polars.so +0 -0
- data/lib/polars/3.2/polars.so +0 -0
- data/lib/polars/3.3/polars.so +0 -0
- data/lib/polars/array_expr.rb +453 -0
- data/lib/polars/array_name_space.rb +346 -0
- data/lib/polars/batched_csv_reader.rb +4 -2
- data/lib/polars/cat_expr.rb +24 -0
- data/lib/polars/cat_name_space.rb +75 -0
- data/lib/polars/config.rb +2 -2
- data/lib/polars/data_frame.rb +306 -96
- data/lib/polars/data_types.rb +191 -28
- data/lib/polars/date_time_expr.rb +41 -18
- data/lib/polars/date_time_name_space.rb +9 -3
- data/lib/polars/exceptions.rb +12 -1
- data/lib/polars/expr.rb +898 -215
- data/lib/polars/functions/aggregation/horizontal.rb +246 -0
- data/lib/polars/functions/aggregation/vertical.rb +282 -0
- data/lib/polars/functions/as_datatype.rb +248 -0
- data/lib/polars/functions/col.rb +47 -0
- data/lib/polars/functions/eager.rb +182 -0
- data/lib/polars/functions/lazy.rb +1280 -0
- data/lib/polars/functions/len.rb +49 -0
- data/lib/polars/functions/lit.rb +35 -0
- data/lib/polars/functions/random.rb +16 -0
- data/lib/polars/functions/range/date_range.rb +103 -0
- data/lib/polars/functions/range/int_range.rb +51 -0
- data/lib/polars/functions/repeat.rb +144 -0
- data/lib/polars/functions/whenthen.rb +96 -0
- data/lib/polars/functions.rb +29 -416
- data/lib/polars/group_by.rb +2 -2
- data/lib/polars/io.rb +36 -31
- data/lib/polars/lazy_frame.rb +405 -88
- data/lib/polars/list_expr.rb +158 -8
- data/lib/polars/list_name_space.rb +102 -0
- data/lib/polars/meta_expr.rb +175 -7
- data/lib/polars/series.rb +282 -41
- data/lib/polars/string_cache.rb +75 -0
- data/lib/polars/string_expr.rb +413 -96
- data/lib/polars/string_name_space.rb +4 -4
- data/lib/polars/testing.rb +507 -0
- data/lib/polars/utils.rb +106 -8
- data/lib/polars/version.rb +1 -1
- data/lib/polars/whenthen.rb +83 -0
- data/lib/polars.rb +16 -4
- metadata +34 -6
- data/lib/polars/lazy_functions.rb +0 -1181
- data/lib/polars/when.rb +0 -16
- data/lib/polars/when_then.rb +0 -19
@@ -0,0 +1,1280 @@
|
|
1
|
+
module Polars
|
2
|
+
module Functions
|
3
|
+
# Alias for an element in evaluated in an `eval` expression.
|
4
|
+
#
|
5
|
+
# @return [Expr]
|
6
|
+
#
|
7
|
+
# @example A horizontal rank computation by taking the elements of a list
|
8
|
+
# df = Polars::DataFrame.new({"a" => [1, 8, 3], "b" => [4, 5, 2]})
|
9
|
+
# df.with_column(
|
10
|
+
# Polars.concat_list(["a", "b"]).list.eval(Polars.element.rank).alias("rank")
|
11
|
+
# )
|
12
|
+
# # =>
|
13
|
+
# # shape: (3, 3)
|
14
|
+
# # ┌─────┬─────┬────────────┐
|
15
|
+
# # │ a ┆ b ┆ rank │
|
16
|
+
# # │ --- ┆ --- ┆ --- │
|
17
|
+
# # │ i64 ┆ i64 ┆ list[f64] │
|
18
|
+
# # ╞═════╪═════╪════════════╡
|
19
|
+
# # │ 1 ┆ 4 ┆ [1.0, 2.0] │
|
20
|
+
# # │ 8 ┆ 5 ┆ [2.0, 1.0] │
|
21
|
+
# # │ 3 ┆ 2 ┆ [2.0, 1.0] │
|
22
|
+
# # └─────┴─────┴────────────┘
|
23
|
+
def element
|
24
|
+
col("")
|
25
|
+
end
|
26
|
+
|
27
|
+
# Return the number of non-null values in the column.
|
28
|
+
#
|
29
|
+
# This function is syntactic sugar for `col(columns).count`.
|
30
|
+
#
|
31
|
+
# Calling this function without any arguments returns the number of rows in the
|
32
|
+
# context. **This way of using the function is deprecated.** Please use `len`
|
33
|
+
# instead.
|
34
|
+
#
|
35
|
+
# @param columns [Array]
|
36
|
+
# One or more column names.
|
37
|
+
#
|
38
|
+
# @return [Expr]
|
39
|
+
#
|
40
|
+
# @example
|
41
|
+
# df = Polars::DataFrame.new(
|
42
|
+
# {
|
43
|
+
# "a" => [1, 2, nil],
|
44
|
+
# "b" => [3, nil, nil],
|
45
|
+
# "c" => ["foo", "bar", "foo"]
|
46
|
+
# }
|
47
|
+
# )
|
48
|
+
# df.select(Polars.count("a"))
|
49
|
+
# # =>
|
50
|
+
# # shape: (1, 1)
|
51
|
+
# # ┌─────┐
|
52
|
+
# # │ a │
|
53
|
+
# # │ --- │
|
54
|
+
# # │ u32 │
|
55
|
+
# # ╞═════╡
|
56
|
+
# # │ 2 │
|
57
|
+
# # └─────┘
|
58
|
+
#
|
59
|
+
# @example Return the number of non-null values in multiple columns.
|
60
|
+
# df.select(Polars.count("b", "c"))
|
61
|
+
# # =>
|
62
|
+
# # shape: (1, 2)
|
63
|
+
# # ┌─────┬─────┐
|
64
|
+
# # │ b ┆ c │
|
65
|
+
# # │ --- ┆ --- │
|
66
|
+
# # │ u32 ┆ u32 │
|
67
|
+
# # ╞═════╪═════╡
|
68
|
+
# # │ 1 ┆ 3 │
|
69
|
+
# # └─────┴─────┘
|
70
|
+
def count(*columns)
|
71
|
+
if columns.empty?
|
72
|
+
warn "`Polars.count` is deprecated. Use `Polars.length` instead."
|
73
|
+
return Utils.wrap_expr(Plr.len._alias("count"))
|
74
|
+
end
|
75
|
+
|
76
|
+
col(*columns).count
|
77
|
+
end
|
78
|
+
|
79
|
+
# Return the cumulative count of the non-null values in the column.
|
80
|
+
#
|
81
|
+
# This function is syntactic sugar for `col(columns).cum_count`.
|
82
|
+
#
|
83
|
+
# If no arguments are passed, returns the cumulative count of a context.
|
84
|
+
# Rows containing null values count towards the result.
|
85
|
+
#
|
86
|
+
# @param columns [Array]
|
87
|
+
# Name(s) of the columns to use.
|
88
|
+
# @param reverse [Boolean]
|
89
|
+
# Reverse the operation.
|
90
|
+
#
|
91
|
+
# @return [Expr]
|
92
|
+
#
|
93
|
+
# @example
|
94
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, nil], "b" => [3, nil, nil]})
|
95
|
+
# df.select(Polars.cum_count("a"))
|
96
|
+
# # =>
|
97
|
+
# # shape: (3, 1)
|
98
|
+
# # ┌─────┐
|
99
|
+
# # │ a │
|
100
|
+
# # │ --- │
|
101
|
+
# # │ u32 │
|
102
|
+
# # ╞═════╡
|
103
|
+
# # │ 1 │
|
104
|
+
# # │ 2 │
|
105
|
+
# # │ 2 │
|
106
|
+
# # └─────┘
|
107
|
+
def cum_count(*columns, reverse: false)
|
108
|
+
col(*columns).cum_count(reverse: reverse)
|
109
|
+
end
|
110
|
+
|
111
|
+
# Aggregate all column values into a list.
|
112
|
+
#
|
113
|
+
# This function is syntactic sugar for `col(name).implode`.
|
114
|
+
#
|
115
|
+
# @param columns [Array]
|
116
|
+
# One or more column names.
|
117
|
+
#
|
118
|
+
# @return [Expr]
|
119
|
+
#
|
120
|
+
# @example
|
121
|
+
# df = Polars::DataFrame.new(
|
122
|
+
# {
|
123
|
+
# "a" => [1, 2, 3],
|
124
|
+
# "b" => [9, 8, 7],
|
125
|
+
# "c" => ["foo", "bar", "foo"]
|
126
|
+
# }
|
127
|
+
# )
|
128
|
+
# df.select(Polars.implode("a"))
|
129
|
+
# # =>
|
130
|
+
# # shape: (1, 1)
|
131
|
+
# # ┌───────────┐
|
132
|
+
# # │ a │
|
133
|
+
# # │ --- │
|
134
|
+
# # │ list[i64] │
|
135
|
+
# # ╞═══════════╡
|
136
|
+
# # │ [1, 2, 3] │
|
137
|
+
# # └───────────┘
|
138
|
+
#
|
139
|
+
# @example
|
140
|
+
# df.select(Polars.implode("b", "c"))
|
141
|
+
# # =>
|
142
|
+
# # shape: (1, 2)
|
143
|
+
# # ┌───────────┬───────────────────────┐
|
144
|
+
# # │ b ┆ c │
|
145
|
+
# # │ --- ┆ --- │
|
146
|
+
# # │ list[i64] ┆ list[str] │
|
147
|
+
# # ╞═══════════╪═══════════════════════╡
|
148
|
+
# # │ [9, 8, 7] ┆ ["foo", "bar", "foo"] │
|
149
|
+
# # └───────────┴───────────────────────┘
|
150
|
+
def implode(*columns)
|
151
|
+
col(*columns).implode
|
152
|
+
end
|
153
|
+
|
154
|
+
# Get the standard deviation.
|
155
|
+
#
|
156
|
+
# This function is syntactic sugar for `col(column).std(ddof: ddof)`.
|
157
|
+
#
|
158
|
+
# @param column [Object]
|
159
|
+
# Column name.
|
160
|
+
# @param ddof [Integer]
|
161
|
+
# “Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof,
|
162
|
+
# where N represents the number of elements.
|
163
|
+
# By default ddof is 1.
|
164
|
+
#
|
165
|
+
# @return [Expr]
|
166
|
+
#
|
167
|
+
# @example
|
168
|
+
# df = Polars::DataFrame.new(
|
169
|
+
# {
|
170
|
+
# "a" => [1, 8, 3],
|
171
|
+
# "b" => [4, 5, 2],
|
172
|
+
# "c" => ["foo", "bar", "foo"]
|
173
|
+
# }
|
174
|
+
# )
|
175
|
+
# df.select(Polars.std("a"))
|
176
|
+
# # =>
|
177
|
+
# # shape: (1, 1)
|
178
|
+
# # ┌──────────┐
|
179
|
+
# # │ a │
|
180
|
+
# # │ --- │
|
181
|
+
# # │ f64 │
|
182
|
+
# # ╞══════════╡
|
183
|
+
# # │ 3.605551 │
|
184
|
+
# # └──────────┘
|
185
|
+
#
|
186
|
+
# @example
|
187
|
+
# df["a"].std
|
188
|
+
# # => 3.605551275463989
|
189
|
+
def std(column, ddof: 1)
|
190
|
+
col(column).std(ddof: ddof)
|
191
|
+
end
|
192
|
+
|
193
|
+
# Get the variance.
|
194
|
+
#
|
195
|
+
# This function is syntactic sugar for `col(column).var(ddof: ddof)`.
|
196
|
+
#
|
197
|
+
# @param column [Object]
|
198
|
+
# Column name.
|
199
|
+
# @param ddof [Integer]
|
200
|
+
# “Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof,
|
201
|
+
# where N represents the number of elements.
|
202
|
+
# By default ddof is 1.
|
203
|
+
#
|
204
|
+
# @return [Expr]
|
205
|
+
#
|
206
|
+
# @example
|
207
|
+
# df = Polars::DataFrame.new(
|
208
|
+
# {
|
209
|
+
# "a" => [1, 8, 3],
|
210
|
+
# "b" => [4, 5, 2],
|
211
|
+
# "c" => ["foo", "bar", "foo"]
|
212
|
+
# }
|
213
|
+
# )
|
214
|
+
# df.select(Polars.var("a"))
|
215
|
+
# # =>
|
216
|
+
# # shape: (1, 1)
|
217
|
+
# # ┌──────┐
|
218
|
+
# # │ a │
|
219
|
+
# # │ --- │
|
220
|
+
# # │ f64 │
|
221
|
+
# # ╞══════╡
|
222
|
+
# # │ 13.0 │
|
223
|
+
# # └──────┘
|
224
|
+
#
|
225
|
+
# @example
|
226
|
+
# df["a"].var
|
227
|
+
# # => 13.0
|
228
|
+
def var(column, ddof: 1)
|
229
|
+
col(column).var(ddof: ddof)
|
230
|
+
end
|
231
|
+
|
232
|
+
|
233
|
+
# Get the mean value.
|
234
|
+
#
|
235
|
+
# This function is syntactic sugar for `col(columns).mean`.
|
236
|
+
#
|
237
|
+
# @param columns [Array]
|
238
|
+
# One or more column names.
|
239
|
+
#
|
240
|
+
# @return [Expr]
|
241
|
+
#
|
242
|
+
# @example
|
243
|
+
# df = Polars::DataFrame.new(
|
244
|
+
# {
|
245
|
+
# "a" => [1, 8, 3],
|
246
|
+
# "b" => [4, 5, 2],
|
247
|
+
# "c" => ["foo", "bar", "foo"]
|
248
|
+
# }
|
249
|
+
# )
|
250
|
+
# df.select(Polars.mean("a"))
|
251
|
+
# # =>
|
252
|
+
# # shape: (1, 1)
|
253
|
+
# # ┌─────┐
|
254
|
+
# # │ a │
|
255
|
+
# # │ --- │
|
256
|
+
# # │ f64 │
|
257
|
+
# # ╞═════╡
|
258
|
+
# # │ 4.0 │
|
259
|
+
# # └─────┘
|
260
|
+
#
|
261
|
+
# @example
|
262
|
+
# df.select(Polars.mean("a", "b"))
|
263
|
+
# # =>
|
264
|
+
# # shape: (1, 2)
|
265
|
+
# # ┌─────┬──────────┐
|
266
|
+
# # │ a ┆ b │
|
267
|
+
# # │ --- ┆ --- │
|
268
|
+
# # │ f64 ┆ f64 │
|
269
|
+
# # ╞═════╪══════════╡
|
270
|
+
# # │ 4.0 ┆ 3.666667 │
|
271
|
+
# # └─────┴──────────┘
|
272
|
+
def mean(*columns)
|
273
|
+
col(*columns).mean
|
274
|
+
end
|
275
|
+
alias_method :avg, :mean
|
276
|
+
|
277
|
+
# Get the median value.
|
278
|
+
#
|
279
|
+
# This function is syntactic sugar for `pl.col(columns).median`.
|
280
|
+
#
|
281
|
+
# @param columns [Array]
|
282
|
+
# One or more column names.
|
283
|
+
#
|
284
|
+
# @return [Expr]
|
285
|
+
#
|
286
|
+
# @example
|
287
|
+
# df = Polars::DataFrame.new(
|
288
|
+
# {
|
289
|
+
# "a" => [1, 8, 3],
|
290
|
+
# "b" => [4, 5, 2],
|
291
|
+
# "c" => ["foo", "bar", "foo"]
|
292
|
+
# }
|
293
|
+
# )
|
294
|
+
# df.select(Polars.median("a"))
|
295
|
+
# # =>
|
296
|
+
# # shape: (1, 1)
|
297
|
+
# # ┌─────┐
|
298
|
+
# # │ a │
|
299
|
+
# # │ --- │
|
300
|
+
# # │ f64 │
|
301
|
+
# # ╞═════╡
|
302
|
+
# # │ 3.0 │
|
303
|
+
# # └─────┘
|
304
|
+
#
|
305
|
+
# @example
|
306
|
+
# df.select(Polars.median("a", "b"))
|
307
|
+
# # =>
|
308
|
+
# # shape: (1, 2)
|
309
|
+
# # ┌─────┬─────┐
|
310
|
+
# # │ a ┆ b │
|
311
|
+
# # │ --- ┆ --- │
|
312
|
+
# # │ f64 ┆ f64 │
|
313
|
+
# # ╞═════╪═════╡
|
314
|
+
# # │ 3.0 ┆ 4.0 │
|
315
|
+
# # └─────┴─────┘
|
316
|
+
def median(*columns)
|
317
|
+
col(*columns).median
|
318
|
+
end
|
319
|
+
|
320
|
+
# Count unique values.
|
321
|
+
#
|
322
|
+
# This function is syntactic sugar for `col(columns).n_unique`.
|
323
|
+
#
|
324
|
+
# @param columns [Array]
|
325
|
+
# One or more column names.
|
326
|
+
#
|
327
|
+
# @return [Expr]
|
328
|
+
#
|
329
|
+
# @example
|
330
|
+
# df = Polars::DataFrame.new(
|
331
|
+
# {
|
332
|
+
# "a" => [1, 8, 1],
|
333
|
+
# "b" => [4, 5, 2],
|
334
|
+
# "c" => ["foo", "bar", "foo"]
|
335
|
+
# }
|
336
|
+
# )
|
337
|
+
# df.select(Polars.n_unique("a"))
|
338
|
+
# # =>
|
339
|
+
# # shape: (1, 1)
|
340
|
+
# # ┌─────┐
|
341
|
+
# # │ a │
|
342
|
+
# # │ --- │
|
343
|
+
# # │ u32 │
|
344
|
+
# # ╞═════╡
|
345
|
+
# # │ 2 │
|
346
|
+
# # └─────┘
|
347
|
+
#
|
348
|
+
# @example
|
349
|
+
# df.select(Polars.n_unique("b", "c"))
|
350
|
+
# # =>
|
351
|
+
# # shape: (1, 2)
|
352
|
+
# # ┌─────┬─────┐
|
353
|
+
# # │ b ┆ c │
|
354
|
+
# # │ --- ┆ --- │
|
355
|
+
# # │ u32 ┆ u32 │
|
356
|
+
# # ╞═════╪═════╡
|
357
|
+
# # │ 3 ┆ 2 │
|
358
|
+
# # └─────┴─────┘
|
359
|
+
def n_unique(*columns)
|
360
|
+
col(*columns).n_unique
|
361
|
+
end
|
362
|
+
|
363
|
+
# Approximate count of unique values.
|
364
|
+
#
|
365
|
+
# This function is syntactic sugar for `col(columns).approx_n_unique`, and
|
366
|
+
# uses the HyperLogLog++ algorithm for cardinality estimation.
|
367
|
+
#
|
368
|
+
# @param columns [Array]
|
369
|
+
# One or more column names.
|
370
|
+
#
|
371
|
+
# @return [Expr]
|
372
|
+
#
|
373
|
+
# @example
|
374
|
+
# df = Polars::DataFrame.new(
|
375
|
+
# {
|
376
|
+
# "a" => [1, 8, 1],
|
377
|
+
# "b" => [4, 5, 2],
|
378
|
+
# "c" => ["foo", "bar", "foo"]
|
379
|
+
# }
|
380
|
+
# )
|
381
|
+
# df.select(Polars.approx_n_unique("a"))
|
382
|
+
# # =>
|
383
|
+
# # shape: (1, 1)
|
384
|
+
# # ┌─────┐
|
385
|
+
# # │ a │
|
386
|
+
# # │ --- │
|
387
|
+
# # │ u32 │
|
388
|
+
# # ╞═════╡
|
389
|
+
# # │ 2 │
|
390
|
+
# # └─────┘
|
391
|
+
#
|
392
|
+
# @example
|
393
|
+
# df.select(Polars.approx_n_unique("b", "c"))
|
394
|
+
# # =>
|
395
|
+
# # shape: (1, 2)
|
396
|
+
# # ┌─────┬─────┐
|
397
|
+
# # │ b ┆ c │
|
398
|
+
# # │ --- ┆ --- │
|
399
|
+
# # │ u32 ┆ u32 │
|
400
|
+
# # ╞═════╪═════╡
|
401
|
+
# # │ 3 ┆ 2 │
|
402
|
+
# # └─────┴─────┘
|
403
|
+
def approx_n_unique(*columns)
|
404
|
+
col(*columns).approx_n_unique
|
405
|
+
end
|
406
|
+
|
407
|
+
# Get the first value.
|
408
|
+
#
|
409
|
+
# @param columns [Array]
|
410
|
+
# One or more column names. If not provided (default), returns an expression
|
411
|
+
# to take the first column of the context instead.
|
412
|
+
#
|
413
|
+
# @return [Expr]
|
414
|
+
#
|
415
|
+
# @example
|
416
|
+
# df = Polars::DataFrame.new(
|
417
|
+
# {
|
418
|
+
# "a" => [1, 8, 3],
|
419
|
+
# "b" => [4, 5, 2],
|
420
|
+
# "c" => ["foo", "bar", "baz"]
|
421
|
+
# }
|
422
|
+
# )
|
423
|
+
# df.select(Polars.first)
|
424
|
+
# # =>
|
425
|
+
# # shape: (3, 1)
|
426
|
+
# # ┌─────┐
|
427
|
+
# # │ a │
|
428
|
+
# # │ --- │
|
429
|
+
# # │ i64 │
|
430
|
+
# # ╞═════╡
|
431
|
+
# # │ 1 │
|
432
|
+
# # │ 8 │
|
433
|
+
# # │ 3 │
|
434
|
+
# # └─────┘
|
435
|
+
#
|
436
|
+
# @example
|
437
|
+
# df.select(Polars.first("b"))
|
438
|
+
# # =>
|
439
|
+
# # shape: (1, 1)
|
440
|
+
# # ┌─────┐
|
441
|
+
# # │ b │
|
442
|
+
# # │ --- │
|
443
|
+
# # │ i64 │
|
444
|
+
# # ╞═════╡
|
445
|
+
# # │ 4 │
|
446
|
+
# # └─────┘
|
447
|
+
#
|
448
|
+
# @example
|
449
|
+
# df.select(Polars.first("a", "c"))
|
450
|
+
# # =>
|
451
|
+
# # shape: (1, 2)
|
452
|
+
# # ┌─────┬─────┐
|
453
|
+
# # │ a ┆ c │
|
454
|
+
# # │ --- ┆ --- │
|
455
|
+
# # │ i64 ┆ str │
|
456
|
+
# # ╞═════╪═════╡
|
457
|
+
# # │ 1 ┆ foo │
|
458
|
+
# # └─────┴─────┘
|
459
|
+
def first(*columns)
|
460
|
+
if columns.empty?
|
461
|
+
return Utils.wrap_expr(Plr.first)
|
462
|
+
end
|
463
|
+
|
464
|
+
col(*columns).first
|
465
|
+
end
|
466
|
+
|
467
|
+
# Get the last value.
|
468
|
+
#
|
469
|
+
# @param columns [Array]
|
470
|
+
# One or more column names. If set to `nil` (default), returns an expression
|
471
|
+
# to take the last column of the context instead.
|
472
|
+
#
|
473
|
+
# @return [Expr]
|
474
|
+
#
|
475
|
+
# @example
|
476
|
+
# df = Polars::DataFrame.new(
|
477
|
+
# {
|
478
|
+
# "a" => [1, 8, 3],
|
479
|
+
# "b" => [4, 5, 2],
|
480
|
+
# "c" => ["foo", "bar", "baz"]
|
481
|
+
# }
|
482
|
+
# )
|
483
|
+
# df.select(Polars.last)
|
484
|
+
# # =>
|
485
|
+
# # shape: (3, 1)
|
486
|
+
# # ┌─────┐
|
487
|
+
# # │ c │
|
488
|
+
# # │ --- │
|
489
|
+
# # │ str │
|
490
|
+
# # ╞═════╡
|
491
|
+
# # │ foo │
|
492
|
+
# # │ bar │
|
493
|
+
# # │ baz │
|
494
|
+
# # └─────┘
|
495
|
+
#
|
496
|
+
# @example
|
497
|
+
# df.select(Polars.last("a"))
|
498
|
+
# # =>
|
499
|
+
# # shape: (1, 1)
|
500
|
+
# # ┌─────┐
|
501
|
+
# # │ a │
|
502
|
+
# # │ --- │
|
503
|
+
# # │ i64 │
|
504
|
+
# # ╞═════╡
|
505
|
+
# # │ 3 │
|
506
|
+
# # └─────┘
|
507
|
+
#
|
508
|
+
# @example
|
509
|
+
# df.select(Polars.last("b", "c"))
|
510
|
+
# # =>
|
511
|
+
# # shape: (1, 2)
|
512
|
+
# # ┌─────┬─────┐
|
513
|
+
# # │ b ┆ c │
|
514
|
+
# # │ --- ┆ --- │
|
515
|
+
# # │ i64 ┆ str │
|
516
|
+
# # ╞═════╪═════╡
|
517
|
+
# # │ 2 ┆ baz │
|
518
|
+
# # └─────┴─────┘
|
519
|
+
def last(*columns)
|
520
|
+
if columns.empty?
|
521
|
+
return Utils.wrap_expr(Plr.last)
|
522
|
+
end
|
523
|
+
|
524
|
+
col(*columns).last
|
525
|
+
end
|
526
|
+
|
527
|
+
# Get the first `n` rows.
|
528
|
+
#
|
529
|
+
# This function is syntactic sugar for `col(column).head(n)`.
|
530
|
+
#
|
531
|
+
# @param column [Object]
|
532
|
+
# Column name.
|
533
|
+
# @param n [Integer]
|
534
|
+
# Number of rows to return.
|
535
|
+
#
|
536
|
+
# @return [Expr]
|
537
|
+
#
|
538
|
+
# @example
|
539
|
+
# df = Polars::DataFrame.new(
|
540
|
+
# {
|
541
|
+
# "a" => [1, 8, 3],
|
542
|
+
# "b" => [4, 5, 2],
|
543
|
+
# "c" => ["foo", "bar", "foo"]
|
544
|
+
# }
|
545
|
+
# )
|
546
|
+
# df.select(Polars.head("a"))
|
547
|
+
# # =>
|
548
|
+
# # shape: (3, 1)
|
549
|
+
# # ┌─────┐
|
550
|
+
# # │ a │
|
551
|
+
# # │ --- │
|
552
|
+
# # │ i64 │
|
553
|
+
# # ╞═════╡
|
554
|
+
# # │ 1 │
|
555
|
+
# # │ 8 │
|
556
|
+
# # │ 3 │
|
557
|
+
# # └─────┘
|
558
|
+
#
|
559
|
+
# @example
|
560
|
+
# df.select(Polars.head("a", 2))
|
561
|
+
# # =>
|
562
|
+
# # shape: (2, 1)
|
563
|
+
# # ┌─────┐
|
564
|
+
# # │ a │
|
565
|
+
# # │ --- │
|
566
|
+
# # │ i64 │
|
567
|
+
# # ╞═════╡
|
568
|
+
# # │ 1 │
|
569
|
+
# # │ 8 │
|
570
|
+
# # └─────┘
|
571
|
+
def head(column, n = 10)
|
572
|
+
col(column).head(n)
|
573
|
+
end
|
574
|
+
|
575
|
+
# Get the last `n` rows.
|
576
|
+
#
|
577
|
+
# This function is syntactic sugar for `col(column).tail(n)`.
|
578
|
+
#
|
579
|
+
# @param column [Object]
|
580
|
+
# Column name.
|
581
|
+
# @param n [Integer]
|
582
|
+
# Number of rows to return.
|
583
|
+
#
|
584
|
+
# @return [Expr]
|
585
|
+
#
|
586
|
+
# @example
|
587
|
+
# df = Polars::DataFrame.new(
|
588
|
+
# {
|
589
|
+
# "a" => [1, 8, 3],
|
590
|
+
# "b" => [4, 5, 2],
|
591
|
+
# "c" => ["foo", "bar", "foo"]
|
592
|
+
# }
|
593
|
+
# )
|
594
|
+
# df.select(Polars.tail("a"))
|
595
|
+
# # =>
|
596
|
+
# # shape: (3, 1)
|
597
|
+
# # ┌─────┐
|
598
|
+
# # │ a │
|
599
|
+
# # │ --- │
|
600
|
+
# # │ i64 │
|
601
|
+
# # ╞═════╡
|
602
|
+
# # │ 1 │
|
603
|
+
# # │ 8 │
|
604
|
+
# # │ 3 │
|
605
|
+
# # └─────┘
|
606
|
+
#
|
607
|
+
# @example
|
608
|
+
# df.select(Polars.tail("a", 2))
|
609
|
+
# # =>
|
610
|
+
# # shape: (2, 1)
|
611
|
+
# # ┌─────┐
|
612
|
+
# # │ a │
|
613
|
+
# # │ --- │
|
614
|
+
# # │ i64 │
|
615
|
+
# # ╞═════╡
|
616
|
+
# # │ 8 │
|
617
|
+
# # │ 3 │
|
618
|
+
# # └─────┘
|
619
|
+
def tail(column, n = 10)
|
620
|
+
col(column).tail(n)
|
621
|
+
end
|
622
|
+
|
623
|
+
# Compute the Pearson's or Spearman rank correlation correlation between two columns.
|
624
|
+
#
|
625
|
+
# @param a [Object]
|
626
|
+
# Column name or Expression.
|
627
|
+
# @param b [Object]
|
628
|
+
# Column name or Expression.
|
629
|
+
# @param ddof [Integer]
|
630
|
+
# "Delta Degrees of Freedom": the divisor used in the calculation is N - ddof,
|
631
|
+
# where N represents the number of elements.
|
632
|
+
# By default ddof is 1.
|
633
|
+
# @param method ["pearson", "spearman"]
|
634
|
+
# Correlation method.
|
635
|
+
# @param propagate_nans [Boolean]
|
636
|
+
# If `true` any `NaN` encountered will lead to `NaN` in the output.
|
637
|
+
# Defaults to `False` where `NaN` are regarded as larger than any finite number
|
638
|
+
# and thus lead to the highest rank.
|
639
|
+
#
|
640
|
+
# @return [Expr]
|
641
|
+
#
|
642
|
+
# @example Pearson's correlation:
|
643
|
+
# df = Polars::DataFrame.new(
|
644
|
+
# {
|
645
|
+
# "a" => [1, 8, 3],
|
646
|
+
# "b" => [4, 5, 2],
|
647
|
+
# "c" => ["foo", "bar", "foo"]
|
648
|
+
# }
|
649
|
+
# )
|
650
|
+
# df.select(Polars.corr("a", "b"))
|
651
|
+
# # =>
|
652
|
+
# # shape: (1, 1)
|
653
|
+
# # ┌──────────┐
|
654
|
+
# # │ a │
|
655
|
+
# # │ --- │
|
656
|
+
# # │ f64 │
|
657
|
+
# # ╞══════════╡
|
658
|
+
# # │ 0.544705 │
|
659
|
+
# # └──────────┘
|
660
|
+
#
|
661
|
+
# @example Spearman rank correlation:
|
662
|
+
# df = Polars::DataFrame.new(
|
663
|
+
# {
|
664
|
+
# "a" => [1, 8, 3],
|
665
|
+
# "b" => [4, 5, 2],
|
666
|
+
# "c" => ["foo", "bar", "foo"]
|
667
|
+
# }
|
668
|
+
# )
|
669
|
+
# df.select(Polars.corr("a", "b", method: "spearman"))
|
670
|
+
# # =>
|
671
|
+
# # shape: (1, 1)
|
672
|
+
# # ┌─────┐
|
673
|
+
# # │ a │
|
674
|
+
# # │ --- │
|
675
|
+
# # │ f64 │
|
676
|
+
# # ╞═════╡
|
677
|
+
# # │ 0.5 │
|
678
|
+
# # └─────┘
|
679
|
+
def corr(
|
680
|
+
a,
|
681
|
+
b,
|
682
|
+
method: "pearson",
|
683
|
+
ddof: 1,
|
684
|
+
propagate_nans: false
|
685
|
+
)
|
686
|
+
a = Utils.parse_as_expression(a)
|
687
|
+
b = Utils.parse_as_expression(b)
|
688
|
+
|
689
|
+
if method == "pearson"
|
690
|
+
Utils.wrap_expr(Plr.pearson_corr(a, b, ddof))
|
691
|
+
elsif method == "spearman"
|
692
|
+
Utils.wrap_expr(Plr.spearman_rank_corr(a, b, ddof, propagate_nans))
|
693
|
+
else
|
694
|
+
msg = "method must be one of {{'pearson', 'spearman'}}, got #{method}"
|
695
|
+
raise ArgumentError, msg
|
696
|
+
end
|
697
|
+
end
|
698
|
+
|
699
|
+
# Compute the covariance between two columns/ expressions.
|
700
|
+
#
|
701
|
+
# @param a [Object]
|
702
|
+
# Column name or Expression.
|
703
|
+
# @param b [Object]
|
704
|
+
# Column name or Expression.
|
705
|
+
# @param ddof [Integer]
|
706
|
+
# "Delta Degrees of Freedom": the divisor used in the calculation is N - ddof,
|
707
|
+
# where N represents the number of elements.
|
708
|
+
# By default ddof is 1.
|
709
|
+
#
|
710
|
+
# @return [Expr]
|
711
|
+
#
|
712
|
+
# @example
|
713
|
+
# df = Polars::DataFrame.new(
|
714
|
+
# {
|
715
|
+
# "a" => [1, 8, 3],
|
716
|
+
# "b" => [4, 5, 2],
|
717
|
+
# "c" => ["foo", "bar", "foo"]
|
718
|
+
# }
|
719
|
+
# )
|
720
|
+
# df.select(Polars.cov("a", "b"))
|
721
|
+
# # =>
|
722
|
+
# # shape: (1, 1)
|
723
|
+
# # ┌─────┐
|
724
|
+
# # │ a │
|
725
|
+
# # │ --- │
|
726
|
+
# # │ f64 │
|
727
|
+
# # ╞═════╡
|
728
|
+
# # │ 3.0 │
|
729
|
+
# # └─────┘
|
730
|
+
def cov(a, b, ddof: 1)
|
731
|
+
a = Utils.parse_as_expression(a)
|
732
|
+
b = Utils.parse_as_expression(b)
|
733
|
+
Utils.wrap_expr(Plr.cov(a, b, ddof))
|
734
|
+
end
|
735
|
+
|
736
|
+
# def map
|
737
|
+
# end
|
738
|
+
|
739
|
+
# def apply
|
740
|
+
# end
|
741
|
+
|
742
|
+
# Accumulate over multiple columns horizontally/row wise with a left fold.
|
743
|
+
#
|
744
|
+
# @return [Expr]
|
745
|
+
def fold(acc, f, exprs)
|
746
|
+
acc = Utils.expr_to_lit_or_expr(acc, str_to_lit: true)
|
747
|
+
if exprs.is_a?(Expr)
|
748
|
+
exprs = [exprs]
|
749
|
+
end
|
750
|
+
|
751
|
+
exprs = Utils.selection_to_rbexpr_list(exprs)
|
752
|
+
Utils.wrap_expr(Plr.fold(acc._rbexpr, f, exprs))
|
753
|
+
end
|
754
|
+
|
755
|
+
# def reduce
|
756
|
+
# end
|
757
|
+
|
758
|
+
# Cumulatively accumulate over multiple columns horizontally/row wise with a left fold.
|
759
|
+
#
|
760
|
+
# Every cumulative result is added as a separate field in a Struct column.
|
761
|
+
#
|
762
|
+
# @param acc [Object]
|
763
|
+
# Accumulator Expression. This is the value that will be initialized when the fold
|
764
|
+
# starts. For a sum this could for instance be lit(0).
|
765
|
+
# @param f [Object]
|
766
|
+
# Function to apply over the accumulator and the value.
|
767
|
+
# Fn(acc, value) -> new_value
|
768
|
+
# @param exprs [Object]
|
769
|
+
# Expressions to aggregate over. May also be a wildcard expression.
|
770
|
+
# @param include_init [Boolean]
|
771
|
+
# Include the initial accumulator state as struct field.
|
772
|
+
#
|
773
|
+
# @return [Object]
|
774
|
+
#
|
775
|
+
# @note
|
776
|
+
# If you simply want the first encountered expression as accumulator,
|
777
|
+
# consider using `cumreduce`.
|
778
|
+
def cum_fold(acc, f, exprs, include_init: false)
|
779
|
+
acc = Utils.expr_to_lit_or_expr(acc, str_to_lit: true)
|
780
|
+
if exprs.is_a?(Expr)
|
781
|
+
exprs = [exprs]
|
782
|
+
end
|
783
|
+
|
784
|
+
exprs = Utils.selection_to_rbexpr_list(exprs)
|
785
|
+
Utils.wrap_expr(Plr.cum_fold(acc._rbexpr, f, exprs, include_init))
|
786
|
+
end
|
787
|
+
alias_method :cumfold, :cum_fold
|
788
|
+
|
789
|
+
# def cum_reduce
|
790
|
+
# end
|
791
|
+
|
792
|
+
# Compute two argument arctan in radians.
|
793
|
+
#
|
794
|
+
# Returns the angle (in radians) in the plane between the
|
795
|
+
# positive x-axis and the ray from the origin to (x,y).
|
796
|
+
#
|
797
|
+
# @param y [Object]
|
798
|
+
# Column name or Expression.
|
799
|
+
# @param x [Object]
|
800
|
+
# Column name or Expression.
|
801
|
+
#
|
802
|
+
# @return [Expr]
|
803
|
+
#
|
804
|
+
# @example
|
805
|
+
# twoRootTwo = Math.sqrt(2) / 2
|
806
|
+
# df = Polars::DataFrame.new(
|
807
|
+
# {
|
808
|
+
# "y" => [twoRootTwo, -twoRootTwo, twoRootTwo, -twoRootTwo],
|
809
|
+
# "x" => [twoRootTwo, twoRootTwo, -twoRootTwo, -twoRootTwo]
|
810
|
+
# }
|
811
|
+
# )
|
812
|
+
# df.select(
|
813
|
+
# Polars.arctan2d("y", "x").alias("atan2d"), Polars.arctan2("y", "x").alias("atan2")
|
814
|
+
# )
|
815
|
+
# # =>
|
816
|
+
# # shape: (4, 2)
|
817
|
+
# # ┌────────┬───────────┐
|
818
|
+
# # │ atan2d ┆ atan2 │
|
819
|
+
# # │ --- ┆ --- │
|
820
|
+
# # │ f64 ┆ f64 │
|
821
|
+
# # ╞════════╪═══════════╡
|
822
|
+
# # │ 45.0 ┆ 0.785398 │
|
823
|
+
# # │ -45.0 ┆ -0.785398 │
|
824
|
+
# # │ 135.0 ┆ 2.356194 │
|
825
|
+
# # │ -135.0 ┆ -2.356194 │
|
826
|
+
# # └────────┴───────────┘
|
827
|
+
def arctan2(y, x)
|
828
|
+
if Utils.strlike?(y)
|
829
|
+
y = col(y)
|
830
|
+
end
|
831
|
+
if Utils.strlike?(x)
|
832
|
+
x = col(x)
|
833
|
+
end
|
834
|
+
Utils.wrap_expr(Plr.arctan2(y._rbexpr, x._rbexpr))
|
835
|
+
end
|
836
|
+
|
837
|
+
# Compute two argument arctan in degrees.
|
838
|
+
#
|
839
|
+
# Returns the angle (in degrees) in the plane between the positive x-axis
|
840
|
+
# and the ray from the origin to (x,y).
|
841
|
+
#
|
842
|
+
# @param y [Object]
|
843
|
+
# Column name or Expression.
|
844
|
+
# @param x [Object]
|
845
|
+
# Column name or Expression.
|
846
|
+
#
|
847
|
+
# @return [Expr]
|
848
|
+
#
|
849
|
+
# @example
|
850
|
+
# twoRootTwo = Math.sqrt(2) / 2
|
851
|
+
# df = Polars::DataFrame.new(
|
852
|
+
# {
|
853
|
+
# "y" => [twoRootTwo, -twoRootTwo, twoRootTwo, -twoRootTwo],
|
854
|
+
# "x" => [twoRootTwo, twoRootTwo, -twoRootTwo, -twoRootTwo]
|
855
|
+
# }
|
856
|
+
# )
|
857
|
+
# df.select(
|
858
|
+
# Polars.arctan2d("y", "x").alias("atan2d"), Polars.arctan2("y", "x").alias("atan2")
|
859
|
+
# )
|
860
|
+
# # =>
|
861
|
+
# # shape: (4, 2)
|
862
|
+
# # ┌────────┬───────────┐
|
863
|
+
# # │ atan2d ┆ atan2 │
|
864
|
+
# # │ --- ┆ --- │
|
865
|
+
# # │ f64 ┆ f64 │
|
866
|
+
# # ╞════════╪═══════════╡
|
867
|
+
# # │ 45.0 ┆ 0.785398 │
|
868
|
+
# # │ -45.0 ┆ -0.785398 │
|
869
|
+
# # │ 135.0 ┆ 2.356194 │
|
870
|
+
# # │ -135.0 ┆ -2.356194 │
|
871
|
+
# # └────────┴───────────┘
|
872
|
+
def arctan2d(y, x)
|
873
|
+
if Utils.strlike?(y)
|
874
|
+
y = col(y)
|
875
|
+
end
|
876
|
+
if Utils.strlike?(x)
|
877
|
+
x = col(x)
|
878
|
+
end
|
879
|
+
Utils.wrap_expr(Plr.arctan2d(y._rbexpr, x._rbexpr))
|
880
|
+
end
|
881
|
+
|
882
|
+
# Exclude certain columns from a wildcard/regex selection.
|
883
|
+
#
|
884
|
+
# @param columns [Object]
|
885
|
+
# Column(s) to exclude from selection
|
886
|
+
# This can be:
|
887
|
+
#
|
888
|
+
# - a column name, or multiple column names
|
889
|
+
# - a regular expression starting with `^` and ending with `$`
|
890
|
+
# - a dtype or multiple dtypes
|
891
|
+
#
|
892
|
+
# @return [Object]
|
893
|
+
#
|
894
|
+
# @example
|
895
|
+
# df = Polars::DataFrame.new(
|
896
|
+
# {
|
897
|
+
# "aa" => [1, 2, 3],
|
898
|
+
# "ba" => ["a", "b", nil],
|
899
|
+
# "cc" => [nil, 2.5, 1.5]
|
900
|
+
# }
|
901
|
+
# )
|
902
|
+
# # =>
|
903
|
+
# # shape: (3, 3)
|
904
|
+
# # ┌─────┬──────┬──────┐
|
905
|
+
# # │ aa ┆ ba ┆ cc │
|
906
|
+
# # │ --- ┆ --- ┆ --- │
|
907
|
+
# # │ i64 ┆ str ┆ f64 │
|
908
|
+
# # ╞═════╪══════╪══════╡
|
909
|
+
# # │ 1 ┆ a ┆ null │
|
910
|
+
# # │ 2 ┆ b ┆ 2.5 │
|
911
|
+
# # │ 3 ┆ null ┆ 1.5 │
|
912
|
+
# # └─────┴──────┴──────┘
|
913
|
+
#
|
914
|
+
# @example Exclude by column name(s):
|
915
|
+
# df.select(Polars.exclude("ba"))
|
916
|
+
# # =>
|
917
|
+
# # shape: (3, 2)
|
918
|
+
# # ┌─────┬──────┐
|
919
|
+
# # │ aa ┆ cc │
|
920
|
+
# # │ --- ┆ --- │
|
921
|
+
# # │ i64 ┆ f64 │
|
922
|
+
# # ╞═════╪══════╡
|
923
|
+
# # │ 1 ┆ null │
|
924
|
+
# # │ 2 ┆ 2.5 │
|
925
|
+
# # │ 3 ┆ 1.5 │
|
926
|
+
# # └─────┴──────┘
|
927
|
+
#
|
928
|
+
# @example Exclude by regex, e.g. removing all columns whose names end with the letter "a":
|
929
|
+
# df.select(Polars.exclude("^.*a$"))
|
930
|
+
# # =>
|
931
|
+
# # shape: (3, 1)
|
932
|
+
# # ┌──────┐
|
933
|
+
# # │ cc │
|
934
|
+
# # │ --- │
|
935
|
+
# # │ f64 │
|
936
|
+
# # ╞══════╡
|
937
|
+
# # │ null │
|
938
|
+
# # │ 2.5 │
|
939
|
+
# # │ 1.5 │
|
940
|
+
# # └──────┘
|
941
|
+
def exclude(columns)
|
942
|
+
col("*").exclude(columns)
|
943
|
+
end
|
944
|
+
|
945
|
+
# Syntactic sugar for `Polars.col("foo").agg_groups`.
|
946
|
+
#
|
947
|
+
# @return [Object]
|
948
|
+
def groups(column)
|
949
|
+
col(column).agg_groups
|
950
|
+
end
|
951
|
+
|
952
|
+
# Syntactic sugar for `Polars.col("foo").quantile(...)`.
|
953
|
+
#
|
954
|
+
# @param column [String]
|
955
|
+
# Column name.
|
956
|
+
# @param quantile [Float]
|
957
|
+
# Quantile between 0.0 and 1.0.
|
958
|
+
# @param interpolation ["nearest", "higher", "lower", "midpoint", "linear"]
|
959
|
+
# Interpolation method.
|
960
|
+
#
|
961
|
+
# @return [Expr]
|
962
|
+
def quantile(column, quantile, interpolation: "nearest")
|
963
|
+
col(column).quantile(quantile, interpolation: interpolation)
|
964
|
+
end
|
965
|
+
|
966
|
+
# Find the indexes that would sort the columns.
|
967
|
+
#
|
968
|
+
# Argsort by multiple columns. The first column will be used for the ordering.
|
969
|
+
# If there are duplicates in the first column, the second column will be used to
|
970
|
+
# determine the ordering and so on.
|
971
|
+
#
|
972
|
+
# @param exprs [Object]
|
973
|
+
# Columns use to determine the ordering.
|
974
|
+
# @param reverse [Boolean]
|
975
|
+
# Default is ascending.
|
976
|
+
#
|
977
|
+
# @return [Expr]
|
978
|
+
def arg_sort_by(exprs, reverse: false)
|
979
|
+
if !exprs.is_a?(::Array)
|
980
|
+
exprs = [exprs]
|
981
|
+
end
|
982
|
+
if reverse == true || reverse == false
|
983
|
+
reverse = [reverse] * exprs.length
|
984
|
+
end
|
985
|
+
exprs = Utils.selection_to_rbexpr_list(exprs)
|
986
|
+
Utils.wrap_expr(Plr.arg_sort_by(exprs, reverse))
|
987
|
+
end
|
988
|
+
alias_method :argsort_by, :arg_sort_by
|
989
|
+
|
990
|
+
# Collect multiple LazyFrames at the same time.
|
991
|
+
#
|
992
|
+
# This runs all the computation graphs in parallel on Polars threadpool.
|
993
|
+
#
|
994
|
+
# @param lazy_frames [Boolean]
|
995
|
+
# A list of LazyFrames to collect.
|
996
|
+
# @param type_coercion [Boolean]
|
997
|
+
# Do type coercion optimization.
|
998
|
+
# @param predicate_pushdown [Boolean]
|
999
|
+
# Do predicate pushdown optimization.
|
1000
|
+
# @param projection_pushdown [Boolean]
|
1001
|
+
# Do projection pushdown optimization.
|
1002
|
+
# @param simplify_expression [Boolean]
|
1003
|
+
# Run simplify expressions optimization.
|
1004
|
+
# @param string_cache [Boolean]
|
1005
|
+
# This argument is deprecated and will be ignored
|
1006
|
+
# @param no_optimization [Boolean]
|
1007
|
+
# Turn off optimizations.
|
1008
|
+
# @param slice_pushdown [Boolean]
|
1009
|
+
# Slice pushdown optimization.
|
1010
|
+
# @param common_subplan_elimination [Boolean]
|
1011
|
+
# Will try to cache branching subplans that occur on self-joins or unions.
|
1012
|
+
# @param allow_streaming [Boolean]
|
1013
|
+
# Run parts of the query in a streaming fashion (this is in an alpha state)
|
1014
|
+
#
|
1015
|
+
# @return [Array]
|
1016
|
+
def collect_all(
|
1017
|
+
lazy_frames,
|
1018
|
+
type_coercion: true,
|
1019
|
+
predicate_pushdown: true,
|
1020
|
+
projection_pushdown: true,
|
1021
|
+
simplify_expression: true,
|
1022
|
+
string_cache: false,
|
1023
|
+
no_optimization: false,
|
1024
|
+
slice_pushdown: true,
|
1025
|
+
common_subplan_elimination: true,
|
1026
|
+
allow_streaming: false
|
1027
|
+
)
|
1028
|
+
if no_optimization
|
1029
|
+
predicate_pushdown = false
|
1030
|
+
projection_pushdown = false
|
1031
|
+
slice_pushdown = false
|
1032
|
+
common_subplan_elimination = false
|
1033
|
+
end
|
1034
|
+
|
1035
|
+
prepared = []
|
1036
|
+
|
1037
|
+
lazy_frames.each do |lf|
|
1038
|
+
ldf = lf._ldf.optimization_toggle(
|
1039
|
+
type_coercion,
|
1040
|
+
predicate_pushdown,
|
1041
|
+
projection_pushdown,
|
1042
|
+
simplify_expression,
|
1043
|
+
slice_pushdown,
|
1044
|
+
common_subplan_elimination,
|
1045
|
+
allow_streaming,
|
1046
|
+
false
|
1047
|
+
)
|
1048
|
+
prepared << ldf
|
1049
|
+
end
|
1050
|
+
|
1051
|
+
out = Plr.collect_all(prepared)
|
1052
|
+
|
1053
|
+
# wrap the rbdataframes into dataframe
|
1054
|
+
result = out.map { |rbdf| Utils.wrap_df(rbdf) }
|
1055
|
+
|
1056
|
+
result
|
1057
|
+
end
|
1058
|
+
|
1059
|
+
# Run polars expressions without a context.
|
1060
|
+
#
|
1061
|
+
# This is syntactic sugar for running `df.select` on an empty DataFrame.
|
1062
|
+
#
|
1063
|
+
# @param exprs [Array]
|
1064
|
+
# Column(s) to select, specified as positional arguments.
|
1065
|
+
# Accepts expression input. Strings are parsed as column names,
|
1066
|
+
# other non-expression inputs are parsed as literals.
|
1067
|
+
# @param named_exprs [Hash]
|
1068
|
+
# Additional columns to select, specified as keyword arguments.
|
1069
|
+
# The columns will be renamed to the keyword used.
|
1070
|
+
#
|
1071
|
+
# @return [DataFrame]
|
1072
|
+
#
|
1073
|
+
# @example
|
1074
|
+
# foo = Polars::Series.new("foo", [1, 2, 3])
|
1075
|
+
# bar = Polars::Series.new("bar", [3, 2, 1])
|
1076
|
+
# Polars.select(min: Polars.min_horizontal(foo, bar))
|
1077
|
+
# # =>
|
1078
|
+
# # shape: (3, 1)
|
1079
|
+
# # ┌─────┐
|
1080
|
+
# # │ min │
|
1081
|
+
# # │ --- │
|
1082
|
+
# # │ i64 │
|
1083
|
+
# # ╞═════╡
|
1084
|
+
# # │ 1 │
|
1085
|
+
# # │ 2 │
|
1086
|
+
# # │ 1 │
|
1087
|
+
# # └─────┘
|
1088
|
+
def select(*exprs, **named_exprs)
|
1089
|
+
DataFrame.new([]).select(*exprs, **named_exprs)
|
1090
|
+
end
|
1091
|
+
|
1092
|
+
# Return indices where `condition` evaluates `true`.
|
1093
|
+
#
|
1094
|
+
# @param condition [Expr]
|
1095
|
+
# Boolean expression to evaluate
|
1096
|
+
# @param eager [Boolean]
|
1097
|
+
# Whether to apply this function eagerly (as opposed to lazily).
|
1098
|
+
#
|
1099
|
+
# @return [Expr, Series]
|
1100
|
+
#
|
1101
|
+
# @example
|
1102
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4, 5]})
|
1103
|
+
# df.select(
|
1104
|
+
# [
|
1105
|
+
# Polars.arg_where(Polars.col("a") % 2 == 0)
|
1106
|
+
# ]
|
1107
|
+
# ).to_series
|
1108
|
+
# # =>
|
1109
|
+
# # shape: (2,)
|
1110
|
+
# # Series: 'a' [u32]
|
1111
|
+
# # [
|
1112
|
+
# # 1
|
1113
|
+
# # 3
|
1114
|
+
# # ]
|
1115
|
+
def arg_where(condition, eager: false)
|
1116
|
+
if eager
|
1117
|
+
if !condition.is_a?(Series)
|
1118
|
+
raise ArgumentError, "expected 'Series' in 'arg_where' if 'eager: true', got #{condition.class.name}"
|
1119
|
+
end
|
1120
|
+
condition.to_frame.select(arg_where(Polars.col(condition.name))).to_series
|
1121
|
+
else
|
1122
|
+
condition = Utils.expr_to_lit_or_expr(condition, str_to_lit: true)
|
1123
|
+
Utils.wrap_expr(Plr.arg_where(condition._rbexpr))
|
1124
|
+
end
|
1125
|
+
end
|
1126
|
+
|
1127
|
+
# Folds the columns from left to right, keeping the first non-null value.
|
1128
|
+
#
|
1129
|
+
# @param exprs [Array]
|
1130
|
+
# Columns to coalesce. Accepts expression input. Strings are parsed as column
|
1131
|
+
# names, other non-expression inputs are parsed as literals.
|
1132
|
+
# @param more_exprs [Hash]
|
1133
|
+
# Additional columns to coalesce, specified as positional arguments.
|
1134
|
+
#
|
1135
|
+
# @return [Expr]
|
1136
|
+
#
|
1137
|
+
# @example
|
1138
|
+
# df = Polars::DataFrame.new(
|
1139
|
+
# {
|
1140
|
+
# "a" => [1, nil, nil, nil],
|
1141
|
+
# "b" => [1, 2, nil, nil],
|
1142
|
+
# "c" => [5, nil, 3, nil]
|
1143
|
+
# }
|
1144
|
+
# )
|
1145
|
+
# df.with_columns(Polars.coalesce(["a", "b", "c", 10]).alias("d"))
|
1146
|
+
# # =>
|
1147
|
+
# # shape: (4, 4)
|
1148
|
+
# # ┌──────┬──────┬──────┬─────┐
|
1149
|
+
# # │ a ┆ b ┆ c ┆ d │
|
1150
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
1151
|
+
# # │ i64 ┆ i64 ┆ i64 ┆ i64 │
|
1152
|
+
# # ╞══════╪══════╪══════╪═════╡
|
1153
|
+
# # │ 1 ┆ 1 ┆ 5 ┆ 1 │
|
1154
|
+
# # │ null ┆ 2 ┆ null ┆ 2 │
|
1155
|
+
# # │ null ┆ null ┆ 3 ┆ 3 │
|
1156
|
+
# # │ null ┆ null ┆ null ┆ 10 │
|
1157
|
+
# # └──────┴──────┴──────┴─────┘
|
1158
|
+
#
|
1159
|
+
# @example
|
1160
|
+
# df.with_columns(Polars.coalesce(Polars.col(["a", "b", "c"]), 10.0).alias("d"))
|
1161
|
+
# # =>
|
1162
|
+
# # shape: (4, 4)
|
1163
|
+
# # ┌──────┬──────┬──────┬──────┐
|
1164
|
+
# # │ a ┆ b ┆ c ┆ d │
|
1165
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
1166
|
+
# # │ i64 ┆ i64 ┆ i64 ┆ f64 │
|
1167
|
+
# # ╞══════╪══════╪══════╪══════╡
|
1168
|
+
# # │ 1 ┆ 1 ┆ 5 ┆ 1.0 │
|
1169
|
+
# # │ null ┆ 2 ┆ null ┆ 2.0 │
|
1170
|
+
# # │ null ┆ null ┆ 3 ┆ 3.0 │
|
1171
|
+
# # │ null ┆ null ┆ null ┆ 10.0 │
|
1172
|
+
# # └──────┴──────┴──────┴──────┘
|
1173
|
+
def coalesce(exprs, *more_exprs)
|
1174
|
+
exprs = Utils.parse_as_list_of_expressions(exprs, *more_exprs)
|
1175
|
+
Utils.wrap_expr(Plr.coalesce(exprs))
|
1176
|
+
end
|
1177
|
+
|
1178
|
+
# Utility function that parses an epoch timestamp (or Unix time) to Polars Date(time).
|
1179
|
+
#
|
1180
|
+
# Depending on the `unit` provided, this function will return a different dtype:
|
1181
|
+
# - unit: "d" returns pl.Date
|
1182
|
+
# - unit: "s" returns pl.Datetime["us"] (pl.Datetime's default)
|
1183
|
+
# - unit: "ms" returns pl.Datetime["ms"]
|
1184
|
+
# - unit: "us" returns pl.Datetime["us"]
|
1185
|
+
# - unit: "ns" returns pl.Datetime["ns"]
|
1186
|
+
#
|
1187
|
+
# @param column [Object]
|
1188
|
+
# Series or expression to parse integers to pl.Datetime.
|
1189
|
+
# @param unit [String]
|
1190
|
+
# The unit of the timesteps since epoch time.
|
1191
|
+
# @param eager [Boolean]
|
1192
|
+
# If eager evaluation is `true`, a Series is returned instead of an Expr.
|
1193
|
+
#
|
1194
|
+
# @return [Object]
|
1195
|
+
#
|
1196
|
+
# @example
|
1197
|
+
# df = Polars::DataFrame.new({"timestamp" => [1666683077, 1666683099]}).lazy
|
1198
|
+
# df.select(Polars.from_epoch(Polars.col("timestamp"), unit: "s")).collect
|
1199
|
+
# # =>
|
1200
|
+
# # shape: (2, 1)
|
1201
|
+
# # ┌─────────────────────┐
|
1202
|
+
# # │ timestamp │
|
1203
|
+
# # │ --- │
|
1204
|
+
# # │ datetime[μs] │
|
1205
|
+
# # ╞═════════════════════╡
|
1206
|
+
# # │ 2022-10-25 07:31:17 │
|
1207
|
+
# # │ 2022-10-25 07:31:39 │
|
1208
|
+
# # └─────────────────────┘
|
1209
|
+
def from_epoch(column, unit: "s", eager: false)
|
1210
|
+
if Utils.strlike?(column)
|
1211
|
+
column = col(column)
|
1212
|
+
elsif !column.is_a?(Series) && !column.is_a?(Expr)
|
1213
|
+
column = Series.new(column)
|
1214
|
+
end
|
1215
|
+
|
1216
|
+
if unit == "d"
|
1217
|
+
expr = column.cast(Date)
|
1218
|
+
elsif unit == "s"
|
1219
|
+
expr = (column.cast(Int64) * 1_000_000).cast(Datetime.new("us"))
|
1220
|
+
elsif Utils::DTYPE_TEMPORAL_UNITS.include?(unit)
|
1221
|
+
expr = column.cast(Datetime.new(unit))
|
1222
|
+
else
|
1223
|
+
raise ArgumentError, "'unit' must be one of {{'ns', 'us', 'ms', 's', 'd'}}, got '#{unit}'."
|
1224
|
+
end
|
1225
|
+
|
1226
|
+
if eager
|
1227
|
+
if !column.is_a?(Series)
|
1228
|
+
raise ArgumentError, "expected Series or Array if eager: true, got #{column.class.name}"
|
1229
|
+
else
|
1230
|
+
column.to_frame.select(expr).to_series
|
1231
|
+
end
|
1232
|
+
else
|
1233
|
+
expr
|
1234
|
+
end
|
1235
|
+
end
|
1236
|
+
|
1237
|
+
# Parse one or more SQL expressions to polars expression(s).
|
1238
|
+
#
|
1239
|
+
# @param sql [Object]
|
1240
|
+
# One or more SQL expressions.
|
1241
|
+
#
|
1242
|
+
# @return [Expr]
|
1243
|
+
#
|
1244
|
+
# @example Parse a single SQL expression:
|
1245
|
+
# df = Polars::DataFrame.new({"a" => [2, 1]})
|
1246
|
+
# expr = Polars.sql_expr("MAX(a)")
|
1247
|
+
# df.select(expr)
|
1248
|
+
# # =>
|
1249
|
+
# # shape: (1, 1)
|
1250
|
+
# # ┌─────┐
|
1251
|
+
# # │ a │
|
1252
|
+
# # │ --- │
|
1253
|
+
# # │ i64 │
|
1254
|
+
# # ╞═════╡
|
1255
|
+
# # │ 2 │
|
1256
|
+
# # └─────┘
|
1257
|
+
#
|
1258
|
+
# @example Parse multiple SQL expressions:
|
1259
|
+
# df.with_columns(
|
1260
|
+
# *Polars.sql_expr(["POWER(a,a) AS a_a", "CAST(a AS TEXT) AS a_txt"])
|
1261
|
+
# )
|
1262
|
+
# # =>
|
1263
|
+
# # shape: (2, 3)
|
1264
|
+
# # ┌─────┬─────┬───────┐
|
1265
|
+
# # │ a ┆ a_a ┆ a_txt │
|
1266
|
+
# # │ --- ┆ --- ┆ --- │
|
1267
|
+
# # │ i64 ┆ i64 ┆ str │
|
1268
|
+
# # ╞═════╪═════╪═══════╡
|
1269
|
+
# # │ 2 ┆ 4 ┆ 2 │
|
1270
|
+
# # │ 1 ┆ 1 ┆ 1 │
|
1271
|
+
# # └─────┴─────┴───────┘
|
1272
|
+
def sql_expr(sql)
|
1273
|
+
if sql.is_a?(::String)
|
1274
|
+
Utils.wrap_expr(Plr.sql_expr(sql))
|
1275
|
+
else
|
1276
|
+
sql.map { |q| Utils.wrap_expr(Plr.sql_expr(q)) }
|
1277
|
+
end
|
1278
|
+
end
|
1279
|
+
end
|
1280
|
+
end
|