polars-df 0.6.0-x86_64-darwin → 0.8.0-x86_64-darwin

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -97,7 +97,8 @@ module Polars
97
97
  row_count_offset: 0,
98
98
  storage_options: nil,
99
99
  low_memory: false,
100
- use_statistics: true
100
+ use_statistics: true,
101
+ hive_partitioning: true
101
102
  )
102
103
  _from_rbldf(
103
104
  RbLazyFrame.new_from_parquet(
@@ -108,7 +109,8 @@ module Polars
108
109
  rechunk,
109
110
  Utils._prepare_row_count_args(row_count_name, row_count_offset),
110
111
  low_memory,
111
- use_statistics
112
+ use_statistics,
113
+ hive_partitioning
112
114
  )
113
115
  )
114
116
  end
@@ -216,7 +218,7 @@ module Polars
216
218
  # }
217
219
  # ).lazy
218
220
  # lf.dtypes
219
- # # => [Polars::Int64, Polars::Float64, Polars::Utf8]
221
+ # # => [Polars::Int64, Polars::Float64, Polars::String]
220
222
  def dtypes
221
223
  _ldf.dtypes
222
224
  end
@@ -234,7 +236,7 @@ module Polars
234
236
  # }
235
237
  # ).lazy
236
238
  # lf.schema
237
- # # => {"foo"=>Polars::Int64, "bar"=>Polars::Float64, "ham"=>Polars::Utf8}
239
+ # # => {"foo"=>Polars::Int64, "bar"=>Polars::Float64, "ham"=>Polars::String}
238
240
  def schema
239
241
  _ldf.schema
240
242
  end
@@ -350,6 +352,7 @@ module Polars
350
352
  slice_pushdown,
351
353
  common_subplan_elimination,
352
354
  allow_streaming,
355
+ false
353
356
  )
354
357
 
355
358
  ldf.describe_optimized_plan
@@ -396,7 +399,7 @@ module Polars
396
399
  # # │ 1 ┆ 6.0 ┆ a │
397
400
  # # └─────┴─────┴─────┘
398
401
  def sort(by, reverse: false, nulls_last: false, maintain_order: false)
399
- if by.is_a?(String)
402
+ if by.is_a?(::String)
400
403
  return _from_rbldf(_ldf.sort(by, reverse, nulls_last, maintain_order))
401
404
  end
402
405
  if Utils.bool?(reverse)
@@ -445,7 +448,7 @@ module Polars
445
448
  # "c" => [6, 5, 4, 3, 2, 1]
446
449
  # }
447
450
  # ).lazy
448
- # df.groupby("a", maintain_order: true).agg(Polars.all.sum).collect
451
+ # df.group_by("a", maintain_order: true).agg(Polars.all.sum).collect
449
452
  # # =>
450
453
  # # shape: (3, 3)
451
454
  # # ┌─────┬─────┬─────┐
@@ -466,7 +469,8 @@ module Polars
466
469
  no_optimization: false,
467
470
  slice_pushdown: true,
468
471
  common_subplan_elimination: true,
469
- allow_streaming: false
472
+ allow_streaming: false,
473
+ _eager: false
470
474
  )
471
475
  if no_optimization
472
476
  predicate_pushdown = false
@@ -486,7 +490,8 @@ module Polars
486
490
  simplify_expression,
487
491
  slice_pushdown,
488
492
  common_subplan_elimination,
489
- allow_streaming
493
+ allow_streaming,
494
+ _eager
490
495
  )
491
496
  Utils.wrap_df(ldf.collect)
492
497
  end
@@ -568,7 +573,8 @@ module Polars
568
573
  simplify_expression,
569
574
  slice_pushdown,
570
575
  false,
571
- true
576
+ true,
577
+ false
572
578
  )
573
579
  lf.sink_parquet(
574
580
  path,
@@ -623,7 +629,7 @@ module Polars
623
629
  # "c" => [6, 5, 4, 3, 2, 1]
624
630
  # }
625
631
  # ).lazy
626
- # df.groupby("a", maintain_order: true).agg(Polars.all.sum).fetch(2)
632
+ # df.group_by("a", maintain_order: true).agg(Polars.all.sum).fetch(2)
627
633
  # # =>
628
634
  # # shape: (2, 3)
629
635
  # # ┌─────┬─────┬─────┐
@@ -660,7 +666,8 @@ module Polars
660
666
  simplify_expression,
661
667
  slice_pushdown,
662
668
  common_subplan_elimination,
663
- allow_streaming
669
+ allow_streaming,
670
+ false
664
671
  )
665
672
  Utils.wrap_df(ldf.fetch(n_rows))
666
673
  end
@@ -853,13 +860,13 @@ module Polars
853
860
  _from_rbldf(_ldf.select(exprs))
854
861
  end
855
862
 
856
- # Start a groupby operation.
863
+ # Start a group by operation.
857
864
  #
858
865
  # @param by [Object]
859
866
  # Column(s) to group by.
860
867
  # @param maintain_order [Boolean]
861
868
  # Make sure that the order of the groups remain consistent. This is more
862
- # expensive than a default groupby.
869
+ # expensive than a default group by.
863
870
  #
864
871
  # @return [LazyGroupBy]
865
872
  #
@@ -871,7 +878,7 @@ module Polars
871
878
  # "c" => [6, 5, 4, 3, 2, 1]
872
879
  # }
873
880
  # ).lazy
874
- # df.groupby("a", maintain_order: true).agg(Polars.col("b").sum).collect
881
+ # df.group_by("a", maintain_order: true).agg(Polars.col("b").sum).collect
875
882
  # # =>
876
883
  # # shape: (3, 2)
877
884
  # # ┌─────┬─────┐
@@ -883,19 +890,21 @@ module Polars
883
890
  # # │ b ┆ 11 │
884
891
  # # │ c ┆ 6 │
885
892
  # # └─────┴─────┘
886
- def groupby(by, maintain_order: false)
893
+ def group_by(by, maintain_order: false)
887
894
  rbexprs_by = Utils.selection_to_rbexpr_list(by)
888
- lgb = _ldf.groupby(rbexprs_by, maintain_order)
889
- LazyGroupBy.new(lgb, self.class)
895
+ lgb = _ldf.group_by(rbexprs_by, maintain_order)
896
+ LazyGroupBy.new(lgb)
890
897
  end
898
+ alias_method :groupby, :group_by
899
+ alias_method :group, :group_by
891
900
 
892
901
  # Create rolling groups based on a time column.
893
902
  #
894
903
  # Also works for index values of type `:i32` or `:i64`.
895
904
  #
896
- # Different from a `dynamic_groupby` the windows are now determined by the
905
+ # Different from a `dynamic_group_by` the windows are now determined by the
897
906
  # individual values and are not of constant intervals. For constant intervals
898
- # use *groupby_dynamic*.
907
+ # use *group_by_dynamic*.
899
908
  #
900
909
  # The `period` and `offset` arguments are created either from a timedelta, or
901
910
  # by using the following string language:
@@ -915,7 +924,7 @@ module Polars
915
924
  # Or combine them:
916
925
  # "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
917
926
  #
918
- # In case of a groupby_rolling on an integer column, the windows are defined by:
927
+ # In case of a group_by_rolling on an integer column, the windows are defined by:
919
928
  #
920
929
  # - "1i" # length 1
921
930
  # - "10i" # length 10
@@ -926,7 +935,7 @@ module Polars
926
935
  # This column must be sorted in ascending order. If not the output will not
927
936
  # make sense.
928
937
  #
929
- # In case of a rolling groupby on indices, dtype needs to be one of
938
+ # In case of a rolling group by on indices, dtype needs to be one of
930
939
  # `:i32`, `:i64`. Note that `:i32` gets temporarily cast to `:i64`, so if
931
940
  # performance matters use an `:i64` column.
932
941
  # @param period [Object]
@@ -958,7 +967,7 @@ module Polars
958
967
  # df = Polars::LazyFrame.new({"dt" => dates, "a" => [3, 7, 5, 9, 2, 1]}).with_column(
959
968
  # Polars.col("dt").str.strptime(Polars::Datetime).set_sorted
960
969
  # )
961
- # df.groupby_rolling(index_column: "dt", period: "2d").agg(
970
+ # df.group_by_rolling(index_column: "dt", period: "2d").agg(
962
971
  # [
963
972
  # Polars.sum("a").alias("sum_a"),
964
973
  # Polars.min("a").alias("min_a"),
@@ -979,7 +988,7 @@ module Polars
979
988
  # # │ 2020-01-03 19:45:32 ┆ 11 ┆ 2 ┆ 9 │
980
989
  # # │ 2020-01-08 23:16:43 ┆ 1 ┆ 1 ┆ 1 │
981
990
  # # └─────────────────────┴───────┴───────┴───────┘
982
- def groupby_rolling(
991
+ def group_by_rolling(
983
992
  index_column:,
984
993
  period:,
985
994
  offset: nil,
@@ -987,7 +996,7 @@ module Polars
987
996
  by: nil,
988
997
  check_sorted: true
989
998
  )
990
- index_column = Utils.expr_to_lit_or_expr(index_column, str_to_lit: false)
999
+ index_column = Utils.parse_as_expression(index_column)
991
1000
  if offset.nil?
992
1001
  offset = "-#{period}"
993
1002
  end
@@ -996,16 +1005,17 @@ module Polars
996
1005
  period = Utils._timedelta_to_pl_duration(period)
997
1006
  offset = Utils._timedelta_to_pl_duration(offset)
998
1007
 
999
- lgb = _ldf.groupby_rolling(
1000
- index_column._rbexpr, period, offset, closed, rbexprs_by, check_sorted
1008
+ lgb = _ldf.group_by_rolling(
1009
+ index_column, period, offset, closed, rbexprs_by, check_sorted
1001
1010
  )
1002
- LazyGroupBy.new(lgb, self.class)
1011
+ LazyGroupBy.new(lgb)
1003
1012
  end
1013
+ alias_method :groupby_rolling, :group_by_rolling
1004
1014
 
1005
1015
  # Group based on a time value (or index value of type `:i32`, `:i64`).
1006
1016
  #
1007
1017
  # Time windows are calculated and rows are assigned to windows. Different from a
1008
- # normal groupby is that a row can be member of multiple groups. The time/index
1018
+ # normal group by is that a row can be member of multiple groups. The time/index
1009
1019
  # window could be seen as a rolling window, with a window size determined by
1010
1020
  # dates/times/values instead of slots in the DataFrame.
1011
1021
  #
@@ -1033,37 +1043,43 @@ module Polars
1033
1043
  # Or combine them:
1034
1044
  # "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
1035
1045
  #
1036
- # In case of a groupby_dynamic on an integer column, the windows are defined by:
1046
+ # In case of a group_by_dynamic on an integer column, the windows are defined by:
1037
1047
  #
1038
1048
  # - "1i" # length 1
1039
1049
  # - "10i" # length 10
1040
1050
  #
1041
- # @param index_column
1051
+ # @param index_column [Object]
1042
1052
  # Column used to group based on the time window.
1043
1053
  # Often to type Date/Datetime
1044
1054
  # This column must be sorted in ascending order. If not the output will not
1045
1055
  # make sense.
1046
1056
  #
1047
- # In case of a dynamic groupby on indices, dtype needs to be one of
1057
+ # In case of a dynamic group by on indices, dtype needs to be one of
1048
1058
  # `:i32`, `:i64`. Note that `:i32` gets temporarily cast to `:i64`, so if
1049
1059
  # performance matters use an `:i64` column.
1050
- # @param every
1060
+ # @param every [Object]
1051
1061
  # Interval of the window.
1052
- # @param period
1062
+ # @param period [Object]
1053
1063
  # Length of the window, if None it is equal to 'every'.
1054
- # @param offset
1064
+ # @param offset [Object]
1055
1065
  # Offset of the window if None and period is None it will be equal to negative
1056
1066
  # `every`.
1057
- # @param truncate
1067
+ # @param truncate [Boolean]
1058
1068
  # Truncate the time value to the window lower bound.
1059
- # @param include_boundaries
1069
+ # @param include_boundaries [Boolean]
1060
1070
  # Add the lower and upper bound of the window to the "_lower_bound" and
1061
1071
  # "_upper_bound" columns. This will impact performance because it's harder to
1062
1072
  # parallelize
1063
1073
  # @param closed ["right", "left", "both", "none"]
1064
1074
  # Define whether the temporal window interval is closed or not.
1065
- # @param by
1075
+ # @param by [Object]
1066
1076
  # Also group by this column/these columns
1077
+ # @param check_sorted [Boolean]
1078
+ # When the `by` argument is given, polars can not check sortedness
1079
+ # by the metadata and has to do a full scan on the index column to
1080
+ # verify data is sorted. This is expensive. If you are sure the
1081
+ # data within the by groups is sorted, you can set this to `false`.
1082
+ # Doing so incorrectly will lead to incorrect output.
1067
1083
  #
1068
1084
  # @return [DataFrame]
1069
1085
  #
@@ -1095,7 +1111,7 @@ module Polars
1095
1111
  # # └─────────────────────┴─────┘
1096
1112
  #
1097
1113
  # @example Group by windows of 1 hour starting at 2021-12-16 00:00:00.
1098
- # df.groupby_dynamic("time", every: "1h", closed: "right").agg(
1114
+ # df.group_by_dynamic("time", every: "1h", closed: "right").agg(
1099
1115
  # [
1100
1116
  # Polars.col("time").min.alias("time_min"),
1101
1117
  # Polars.col("time").max.alias("time_max")
@@ -1115,7 +1131,7 @@ module Polars
1115
1131
  # # └─────────────────────┴─────────────────────┴─────────────────────┘
1116
1132
  #
1117
1133
  # @example The window boundaries can also be added to the aggregation result.
1118
- # df.groupby_dynamic(
1134
+ # df.group_by_dynamic(
1119
1135
  # "time", every: "1h", include_boundaries: true, closed: "right"
1120
1136
  # ).agg([Polars.col("time").count.alias("time_count")])
1121
1137
  # # =>
@@ -1132,7 +1148,7 @@ module Polars
1132
1148
  # # └─────────────────────┴─────────────────────┴─────────────────────┴────────────┘
1133
1149
  #
1134
1150
  # @example When closed="left", should not include right end of interval.
1135
- # df.groupby_dynamic("time", every: "1h", closed: "left").agg(
1151
+ # df.group_by_dynamic("time", every: "1h", closed: "left").agg(
1136
1152
  # [
1137
1153
  # Polars.col("time").count.alias("time_count"),
1138
1154
  # Polars.col("time").alias("time_agg_list")
@@ -1152,7 +1168,7 @@ module Polars
1152
1168
  # # └─────────────────────┴────────────┴───────────────────────────────────┘
1153
1169
  #
1154
1170
  # @example When closed="both" the time values at the window boundaries belong to 2 groups.
1155
- # df.groupby_dynamic("time", every: "1h", closed: "both").agg(
1171
+ # df.group_by_dynamic("time", every: "1h", closed: "both").agg(
1156
1172
  # [Polars.col("time").count.alias("time_count")]
1157
1173
  # )
1158
1174
  # # =>
@@ -1169,7 +1185,7 @@ module Polars
1169
1185
  # # │ 2021-12-16 03:00:00 ┆ 1 │
1170
1186
  # # └─────────────────────┴────────────┘
1171
1187
  #
1172
- # @example Dynamic groupbys can also be combined with grouping on normal keys.
1188
+ # @example Dynamic group bys can also be combined with grouping on normal keys.
1173
1189
  # df = Polars::DataFrame.new(
1174
1190
  # {
1175
1191
  # "time" => Polars.date_range(
@@ -1180,7 +1196,7 @@ module Polars
1180
1196
  # "groups" => ["a", "a", "a", "b", "b", "a", "a"]
1181
1197
  # }
1182
1198
  # )
1183
- # df.groupby_dynamic(
1199
+ # df.group_by_dynamic(
1184
1200
  # "time",
1185
1201
  # every: "1h",
1186
1202
  # closed: "both",
@@ -1203,14 +1219,14 @@ module Polars
1203
1219
  # # │ b ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 1 │
1204
1220
  # # └────────┴─────────────────────┴─────────────────────┴─────────────────────┴────────────┘
1205
1221
  #
1206
- # @example Dynamic groupby on an index column.
1222
+ # @example Dynamic group by on an index column.
1207
1223
  # df = Polars::DataFrame.new(
1208
1224
  # {
1209
1225
  # "idx" => Polars.arange(0, 6, eager: true),
1210
1226
  # "A" => ["A", "A", "B", "B", "B", "C"]
1211
1227
  # }
1212
1228
  # )
1213
- # df.groupby_dynamic(
1229
+ # df.group_by_dynamic(
1214
1230
  # "idx",
1215
1231
  # every: "2i",
1216
1232
  # period: "3i",
@@ -1228,17 +1244,23 @@ module Polars
1228
1244
  # # │ 2 ┆ 5 ┆ 2 ┆ ["B", "B", "C"] │
1229
1245
  # # │ 4 ┆ 7 ┆ 4 ┆ ["C"] │
1230
1246
  # # └─────────────────┴─────────────────┴─────┴─────────────────┘
1231
- def groupby_dynamic(
1247
+ def group_by_dynamic(
1232
1248
  index_column,
1233
1249
  every:,
1234
1250
  period: nil,
1235
1251
  offset: nil,
1236
- truncate: true,
1252
+ truncate: nil,
1237
1253
  include_boundaries: false,
1238
1254
  closed: "left",
1255
+ label: "left",
1239
1256
  by: nil,
1240
- start_by: "window"
1257
+ start_by: "window",
1258
+ check_sorted: true
1241
1259
  )
1260
+ if !truncate.nil?
1261
+ label = truncate ? "left" : "datapoint"
1262
+ end
1263
+
1242
1264
  index_column = Utils.expr_to_lit_or_expr(index_column, str_to_lit: false)
1243
1265
  if offset.nil?
1244
1266
  offset = period.nil? ? "-#{every}" : "0ns"
@@ -1253,19 +1275,21 @@ module Polars
1253
1275
  every = Utils._timedelta_to_pl_duration(every)
1254
1276
 
1255
1277
  rbexprs_by = by.nil? ? [] : Utils.selection_to_rbexpr_list(by)
1256
- lgb = _ldf.groupby_dynamic(
1278
+ lgb = _ldf.group_by_dynamic(
1257
1279
  index_column._rbexpr,
1258
1280
  every,
1259
1281
  period,
1260
1282
  offset,
1261
- truncate,
1283
+ label,
1262
1284
  include_boundaries,
1263
1285
  closed,
1264
1286
  rbexprs_by,
1265
- start_by
1287
+ start_by,
1288
+ check_sorted
1266
1289
  )
1267
- LazyGroupBy.new(lgb, self.class)
1290
+ LazyGroupBy.new(lgb)
1268
1291
  end
1292
+ alias_method :groupby_dynamic, :group_by_dynamic
1269
1293
 
1270
1294
  # Perform an asof join.
1271
1295
  #
@@ -1347,7 +1371,7 @@ module Polars
1347
1371
  raise ArgumentError, "Expected a `LazyFrame` as join table, got #{other.class.name}"
1348
1372
  end
1349
1373
 
1350
- if on.is_a?(String)
1374
+ if on.is_a?(::String)
1351
1375
  left_on = on
1352
1376
  right_on = on
1353
1377
  end
@@ -1356,19 +1380,19 @@ module Polars
1356
1380
  raise ArgumentError, "You should pass the column to join on as an argument."
1357
1381
  end
1358
1382
 
1359
- if by_left.is_a?(String) || by_left.is_a?(Expr)
1383
+ if by_left.is_a?(::String) || by_left.is_a?(Expr)
1360
1384
  by_left_ = [by_left]
1361
1385
  else
1362
1386
  by_left_ = by_left
1363
1387
  end
1364
1388
 
1365
- if by_right.is_a?(String) || by_right.is_a?(Expr)
1389
+ if by_right.is_a?(::String) || by_right.is_a?(Expr)
1366
1390
  by_right_ = [by_right]
1367
1391
  else
1368
1392
  by_right_ = by_right
1369
1393
  end
1370
1394
 
1371
- if by.is_a?(String)
1395
+ if by.is_a?(::String)
1372
1396
  by_left_ = [by]
1373
1397
  by_right_ = [by]
1374
1398
  elsif by.is_a?(::Array)
@@ -1378,7 +1402,7 @@ module Polars
1378
1402
 
1379
1403
  tolerance_str = nil
1380
1404
  tolerance_num = nil
1381
- if tolerance.is_a?(String)
1405
+ if tolerance.is_a?(::String)
1382
1406
  tolerance_str = tolerance
1383
1407
  else
1384
1408
  tolerance_num = tolerance
@@ -1454,17 +1478,17 @@ module Polars
1454
1478
  # @example
1455
1479
  # df.join(other_df, on: "ham", how: "outer").collect
1456
1480
  # # =>
1457
- # # shape: (4, 4)
1458
- # # ┌──────┬──────┬─────┬───────┐
1459
- # # │ foo ┆ bar ┆ ham ┆ apple │
1460
- # # │ --- ┆ --- ┆ --- ┆ ---
1461
- # # │ i64 ┆ f64 ┆ str ┆ str
1462
- # # ╞══════╪══════╪═════╪═══════╡
1463
- # # │ 1 ┆ 6.0 ┆ a ┆ x │
1464
- # # │ 2 ┆ 7.0 ┆ b ┆ y │
1465
- # # │ null ┆ null ┆ d ┆ z │
1466
- # # │ 3 ┆ 8.0 ┆ c ┆ null │
1467
- # # └──────┴──────┴─────┴───────┘
1481
+ # # shape: (4, 5)
1482
+ # # ┌──────┬──────┬──────┬───────┬───────────┐
1483
+ # # │ foo ┆ bar ┆ ham ┆ apple ┆ ham_right
1484
+ # # │ --- ┆ --- ┆ --- --- ┆ ---
1485
+ # # │ i64 ┆ f64 ┆ str str ┆ str
1486
+ # # ╞══════╪══════╪══════╪═══════╪═══════════╡
1487
+ # # │ 1 ┆ 6.0 ┆ a ┆ x ┆ a
1488
+ # # │ 2 ┆ 7.0 ┆ b ┆ y ┆ b
1489
+ # # │ null ┆ null ┆ null ┆ z ┆ d
1490
+ # # │ 3 ┆ 8.0 ┆ c ┆ null ┆ null
1491
+ # # └──────┴──────┴──────┴───────┴───────────┘
1468
1492
  #
1469
1493
  # @example
1470
1494
  # df.join(other_df, on: "ham", how: "left").collect
@@ -1698,7 +1722,7 @@ module Polars
1698
1722
  #
1699
1723
  # @return [LazyFrame]
1700
1724
  def drop(columns)
1701
- if columns.is_a?(String)
1725
+ if columns.is_a?(::String)
1702
1726
  columns = [columns]
1703
1727
  end
1704
1728
  _from_rbldf(_ldf.drop_columns(columns))
@@ -1725,8 +1749,10 @@ module Polars
1725
1749
 
1726
1750
  # Shift the values by a given period.
1727
1751
  #
1728
- # @param periods [Integer]
1752
+ # @param n [Integer]
1729
1753
  # Number of places to shift (may be negative).
1754
+ # @param fill_value [Object]
1755
+ # Fill the resulting null values with this value.
1730
1756
  #
1731
1757
  # @return [LazyFrame]
1732
1758
  #
@@ -1763,8 +1789,12 @@ module Polars
1763
1789
  # # │ 5 ┆ 6 │
1764
1790
  # # │ null ┆ null │
1765
1791
  # # └──────┴──────┘
1766
- def shift(periods)
1767
- _from_rbldf(_ldf.shift(periods))
1792
+ def shift(n, fill_value: nil)
1793
+ if !fill_value.nil?
1794
+ fill_value = Utils.parse_as_expression(fill_value, str_as_lit: true)
1795
+ end
1796
+ n = Utils.parse_as_expression(n)
1797
+ _from_rbldf(_ldf.shift(n, fill_value))
1768
1798
  end
1769
1799
 
1770
1800
  # Shift the values by a given period and fill the resulting null values.
@@ -1810,10 +1840,7 @@ module Polars
1810
1840
  # # │ 0 ┆ 0 │
1811
1841
  # # └─────┴─────┘
1812
1842
  def shift_and_fill(periods, fill_value)
1813
- if !fill_value.is_a?(Expr)
1814
- fill_value = Polars.lit(fill_value)
1815
- end
1816
- _from_rbldf(_ldf.shift_and_fill(periods, fill_value._rbexpr))
1843
+ shift(periods, fill_value: fill_value)
1817
1844
  end
1818
1845
 
1819
1846
  # Get a slice of this DataFrame.
@@ -2336,10 +2363,10 @@ module Polars
2336
2363
  # # │ z ┆ c ┆ 6 │
2337
2364
  # # └─────┴──────────┴───────┘
2338
2365
  def melt(id_vars: nil, value_vars: nil, variable_name: nil, value_name: nil, streamable: true)
2339
- if value_vars.is_a?(String)
2366
+ if value_vars.is_a?(::String)
2340
2367
  value_vars = [value_vars]
2341
2368
  end
2342
- if id_vars.is_a?(String)
2369
+ if id_vars.is_a?(::String)
2343
2370
  id_vars = [id_vars]
2344
2371
  end
2345
2372
  if value_vars.nil?
@@ -2371,16 +2398,16 @@ module Polars
2371
2398
  # df.interpolate.collect
2372
2399
  # # =>
2373
2400
  # # shape: (4, 3)
2374
- # # ┌─────┬──────┬─────┐
2375
- # # │ foo ┆ bar ┆ baz
2376
- # # │ --- ┆ --- ┆ ---
2377
- # # │ i64 i64i64
2378
- # # ╞═════╪══════╪═════╡
2379
- # # │ 1 ┆ 6 ┆ 1
2380
- # # │ 5 ┆ 7 ┆ 3
2381
- # # │ 9 ┆ 9 ┆ 6
2382
- # # │ 10 ┆ null ┆ 9
2383
- # # └─────┴──────┴─────┘
2401
+ # # ┌──────┬──────┬──────────┐
2402
+ # # │ foo ┆ bar ┆ baz
2403
+ # # │ --- ┆ --- ┆ ---
2404
+ # # │ f64 f64f64
2405
+ # # ╞══════╪══════╪══════════╡
2406
+ # # │ 1.0 ┆ 6.0 ┆ 1.0
2407
+ # # │ 5.0 ┆ 7.0 ┆ 3.666667
2408
+ # # │ 9.0 ┆ 9.0 ┆ 6.333333
2409
+ # # │ 10.0 ┆ null ┆ 9.0
2410
+ # # └──────┴──────┴──────────┘
2384
2411
  def interpolate
2385
2412
  select(Utils.col("*").interpolate)
2386
2413
  end
@@ -2437,7 +2464,7 @@ module Polars
2437
2464
  # # │ bar ┆ 2 ┆ b ┆ null ┆ [3] ┆ womp │
2438
2465
  # # └────────┴─────┴─────┴──────┴───────────┴───────┘
2439
2466
  def unnest(names)
2440
- if names.is_a?(String)
2467
+ if names.is_a?(::String)
2441
2468
  names = [names]
2442
2469
  end
2443
2470
  _from_rbldf(_ldf.unnest(names))