polars-df 0.7.0-aarch64-linux → 0.8.0-aarch64-linux

Sign up to get free protection for your applications and to get access to all the features.
data/lib/polars/expr.rb CHANGED
@@ -366,7 +366,7 @@ module Polars
366
366
  # # │ 3 ┆ 1.5 │
367
367
  # # └─────┴──────┘
368
368
  def exclude(columns)
369
- if columns.is_a?(String)
369
+ if columns.is_a?(::String)
370
370
  columns = [columns]
371
371
  return wrap_expr(_rbexpr.exclude(columns))
372
372
  elsif !columns.is_a?(::Array)
@@ -374,11 +374,11 @@ module Polars
374
374
  return wrap_expr(_rbexpr.exclude_dtype(columns))
375
375
  end
376
376
 
377
- if !columns.all? { |a| a.is_a?(String) } || !columns.all? { |a| Utils.is_polars_dtype(a) }
377
+ if !columns.all? { |a| a.is_a?(::String) } || !columns.all? { |a| Utils.is_polars_dtype(a) }
378
378
  raise ArgumentError, "input should be all string or all DataType"
379
379
  end
380
380
 
381
- if columns[0].is_a?(String)
381
+ if columns[0].is_a?(::String)
382
382
  wrap_expr(_rbexpr.exclude(columns))
383
383
  else
384
384
  wrap_expr(_rbexpr.exclude_dtype(columns))
@@ -721,13 +721,13 @@ module Polars
721
721
  # # │ 3 ┆ 3 │
722
722
  # # └─────┴─────┘
723
723
  def count
724
- wrap_expr(_rbexpr.count)
724
+ warn "`Expr#count` will exclude null values in 0.9.0. Use `Expr#length` instead."
725
+ # wrap_expr(_rbexpr.count)
726
+ wrap_expr(_rbexpr.len)
725
727
  end
726
728
 
727
729
  # Count the number of values in this expression.
728
730
  #
729
- # Alias for {#count}.
730
- #
731
731
  # @return [Expr]
732
732
  #
733
733
  # @example
@@ -743,8 +743,9 @@ module Polars
743
743
  # # │ 3 ┆ 3 │
744
744
  # # └─────┴─────┘
745
745
  def len
746
- count
746
+ wrap_expr(_rbexpr.len)
747
747
  end
748
+ alias_method :length, :len
748
749
 
749
750
  # Get a slice of this expression.
750
751
  #
@@ -2423,7 +2424,7 @@ module Polars
2423
2424
  # # │ --- │
2424
2425
  # # │ f64 │
2425
2426
  # # ╞═════╡
2426
- # # │ 1.0 │
2427
+ # # │ 2.0 │
2427
2428
  # # └─────┘
2428
2429
  #
2429
2430
  # @example
@@ -2478,6 +2479,206 @@ module Polars
2478
2479
  wrap_expr(_rbexpr.quantile(quantile._rbexpr, interpolation))
2479
2480
  end
2480
2481
 
2482
+ # Bin continuous values into discrete categories.
2483
+ #
2484
+ # @param breaks [Array]
2485
+ # List of unique cut points.
2486
+ # @param labels [Array]
2487
+ # Names of the categories. The number of labels must be equal to the number
2488
+ # of cut points plus one.
2489
+ # @param left_closed [Boolean]
2490
+ # Set the intervals to be left-closed instead of right-closed.
2491
+ # @param include_breaks [Boolean]
2492
+ # Include a column with the right endpoint of the bin each observation falls
2493
+ # in. This will change the data type of the output from a
2494
+ # `Categorical` to a `Struct`.
2495
+ #
2496
+ # @return [Expr]
2497
+ #
2498
+ # @example Divide a column into three categories.
2499
+ # df = Polars::DataFrame.new({"foo" => [-2, -1, 0, 1, 2]})
2500
+ # df.with_columns(
2501
+ # Polars.col("foo").cut([-1, 1], labels: ["a", "b", "c"]).alias("cut")
2502
+ # )
2503
+ # # =>
2504
+ # # shape: (5, 2)
2505
+ # # ┌─────┬─────┐
2506
+ # # │ foo ┆ cut │
2507
+ # # │ --- ┆ --- │
2508
+ # # │ i64 ┆ cat │
2509
+ # # ╞═════╪═════╡
2510
+ # # │ -2 ┆ a │
2511
+ # # │ -1 ┆ a │
2512
+ # # │ 0 ┆ b │
2513
+ # # │ 1 ┆ b │
2514
+ # # │ 2 ┆ c │
2515
+ # # └─────┴─────┘
2516
+ #
2517
+ # @example Add both the category and the breakpoint.
2518
+ # df.with_columns(
2519
+ # Polars.col("foo").cut([-1, 1], include_breaks: true).alias("cut")
2520
+ # ).unnest("cut")
2521
+ # # =>
2522
+ # # shape: (5, 3)
2523
+ # # ┌─────┬──────┬────────────┐
2524
+ # # │ foo ┆ brk ┆ foo_bin │
2525
+ # # │ --- ┆ --- ┆ --- │
2526
+ # # │ i64 ┆ f64 ┆ cat │
2527
+ # # ╞═════╪══════╪════════════╡
2528
+ # # │ -2 ┆ -1.0 ┆ (-inf, -1] │
2529
+ # # │ -1 ┆ -1.0 ┆ (-inf, -1] │
2530
+ # # │ 0 ┆ 1.0 ┆ (-1, 1] │
2531
+ # # │ 1 ┆ 1.0 ┆ (-1, 1] │
2532
+ # # │ 2 ┆ inf ┆ (1, inf] │
2533
+ # # └─────┴──────┴────────────┘
2534
+ def cut(breaks, labels: nil, left_closed: false, include_breaks: false)
2535
+ wrap_expr(_rbexpr.cut(breaks, labels, left_closed, include_breaks))
2536
+ end
2537
+
2538
+ # Bin continuous values into discrete categories based on their quantiles.
2539
+ #
2540
+ # @param quantiles [Array]
2541
+ # Either a list of quantile probabilities between 0 and 1 or a positive
2542
+ # integer determining the number of bins with uniform probability.
2543
+ # @param labels [Array]
2544
+ # Names of the categories. The number of labels must be equal to the number
2545
+ # of categories.
2546
+ # @param left_closed [Boolean]
2547
+ # Set the intervals to be left-closed instead of right-closed.
2548
+ # @param allow_duplicates [Boolean]
2549
+ # If set to `true`, duplicates in the resulting quantiles are dropped,
2550
+ # rather than raising a `DuplicateError`. This can happen even with unique
2551
+ # probabilities, depending on the data.
2552
+ # @param include_breaks [Boolean]
2553
+ # Include a column with the right endpoint of the bin each observation falls
2554
+ # in. This will change the data type of the output from a
2555
+ # `Categorical` to a `Struct`.
2556
+ #
2557
+ # @return [Expr]
2558
+ #
2559
+ # @example Divide a column into three categories according to pre-defined quantile probabilities.
2560
+ # df = Polars::DataFrame.new({"foo" => [-2, -1, 0, 1, 2]})
2561
+ # df.with_columns(
2562
+ # Polars.col("foo").qcut([0.25, 0.75], labels: ["a", "b", "c"]).alias("qcut")
2563
+ # )
2564
+ # # =>
2565
+ # # shape: (5, 2)
2566
+ # # ┌─────┬──────┐
2567
+ # # │ foo ┆ qcut │
2568
+ # # │ --- ┆ --- │
2569
+ # # │ i64 ┆ cat │
2570
+ # # ╞═════╪══════╡
2571
+ # # │ -2 ┆ a │
2572
+ # # │ -1 ┆ a │
2573
+ # # │ 0 ┆ b │
2574
+ # # │ 1 ┆ b │
2575
+ # # │ 2 ┆ c │
2576
+ # # └─────┴──────┘
2577
+ #
2578
+ # @example Divide a column into two categories using uniform quantile probabilities.
2579
+ # df.with_columns(
2580
+ # Polars.col("foo")
2581
+ # .qcut(2, labels: ["low", "high"], left_closed: true)
2582
+ # .alias("qcut")
2583
+ # )
2584
+ # # =>
2585
+ # # shape: (5, 2)
2586
+ # # ┌─────┬──────┐
2587
+ # # │ foo ┆ qcut │
2588
+ # # │ --- ┆ --- │
2589
+ # # │ i64 ┆ cat │
2590
+ # # ╞═════╪══════╡
2591
+ # # │ -2 ┆ low │
2592
+ # # │ -1 ┆ low │
2593
+ # # │ 0 ┆ high │
2594
+ # # │ 1 ┆ high │
2595
+ # # │ 2 ┆ high │
2596
+ # # └─────┴──────┘
2597
+ #
2598
+ # @example Add both the category and the breakpoint.
2599
+ # df.with_columns(
2600
+ # Polars.col("foo").qcut([0.25, 0.75], include_breaks: true).alias("qcut")
2601
+ # ).unnest("qcut")
2602
+ # # =>
2603
+ # # shape: (5, 3)
2604
+ # # ┌─────┬──────┬────────────┐
2605
+ # # │ foo ┆ brk ┆ foo_bin │
2606
+ # # │ --- ┆ --- ┆ --- │
2607
+ # # │ i64 ┆ f64 ┆ cat │
2608
+ # # ╞═════╪══════╪════════════╡
2609
+ # # │ -2 ┆ -1.0 ┆ (-inf, -1] │
2610
+ # # │ -1 ┆ -1.0 ┆ (-inf, -1] │
2611
+ # # │ 0 ┆ 1.0 ┆ (-1, 1] │
2612
+ # # │ 1 ┆ 1.0 ┆ (-1, 1] │
2613
+ # # │ 2 ┆ inf ┆ (1, inf] │
2614
+ # # └─────┴──────┴────────────┘
2615
+ def qcut(quantiles, labels: nil, left_closed: false, allow_duplicates: false, include_breaks: false)
2616
+ if quantiles.is_a?(Integer)
2617
+ rbexpr = _rbexpr.qcut_uniform(
2618
+ quantiles, labels, left_closed, allow_duplicates, include_breaks
2619
+ )
2620
+ else
2621
+ rbexpr = _rbexpr.qcut(
2622
+ quantiles, labels, left_closed, allow_duplicates, include_breaks
2623
+ )
2624
+ end
2625
+
2626
+ wrap_expr(rbexpr)
2627
+ end
2628
+
2629
+ # Get the lengths of runs of identical values.
2630
+ #
2631
+ # @return [Expr]
2632
+ #
2633
+ # @example
2634
+ # df = Polars::DataFrame.new(Polars::Series.new("s", [1, 1, 2, 1, nil, 1, 3, 3]))
2635
+ # df.select(Polars.col("s").rle).unnest("s")
2636
+ # # =>
2637
+ # # shape: (6, 2)
2638
+ # # ┌─────────┬────────┐
2639
+ # # │ lengths ┆ values │
2640
+ # # │ --- ┆ --- │
2641
+ # # │ i32 ┆ i64 │
2642
+ # # ╞═════════╪════════╡
2643
+ # # │ 2 ┆ 1 │
2644
+ # # │ 1 ┆ 2 │
2645
+ # # │ 1 ┆ 1 │
2646
+ # # │ 1 ┆ null │
2647
+ # # │ 1 ┆ 1 │
2648
+ # # │ 2 ┆ 3 │
2649
+ # # └─────────┴────────┘
2650
+ def rle
2651
+ wrap_expr(_rbexpr.rle)
2652
+ end
2653
+
2654
+ # Map values to run IDs.
2655
+ #
2656
+ # Similar to RLE, but it maps each value to an ID corresponding to the run into
2657
+ # which it falls. This is especially useful when you want to define groups by
2658
+ # runs of identical values rather than the values themselves.
2659
+ #
2660
+ # @return [Expr]
2661
+ #
2662
+ # @example
2663
+ # df = Polars::DataFrame.new({"a" => [1, 2, 1, 1, 1], "b" => ["x", "x", nil, "y", "y"]})
2664
+ # df.with_columns([Polars.col("a").rle_id.alias("a_r"), Polars.struct(["a", "b"]).rle_id.alias("ab_r")])
2665
+ # # =>
2666
+ # # shape: (5, 4)
2667
+ # # ┌─────┬──────┬─────┬──────┐
2668
+ # # │ a ┆ b ┆ a_r ┆ ab_r │
2669
+ # # │ --- ┆ --- ┆ --- ┆ --- │
2670
+ # # │ i64 ┆ str ┆ u32 ┆ u32 │
2671
+ # # ╞═════╪══════╪═════╪══════╡
2672
+ # # │ 1 ┆ x ┆ 0 ┆ 0 │
2673
+ # # │ 2 ┆ x ┆ 1 ┆ 1 │
2674
+ # # │ 1 ┆ null ┆ 2 ┆ 2 │
2675
+ # # │ 1 ┆ y ┆ 2 ┆ 3 │
2676
+ # # │ 1 ┆ y ┆ 2 ┆ 3 │
2677
+ # # └─────┴──────┴─────┴──────┘
2678
+ def rle_id
2679
+ wrap_expr(_rbexpr.rle_id)
2680
+ end
2681
+
2481
2682
  # Filter a single column.
2482
2683
  #
2483
2684
  # Mostly useful in an aggregation context. If you want to filter on a DataFrame
@@ -2751,8 +2952,8 @@ module Polars
2751
2952
  # # │ 4 │
2752
2953
  # # │ 7 │
2753
2954
  # # └─────┘
2754
- def gather_every(n)
2755
- wrap_expr(_rbexpr.gather_every(n))
2955
+ def gather_every(n, offset = 0)
2956
+ wrap_expr(_rbexpr.gather_every(n, offset))
2756
2957
  end
2757
2958
  alias_method :take_every, :gather_every
2758
2959
 
@@ -3571,14 +3772,15 @@ module Polars
3571
3772
  center: false,
3572
3773
  by: nil,
3573
3774
  closed: "left",
3574
- ddof: 1
3775
+ ddof: 1,
3776
+ warn_if_unsorted: true
3575
3777
  )
3576
3778
  window_size, min_periods = _prepare_rolling_window_args(
3577
3779
  window_size, min_periods
3578
3780
  )
3579
3781
  wrap_expr(
3580
3782
  _rbexpr.rolling_std(
3581
- window_size, weights, min_periods, center, by, closed, ddof
3783
+ window_size, weights, min_periods, center, by, closed, ddof, warn_if_unsorted
3582
3784
  )
3583
3785
  )
3584
3786
  end
@@ -3661,14 +3863,15 @@ module Polars
3661
3863
  center: false,
3662
3864
  by: nil,
3663
3865
  closed: "left",
3664
- ddof: 1
3866
+ ddof: 1,
3867
+ warn_if_unsorted: true
3665
3868
  )
3666
3869
  window_size, min_periods = _prepare_rolling_window_args(
3667
3870
  window_size, min_periods
3668
3871
  )
3669
3872
  wrap_expr(
3670
3873
  _rbexpr.rolling_var(
3671
- window_size, weights, min_periods, center, by, closed, ddof
3874
+ window_size, weights, min_periods, center, by, closed, ddof, warn_if_unsorted
3672
3875
  )
3673
3876
  )
3674
3877
  end
@@ -3746,14 +3949,15 @@ module Polars
3746
3949
  min_periods: nil,
3747
3950
  center: false,
3748
3951
  by: nil,
3749
- closed: "left"
3952
+ closed: "left",
3953
+ warn_if_unsorted: true
3750
3954
  )
3751
3955
  window_size, min_periods = _prepare_rolling_window_args(
3752
3956
  window_size, min_periods
3753
3957
  )
3754
3958
  wrap_expr(
3755
3959
  _rbexpr.rolling_median(
3756
- window_size, weights, min_periods, center, by, closed
3960
+ window_size, weights, min_periods, center, by, closed, warn_if_unsorted
3757
3961
  )
3758
3962
  )
3759
3963
  end
@@ -3837,14 +4041,15 @@ module Polars
3837
4041
  min_periods: nil,
3838
4042
  center: false,
3839
4043
  by: nil,
3840
- closed: "left"
4044
+ closed: "left",
4045
+ warn_if_unsorted: true
3841
4046
  )
3842
4047
  window_size, min_periods = _prepare_rolling_window_args(
3843
4048
  window_size, min_periods
3844
4049
  )
3845
4050
  wrap_expr(
3846
4051
  _rbexpr.rolling_quantile(
3847
- quantile, interpolation, window_size, weights, min_periods, center, by, closed
4052
+ quantile, interpolation, window_size, weights, min_periods, center, by, closed, warn_if_unsorted
3848
4053
  )
3849
4054
  )
3850
4055
  end
@@ -47,7 +47,7 @@ module Polars
47
47
 
48
48
  # When grouping by a single column, group name is a single value
49
49
  # When grouping by multiple columns, group name is a tuple of values
50
- if @by.is_a?(String) || @by.is_a?(Expr)
50
+ if @by.is_a?(::String) || @by.is_a?(Expr)
51
51
  _group_names = group_names.to_series.each
52
52
  else
53
53
  _group_names = group_names.iter_rows
data/lib/polars/io.rb CHANGED
@@ -616,7 +616,7 @@ module Polars
616
616
  query
617
617
  elsif query.is_a?(ActiveRecord::Relation)
618
618
  query.connection.select_all(query.to_sql)
619
- elsif query.is_a?(String)
619
+ elsif query.is_a?(::String)
620
620
  ActiveRecord::Base.connection.select_all(query)
621
621
  else
622
622
  raise ArgumentError, "Expected ActiveRecord::Relation, ActiveRecord::Result, or String"
@@ -652,7 +652,7 @@ module Polars
652
652
  when :integer
653
653
  Int64
654
654
  when :string, :text
655
- Utf8
655
+ String
656
656
  when :time
657
657
  Time
658
658
  end
@@ -856,7 +856,7 @@ module Polars
856
856
  private
857
857
 
858
858
  def _prepare_file_arg(file)
859
- if file.is_a?(String) && file =~ /\Ahttps?:\/\//
859
+ if file.is_a?(::String) && file =~ /\Ahttps?:\/\//
860
860
  raise ArgumentError, "use URI(...) for remote files"
861
861
  end
862
862
 
@@ -870,7 +870,7 @@ module Polars
870
870
  end
871
871
 
872
872
  def _check_arg_is_1byte(arg_name, arg, can_be_empty = false)
873
- if arg.is_a?(String)
873
+ if arg.is_a?(::String)
874
874
  arg_byte_length = arg.bytesize
875
875
  if can_be_empty
876
876
  if arg_byte_length > 1
@@ -218,7 +218,7 @@ module Polars
218
218
  # }
219
219
  # ).lazy
220
220
  # lf.dtypes
221
- # # => [Polars::Int64, Polars::Float64, Polars::Utf8]
221
+ # # => [Polars::Int64, Polars::Float64, Polars::String]
222
222
  def dtypes
223
223
  _ldf.dtypes
224
224
  end
@@ -236,7 +236,7 @@ module Polars
236
236
  # }
237
237
  # ).lazy
238
238
  # lf.schema
239
- # # => {"foo"=>Polars::Int64, "bar"=>Polars::Float64, "ham"=>Polars::Utf8}
239
+ # # => {"foo"=>Polars::Int64, "bar"=>Polars::Float64, "ham"=>Polars::String}
240
240
  def schema
241
241
  _ldf.schema
242
242
  end
@@ -399,7 +399,7 @@ module Polars
399
399
  # # │ 1 ┆ 6.0 ┆ a │
400
400
  # # └─────┴─────┴─────┘
401
401
  def sort(by, reverse: false, nulls_last: false, maintain_order: false)
402
- if by.is_a?(String)
402
+ if by.is_a?(::String)
403
403
  return _from_rbldf(_ldf.sort(by, reverse, nulls_last, maintain_order))
404
404
  end
405
405
  if Utils.bool?(reverse)
@@ -1371,7 +1371,7 @@ module Polars
1371
1371
  raise ArgumentError, "Expected a `LazyFrame` as join table, got #{other.class.name}"
1372
1372
  end
1373
1373
 
1374
- if on.is_a?(String)
1374
+ if on.is_a?(::String)
1375
1375
  left_on = on
1376
1376
  right_on = on
1377
1377
  end
@@ -1380,19 +1380,19 @@ module Polars
1380
1380
  raise ArgumentError, "You should pass the column to join on as an argument."
1381
1381
  end
1382
1382
 
1383
- if by_left.is_a?(String) || by_left.is_a?(Expr)
1383
+ if by_left.is_a?(::String) || by_left.is_a?(Expr)
1384
1384
  by_left_ = [by_left]
1385
1385
  else
1386
1386
  by_left_ = by_left
1387
1387
  end
1388
1388
 
1389
- if by_right.is_a?(String) || by_right.is_a?(Expr)
1389
+ if by_right.is_a?(::String) || by_right.is_a?(Expr)
1390
1390
  by_right_ = [by_right]
1391
1391
  else
1392
1392
  by_right_ = by_right
1393
1393
  end
1394
1394
 
1395
- if by.is_a?(String)
1395
+ if by.is_a?(::String)
1396
1396
  by_left_ = [by]
1397
1397
  by_right_ = [by]
1398
1398
  elsif by.is_a?(::Array)
@@ -1402,7 +1402,7 @@ module Polars
1402
1402
 
1403
1403
  tolerance_str = nil
1404
1404
  tolerance_num = nil
1405
- if tolerance.is_a?(String)
1405
+ if tolerance.is_a?(::String)
1406
1406
  tolerance_str = tolerance
1407
1407
  else
1408
1408
  tolerance_num = tolerance
@@ -1478,17 +1478,17 @@ module Polars
1478
1478
  # @example
1479
1479
  # df.join(other_df, on: "ham", how: "outer").collect
1480
1480
  # # =>
1481
- # # shape: (4, 4)
1482
- # # ┌──────┬──────┬─────┬───────┐
1483
- # # │ foo ┆ bar ┆ ham ┆ apple │
1484
- # # │ --- ┆ --- ┆ --- ┆ ---
1485
- # # │ i64 ┆ f64 ┆ str ┆ str
1486
- # # ╞══════╪══════╪═════╪═══════╡
1487
- # # │ 1 ┆ 6.0 ┆ a ┆ x │
1488
- # # │ 2 ┆ 7.0 ┆ b ┆ y │
1489
- # # │ null ┆ null ┆ d ┆ z │
1490
- # # │ 3 ┆ 8.0 ┆ c ┆ null │
1491
- # # └──────┴──────┴─────┴───────┘
1481
+ # # shape: (4, 5)
1482
+ # # ┌──────┬──────┬──────┬───────┬───────────┐
1483
+ # # │ foo ┆ bar ┆ ham ┆ apple ┆ ham_right
1484
+ # # │ --- ┆ --- ┆ --- --- ┆ ---
1485
+ # # │ i64 ┆ f64 ┆ str str ┆ str
1486
+ # # ╞══════╪══════╪══════╪═══════╪═══════════╡
1487
+ # # │ 1 ┆ 6.0 ┆ a ┆ x ┆ a
1488
+ # # │ 2 ┆ 7.0 ┆ b ┆ y ┆ b
1489
+ # # │ null ┆ null ┆ null ┆ z ┆ d
1490
+ # # │ 3 ┆ 8.0 ┆ c ┆ null ┆ null
1491
+ # # └──────┴──────┴──────┴───────┴───────────┘
1492
1492
  #
1493
1493
  # @example
1494
1494
  # df.join(other_df, on: "ham", how: "left").collect
@@ -1722,7 +1722,7 @@ module Polars
1722
1722
  #
1723
1723
  # @return [LazyFrame]
1724
1724
  def drop(columns)
1725
- if columns.is_a?(String)
1725
+ if columns.is_a?(::String)
1726
1726
  columns = [columns]
1727
1727
  end
1728
1728
  _from_rbldf(_ldf.drop_columns(columns))
@@ -2363,10 +2363,10 @@ module Polars
2363
2363
  # # │ z ┆ c ┆ 6 │
2364
2364
  # # └─────┴──────────┴───────┘
2365
2365
  def melt(id_vars: nil, value_vars: nil, variable_name: nil, value_name: nil, streamable: true)
2366
- if value_vars.is_a?(String)
2366
+ if value_vars.is_a?(::String)
2367
2367
  value_vars = [value_vars]
2368
2368
  end
2369
- if id_vars.is_a?(String)
2369
+ if id_vars.is_a?(::String)
2370
2370
  id_vars = [id_vars]
2371
2371
  end
2372
2372
  if value_vars.nil?
@@ -2464,7 +2464,7 @@ module Polars
2464
2464
  # # │ bar ┆ 2 ┆ b ┆ null ┆ [3] ┆ womp │
2465
2465
  # # └────────┴─────┴─────┴──────┴───────────┴───────┘
2466
2466
  def unnest(names)
2467
- if names.is_a?(String)
2467
+ if names.is_a?(::String)
2468
2468
  names = [names]
2469
2469
  end
2470
2470
  _from_rbldf(_ldf.unnest(names))
@@ -107,44 +107,28 @@ module Polars
107
107
  # Get the maximum value.
108
108
  #
109
109
  # @param column [Object]
110
- # Column(s) to be used in aggregation. Will lead to different behavior based on
111
- # the input:
112
- #
113
- # - [String, Series] -> aggregate the maximum value of that column.
114
- # - [Array<Expr>] -> aggregate the maximum value horizontally.
110
+ # Column(s) to be used in aggregation.
115
111
  #
116
112
  # @return [Expr, Object]
117
113
  def max(column)
118
114
  if column.is_a?(Series)
119
115
  column.max
120
- elsif Utils.strlike?(column)
121
- col(column).max
122
116
  else
123
- exprs = Utils.selection_to_rbexpr_list(column)
124
- # TODO
125
- Utils.wrap_expr(_max_exprs(exprs))
117
+ col(column).max
126
118
  end
127
119
  end
128
120
 
129
121
  # Get the minimum value.
130
122
  #
131
123
  # @param column [Object]
132
- # Column(s) to be used in aggregation. Will lead to different behavior based on
133
- # the input:
134
- #
135
- # - [String, Series] -> aggregate the minimum value of that column.
136
- # - [Array<Expr>] -> aggregate the minimum value horizontally.
124
+ # Column(s) to be used in aggregation.
137
125
  #
138
126
  # @return [Expr, Object]
139
127
  def min(column)
140
128
  if column.is_a?(Series)
141
129
  column.min
142
- elsif Utils.strlike?(column)
143
- col(column).min
144
130
  else
145
- exprs = Utils.selection_to_rbexpr_list(column)
146
- # TODO
147
- Utils.wrap_expr(_min_exprs(exprs))
131
+ col(column).min
148
132
  end
149
133
  end
150
134