polars-df 0.5.0-x86_64-linux → 0.7.0-x86_64-linux

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/lib/polars/expr.rb CHANGED
@@ -131,6 +131,13 @@ module Polars
131
131
  wrap_expr(_rbexpr.gt(_to_expr(other)._rbexpr))
132
132
  end
133
133
 
134
+ # Performs boolean not.
135
+ #
136
+ # @return [Expr]
137
+ def !
138
+ is_not
139
+ end
140
+
134
141
  # Performs negation.
135
142
  #
136
143
  # @return [Expr]
@@ -191,8 +198,8 @@ module Polars
191
198
  # # ╞══════╪═══════╡
192
199
  # # │ true ┆ false │
193
200
  # # └──────┴───────┘
194
- def any
195
- wrap_expr(_rbexpr.any)
201
+ def any(drop_nulls: true)
202
+ wrap_expr(_rbexpr.any(drop_nulls))
196
203
  end
197
204
 
198
205
  # Check if all boolean values in a Boolean column are `true`.
@@ -216,8 +223,8 @@ module Polars
216
223
  # # ╞══════╪═══════╪═══════╡
217
224
  # # │ true ┆ false ┆ false │
218
225
  # # └──────┴───────┴───────┘
219
- def all
220
- wrap_expr(_rbexpr.all)
226
+ def all(drop_nulls: true)
227
+ wrap_expr(_rbexpr.all(drop_nulls))
221
228
  end
222
229
 
223
230
  # Compute the square root of the elements.
@@ -362,7 +369,7 @@ module Polars
362
369
  if columns.is_a?(String)
363
370
  columns = [columns]
364
371
  return wrap_expr(_rbexpr.exclude(columns))
365
- elsif !columns.is_a?(Array)
372
+ elsif !columns.is_a?(::Array)
366
373
  columns = [columns]
367
374
  return wrap_expr(_rbexpr.exclude_dtype(columns))
368
375
  end
@@ -401,21 +408,21 @@ module Polars
401
408
  # # │ 18 ┆ 4 │
402
409
  # # └─────┴─────┘
403
410
  def keep_name
404
- wrap_expr(_rbexpr.keep_name)
411
+ name.keep
405
412
  end
406
413
 
407
414
  # Add a prefix to the root column name of the expression.
408
415
  #
409
416
  # @return [Expr]
410
417
  def prefix(prefix)
411
- wrap_expr(_rbexpr.prefix(prefix))
418
+ name.prefix(prefix)
412
419
  end
413
420
 
414
421
  # Add a suffix to the root column name of the expression.
415
422
  #
416
423
  # @return [Expr]
417
424
  def suffix(suffix)
418
- wrap_expr(_rbexpr.suffix(suffix))
425
+ name.suffix(suffix)
419
426
  end
420
427
 
421
428
  # Rename the output of an expression by mapping a function over the root name.
@@ -443,7 +450,7 @@ module Polars
443
450
  # # │ 1 ┆ 3 │
444
451
  # # └───────────┴───────────┘
445
452
  def map_alias(&f)
446
- Utils.wrap_expr(_rbexpr.map_alias(f))
453
+ name.map(&f)
447
454
  end
448
455
 
449
456
  # Negate a boolean expression.
@@ -682,7 +689,7 @@ module Polars
682
689
  # "value" => [94, 95, 96, 97, 97, 99]
683
690
  # }
684
691
  # )
685
- # df.groupby("group", maintain_order: true).agg(Polars.col("value").agg_groups)
692
+ # df.group_by("group", maintain_order: true).agg(Polars.col("value").agg_groups)
686
693
  # # =>
687
694
  # # shape: (2, 2)
688
695
  # # ┌───────┬───────────┐
@@ -820,18 +827,18 @@ module Polars
820
827
  # df.select(Polars.repeat(nil, 3).append(Polars.col("a")).rechunk)
821
828
  # # =>
822
829
  # # shape: (6, 1)
823
- # # ┌─────────┐
824
- # # │ literal
825
- # # │ ---
826
- # # │ i64
827
- # # ╞═════════╡
828
- # # │ null
829
- # # │ null
830
- # # │ null
831
- # # │ 1
832
- # # │ 1
833
- # # │ 2
834
- # # └─────────┘
830
+ # # ┌────────┐
831
+ # # │ repeat
832
+ # # │ ---
833
+ # # │ i64
834
+ # # ╞════════╡
835
+ # # │ null
836
+ # # │ null
837
+ # # │ null
838
+ # # │ 1
839
+ # # │ 1
840
+ # # │ 2
841
+ # # └────────┘
835
842
  def rechunk
836
843
  wrap_expr(_rbexpr.rechunk)
837
844
  end
@@ -905,8 +912,8 @@ module Polars
905
912
  # df = Polars::DataFrame.new({"a" => [1, 2, 3, 4]})
906
913
  # df.select(
907
914
  # [
908
- # Polars.col("a").cumsum,
909
- # Polars.col("a").cumsum(reverse: true).alias("a_reverse")
915
+ # Polars.col("a").cum_sum,
916
+ # Polars.col("a").cum_sum(reverse: true).alias("a_reverse")
910
917
  # ]
911
918
  # )
912
919
  # # =>
@@ -921,9 +928,10 @@ module Polars
921
928
  # # │ 6 ┆ 7 │
922
929
  # # │ 10 ┆ 4 │
923
930
  # # └─────┴───────────┘
924
- def cumsum(reverse: false)
925
- wrap_expr(_rbexpr.cumsum(reverse))
931
+ def cum_sum(reverse: false)
932
+ wrap_expr(_rbexpr.cum_sum(reverse))
926
933
  end
934
+ alias_method :cumsum, :cum_sum
927
935
 
928
936
  # Get an array with the cumulative product computed at every element.
929
937
  #
@@ -940,8 +948,8 @@ module Polars
940
948
  # df = Polars::DataFrame.new({"a" => [1, 2, 3, 4]})
941
949
  # df.select(
942
950
  # [
943
- # Polars.col("a").cumprod,
944
- # Polars.col("a").cumprod(reverse: true).alias("a_reverse")
951
+ # Polars.col("a").cum_prod,
952
+ # Polars.col("a").cum_prod(reverse: true).alias("a_reverse")
945
953
  # ]
946
954
  # )
947
955
  # # =>
@@ -956,9 +964,10 @@ module Polars
956
964
  # # │ 6 ┆ 12 │
957
965
  # # │ 24 ┆ 4 │
958
966
  # # └─────┴───────────┘
959
- def cumprod(reverse: false)
960
- wrap_expr(_rbexpr.cumprod(reverse))
967
+ def cum_prod(reverse: false)
968
+ wrap_expr(_rbexpr.cum_prod(reverse))
961
969
  end
970
+ alias_method :cumprod, :cum_prod
962
971
 
963
972
  # Get an array with the cumulative min computed at every element.
964
973
  #
@@ -971,8 +980,8 @@ module Polars
971
980
  # df = Polars::DataFrame.new({"a" => [1, 2, 3, 4]})
972
981
  # df.select(
973
982
  # [
974
- # Polars.col("a").cummin,
975
- # Polars.col("a").cummin(reverse: true).alias("a_reverse")
983
+ # Polars.col("a").cum_min,
984
+ # Polars.col("a").cum_min(reverse: true).alias("a_reverse")
976
985
  # ]
977
986
  # )
978
987
  # # =>
@@ -987,9 +996,10 @@ module Polars
987
996
  # # │ 1 ┆ 3 │
988
997
  # # │ 1 ┆ 4 │
989
998
  # # └─────┴───────────┘
990
- def cummin(reverse: false)
991
- wrap_expr(_rbexpr.cummin(reverse))
999
+ def cum_min(reverse: false)
1000
+ wrap_expr(_rbexpr.cum_min(reverse))
992
1001
  end
1002
+ alias_method :cummin, :cum_min
993
1003
 
994
1004
  # Get an array with the cumulative max computed at every element.
995
1005
  #
@@ -1002,8 +1012,8 @@ module Polars
1002
1012
  # df = Polars::DataFrame.new({"a" => [1, 2, 3, 4]})
1003
1013
  # df.select(
1004
1014
  # [
1005
- # Polars.col("a").cummax,
1006
- # Polars.col("a").cummax(reverse: true).alias("a_reverse")
1015
+ # Polars.col("a").cum_max,
1016
+ # Polars.col("a").cum_max(reverse: true).alias("a_reverse")
1007
1017
  # ]
1008
1018
  # )
1009
1019
  # # =>
@@ -1018,9 +1028,10 @@ module Polars
1018
1028
  # # │ 3 ┆ 4 │
1019
1029
  # # │ 4 ┆ 4 │
1020
1030
  # # └─────┴───────────┘
1021
- def cummax(reverse: false)
1022
- wrap_expr(_rbexpr.cummax(reverse))
1031
+ def cum_max(reverse: false)
1032
+ wrap_expr(_rbexpr.cum_max(reverse))
1023
1033
  end
1034
+ alias_method :cummax, :cum_max
1024
1035
 
1025
1036
  # Get an array with the cumulative count computed at every element.
1026
1037
  #
@@ -1035,8 +1046,8 @@ module Polars
1035
1046
  # df = Polars::DataFrame.new({"a" => [1, 2, 3, 4]})
1036
1047
  # df.select(
1037
1048
  # [
1038
- # Polars.col("a").cumcount,
1039
- # Polars.col("a").cumcount(reverse: true).alias("a_reverse")
1049
+ # Polars.col("a").cum_count,
1050
+ # Polars.col("a").cum_count(reverse: true).alias("a_reverse")
1040
1051
  # ]
1041
1052
  # )
1042
1053
  # # =>
@@ -1051,9 +1062,10 @@ module Polars
1051
1062
  # # │ 2 ┆ 1 │
1052
1063
  # # │ 3 ┆ 0 │
1053
1064
  # # └─────┴───────────┘
1054
- def cumcount(reverse: false)
1055
- wrap_expr(_rbexpr.cumcount(reverse))
1065
+ def cum_count(reverse: false)
1066
+ wrap_expr(_rbexpr.cum_count(reverse))
1056
1067
  end
1068
+ alias_method :cumcount, :cum_count
1057
1069
 
1058
1070
  # Rounds down to the nearest integer value.
1059
1071
  #
@@ -1229,7 +1241,7 @@ module Polars
1229
1241
 
1230
1242
  # Sort this column. In projection/ selection context the whole column is sorted.
1231
1243
  #
1232
- # If used in a groupby context, the groups are sorted.
1244
+ # If used in a group by context, the groups are sorted.
1233
1245
  #
1234
1246
  # @param reverse [Boolean]
1235
1247
  # false -> order from small to large.
@@ -1287,7 +1299,7 @@ module Polars
1287
1299
  # # └───────┘
1288
1300
  #
1289
1301
  # @example
1290
- # df.groupby("group").agg(Polars.col("value").sort)
1302
+ # df.group_by("group").agg(Polars.col("value").sort)
1291
1303
  # # =>
1292
1304
  # # shape: (2, 2)
1293
1305
  # # ┌───────┬────────────┐
@@ -1337,6 +1349,7 @@ module Polars
1337
1349
  # # │ 2 ┆ 98 │
1338
1350
  # # └───────┴──────────┘
1339
1351
  def top_k(k: 5)
1352
+ k = Utils.parse_as_expression(k)
1340
1353
  wrap_expr(_rbexpr.top_k(k))
1341
1354
  end
1342
1355
 
@@ -1375,6 +1388,7 @@ module Polars
1375
1388
  # # │ 2 ┆ 98 │
1376
1389
  # # └───────┴──────────┘
1377
1390
  def bottom_k(k: 5)
1391
+ k = Utils.parse_as_expression(k)
1378
1392
  wrap_expr(_rbexpr.bottom_k(k))
1379
1393
  end
1380
1394
 
@@ -1494,7 +1508,7 @@ module Polars
1494
1508
  # Sort this column by the ordering of another column, or multiple other columns.
1495
1509
  #
1496
1510
  # In projection/ selection context the whole column is sorted.
1497
- # If used in a groupby context, the groups are sorted.
1511
+ # If used in a group by context, the groups are sorted.
1498
1512
  #
1499
1513
  # @param by [Object]
1500
1514
  # The column(s) used for sorting.
@@ -1534,10 +1548,10 @@ module Polars
1534
1548
  # # │ two │
1535
1549
  # # └───────┘
1536
1550
  def sort_by(by, reverse: false)
1537
- if !by.is_a?(Array)
1551
+ if !by.is_a?(::Array)
1538
1552
  by = [by]
1539
1553
  end
1540
- if !reverse.is_a?(Array)
1554
+ if !reverse.is_a?(::Array)
1541
1555
  reverse = [reverse]
1542
1556
  end
1543
1557
  by = Utils.selection_to_rbexpr_list(by)
@@ -1566,30 +1580,33 @@ module Polars
1566
1580
  # "value" => [1, 98, 2, 3, 99, 4]
1567
1581
  # }
1568
1582
  # )
1569
- # df.groupby("group", maintain_order: true).agg(Polars.col("value").take(1))
1583
+ # df.group_by("group", maintain_order: true).agg(Polars.col("value").take([2, 1]))
1570
1584
  # # =>
1571
1585
  # # shape: (2, 2)
1572
- # # ┌───────┬───────┐
1573
- # # │ group ┆ value
1574
- # # │ --- ┆ ---
1575
- # # │ str ┆ i64
1576
- # # ╞═══════╪═══════╡
1577
- # # │ one ┆ 98
1578
- # # │ two ┆ 99
1579
- # # └───────┴───────┘
1580
- def take(indices)
1581
- if indices.is_a?(Array)
1586
+ # # ┌───────┬───────────┐
1587
+ # # │ group ┆ value
1588
+ # # │ --- ┆ ---
1589
+ # # │ str ┆ list[i64]
1590
+ # # ╞═══════╪═══════════╡
1591
+ # # │ one ┆ [2, 98]
1592
+ # # │ two ┆ [4, 99]
1593
+ # # └───────┴───────────┘
1594
+ def gather(indices)
1595
+ if indices.is_a?(::Array)
1582
1596
  indices_lit = Polars.lit(Series.new("", indices, dtype: :u32))
1583
1597
  else
1584
1598
  indices_lit = Utils.expr_to_lit_or_expr(indices, str_to_lit: false)
1585
1599
  end
1586
- wrap_expr(_rbexpr.take(indices_lit._rbexpr))
1600
+ wrap_expr(_rbexpr.gather(indices_lit._rbexpr))
1587
1601
  end
1602
+ alias_method :take, :gather
1588
1603
 
1589
1604
  # Shift the values by a given period.
1590
1605
  #
1591
- # @param periods [Integer]
1606
+ # @param n [Integer]
1592
1607
  # Number of places to shift (may be negative).
1608
+ # @param fill_value [Object]
1609
+ # Fill the resulting null values with this value.
1593
1610
  #
1594
1611
  # @return [Expr]
1595
1612
  #
@@ -1608,8 +1625,12 @@ module Polars
1608
1625
  # # │ 2 │
1609
1626
  # # │ 3 │
1610
1627
  # # └──────┘
1611
- def shift(periods = 1)
1612
- wrap_expr(_rbexpr.shift(periods))
1628
+ def shift(n = 1, fill_value: nil)
1629
+ if !fill_value.nil?
1630
+ fill_value = Utils.parse_as_expression(fill_value, str_as_lit: true)
1631
+ end
1632
+ n = Utils.parse_as_expression(n)
1633
+ wrap_expr(_rbexpr.shift(n, fill_value))
1613
1634
  end
1614
1635
 
1615
1636
  # Shift the values by a given period and fill the resulting null values.
@@ -1637,8 +1658,7 @@ module Polars
1637
1658
  # # │ 3 │
1638
1659
  # # └─────┘
1639
1660
  def shift_and_fill(periods, fill_value)
1640
- fill_value = Utils.expr_to_lit_or_expr(fill_value, str_to_lit: true)
1641
- wrap_expr(_rbexpr.shift_and_fill(periods, fill_value._rbexpr))
1661
+ shift(periods, fill_value: fill_value)
1642
1662
  end
1643
1663
 
1644
1664
  # Fill null values using the specified value or strategy.
@@ -2063,7 +2083,7 @@ module Polars
2063
2083
  # # │ 2 │
2064
2084
  # # └─────┘
2065
2085
  def approx_unique
2066
- wrap_expr(_rbexpr.approx_unique)
2086
+ wrap_expr(_rbexpr.approx_n_unique)
2067
2087
  end
2068
2088
 
2069
2089
  # Count null values.
@@ -2201,7 +2221,7 @@ module Polars
2201
2221
 
2202
2222
  # Apply window function over a subgroup.
2203
2223
  #
2204
- # This is similar to a groupby + aggregation + self join.
2224
+ # This is similar to a group by + aggregation + self join.
2205
2225
  # Or similar to [window functions in Postgres](https://www.postgresql.org/docs/current/tutorial-window.html).
2206
2226
  #
2207
2227
  # @param expr [Object]
@@ -2309,9 +2329,10 @@ module Polars
2309
2329
  # # │ 1 ┆ false │
2310
2330
  # # │ 5 ┆ true │
2311
2331
  # # └─────┴──────────┘
2312
- def is_first
2313
- wrap_expr(_rbexpr.is_first)
2332
+ def is_first_distinct
2333
+ wrap_expr(_rbexpr.is_first_distinct)
2314
2334
  end
2335
+ alias_method :is_first, :is_first_distinct
2315
2336
 
2316
2337
  # Get mask of duplicated values.
2317
2338
  #
@@ -2335,6 +2356,54 @@ module Polars
2335
2356
  wrap_expr(_rbexpr.is_duplicated)
2336
2357
  end
2337
2358
 
2359
+ # Get a boolean mask of the local maximum peaks.
2360
+ #
2361
+ # @return [Expr]
2362
+ #
2363
+ # @example
2364
+ # df = Polars::DataFrame.new({"a" => [1, 2, 3, 4, 5]})
2365
+ # df.select(Polars.col("a").peak_max)
2366
+ # # =>
2367
+ # # shape: (5, 1)
2368
+ # # ┌───────┐
2369
+ # # │ a │
2370
+ # # │ --- │
2371
+ # # │ bool │
2372
+ # # ╞═══════╡
2373
+ # # │ false │
2374
+ # # │ false │
2375
+ # # │ false │
2376
+ # # │ false │
2377
+ # # │ true │
2378
+ # # └───────┘
2379
+ def peak_max
2380
+ wrap_expr(_rbexpr.peak_max)
2381
+ end
2382
+
2383
+ # Get a boolean mask of the local minimum peaks.
2384
+ #
2385
+ # @return [Expr]
2386
+ #
2387
+ # @example
2388
+ # df = Polars::DataFrame.new({"a" => [4, 1, 3, 2, 5]})
2389
+ # df.select(Polars.col("a").peak_min)
2390
+ # # =>
2391
+ # # shape: (5, 1)
2392
+ # # ┌───────┐
2393
+ # # │ a │
2394
+ # # │ --- │
2395
+ # # │ bool │
2396
+ # # ╞═══════╡
2397
+ # # │ false │
2398
+ # # │ true │
2399
+ # # │ false │
2400
+ # # │ true │
2401
+ # # │ false │
2402
+ # # └───────┘
2403
+ def peak_min
2404
+ wrap_expr(_rbexpr.peak_min)
2405
+ end
2406
+
2338
2407
  # Get quantile value.
2339
2408
  #
2340
2409
  # @param quantile [Float]
@@ -2427,7 +2496,7 @@ module Polars
2427
2496
  # }
2428
2497
  # )
2429
2498
  # (
2430
- # df.groupby("group_col").agg(
2499
+ # df.group_by("group_col").agg(
2431
2500
  # [
2432
2501
  # Polars.col("b").filter(Polars.col("b") < 2).sum.alias("lt"),
2433
2502
  # Polars.col("b").filter(Polars.col("b") >= 2).sum.alias("gte")
@@ -2436,14 +2505,14 @@ module Polars
2436
2505
  # ).sort("group_col")
2437
2506
  # # =>
2438
2507
  # # shape: (2, 3)
2439
- # # ┌───────────┬──────┬─────┐
2440
- # # │ group_col ┆ lt ┆ gte │
2441
- # # │ --- ┆ --- ┆ --- │
2442
- # # │ str ┆ i64 ┆ i64 │
2443
- # # ╞═══════════╪══════╪═════╡
2444
- # # │ g1 ┆ 1 ┆ 2 │
2445
- # # │ g2 ┆ null ┆ 3 │
2446
- # # └───────────┴──────┴─────┘
2508
+ # # ┌───────────┬─────┬─────┐
2509
+ # # │ group_col ┆ lt ┆ gte │
2510
+ # # │ --- ┆ --- ┆ --- │
2511
+ # # │ str ┆ i64 ┆ i64 │
2512
+ # # ╞═══════════╪═════╪═════╡
2513
+ # # │ g1 ┆ 1 ┆ 2 │
2514
+ # # │ g2 ┆ 0 ┆ 3 │
2515
+ # # └───────────┴─────┴─────┘
2447
2516
  def filter(predicate)
2448
2517
  wrap_expr(_rbexpr.filter(predicate._rbexpr))
2449
2518
  end
@@ -2465,7 +2534,7 @@ module Polars
2465
2534
  # }
2466
2535
  # )
2467
2536
  # (
2468
- # df.groupby("group_col").agg(
2537
+ # df.group_by("group_col").agg(
2469
2538
  # [
2470
2539
  # Polars.col("b").where(Polars.col("b") < 2).sum.alias("lt"),
2471
2540
  # Polars.col("b").where(Polars.col("b") >= 2).sum.alias("gte")
@@ -2474,14 +2543,14 @@ module Polars
2474
2543
  # ).sort("group_col")
2475
2544
  # # =>
2476
2545
  # # shape: (2, 3)
2477
- # # ┌───────────┬──────┬─────┐
2478
- # # │ group_col ┆ lt ┆ gte │
2479
- # # │ --- ┆ --- ┆ --- │
2480
- # # │ str ┆ i64 ┆ i64 │
2481
- # # ╞═══════════╪══════╪═════╡
2482
- # # │ g1 ┆ 1 ┆ 2 │
2483
- # # │ g2 ┆ null ┆ 3 │
2484
- # # └───────────┴──────┴─────┘
2546
+ # # ┌───────────┬─────┬─────┐
2547
+ # # │ group_col ┆ lt ┆ gte │
2548
+ # # │ --- ┆ --- ┆ --- │
2549
+ # # │ str ┆ i64 ┆ i64 │
2550
+ # # ╞═══════════╪═════╪═════╡
2551
+ # # │ g1 ┆ 1 ┆ 2 │
2552
+ # # │ g2 ┆ 0 ┆ 3 │
2553
+ # # └───────────┴─────┴─────┘
2485
2554
  def where(predicate)
2486
2555
  filter(predicate)
2487
2556
  end
@@ -2583,7 +2652,7 @@ module Polars
2583
2652
  #
2584
2653
  # @example In a GroupBy context the function is applied by group:
2585
2654
  # df.lazy
2586
- # .groupby("b", maintain_order: true)
2655
+ # .group_by("b", maintain_order: true)
2587
2656
  # .agg(
2588
2657
  # [
2589
2658
  # Polars.col("a").apply { |x| x.sum }
@@ -2616,25 +2685,23 @@ module Polars
2616
2685
  # @return [Expr]
2617
2686
  #
2618
2687
  # @example
2619
- # df = Polars::DataFrame.new({"foo" => ["hello", "world"]})
2620
- # df.select(Polars.col("foo").flatten)
2621
- # # =>
2622
- # # shape: (10, 1)
2623
- # # ┌─────┐
2624
- # # │ foo │
2625
- # # │ --- │
2626
- # # │ str │
2627
- # # ╞═════╡
2628
- # # │ h │
2629
- # # │ e
2630
- # # │ l
2631
- # # │ l
2632
- # # │ … │
2633
- # # │ o
2634
- # # │ r
2635
- # # │ l │
2636
- # # │ d │
2637
- # # └─────┘
2688
+ # df = Polars::DataFrame.new(
2689
+ # {
2690
+ # "group" => ["a", "b", "b"],
2691
+ # "values" => [[1, 2], [2, 3], [4]]
2692
+ # }
2693
+ # )
2694
+ # df.group_by("group").agg(Polars.col("values").flatten)
2695
+ # # =>
2696
+ # # shape: (2, 2)
2697
+ # # ┌───────┬───────────┐
2698
+ # # │ group ┆ values
2699
+ # # │ --- ┆ ---
2700
+ # # │ str ┆ list[i64]
2701
+ # # ╞═══════╪═══════════╡
2702
+ # # │ a ┆ [1, 2]
2703
+ # # │ b ┆ [2, 3, 4]
2704
+ # # └───────┴───────────┘
2638
2705
  def flatten
2639
2706
  wrap_expr(_rbexpr.explode)
2640
2707
  end
@@ -2672,7 +2739,7 @@ module Polars
2672
2739
  #
2673
2740
  # @example
2674
2741
  # df = Polars::DataFrame.new({"foo" => [1, 2, 3, 4, 5, 6, 7, 8, 9]})
2675
- # df.select(Polars.col("foo").take_every(3))
2742
+ # df.select(Polars.col("foo").gather_every(3))
2676
2743
  # # =>
2677
2744
  # # shape: (3, 1)
2678
2745
  # # ┌─────┐
@@ -2684,9 +2751,10 @@ module Polars
2684
2751
  # # │ 4 │
2685
2752
  # # │ 7 │
2686
2753
  # # └─────┘
2687
- def take_every(n)
2688
- wrap_expr(_rbexpr.take_every(n))
2754
+ def gather_every(n)
2755
+ wrap_expr(_rbexpr.gather_every(n))
2689
2756
  end
2757
+ alias_method :take_every, :gather_every
2690
2758
 
2691
2759
  # Get the first `n` rows.
2692
2760
  #
@@ -2798,7 +2866,7 @@ module Polars
2798
2866
  # # │ false │
2799
2867
  # # └──────────┘
2800
2868
  def is_in(other)
2801
- if other.is_a?(Array)
2869
+ if other.is_a?(::Array)
2802
2870
  if other.length == 0
2803
2871
  other = Polars.lit(nil)
2804
2872
  else
@@ -3059,11 +3127,11 @@ module Polars
3059
3127
  # # ┌─────┬─────┐
3060
3128
  # # │ a ┆ b │
3061
3129
  # # │ --- ┆ --- │
3062
- # # │ i64 ┆ f64 │
3130
+ # # │ f64 ┆ f64 │
3063
3131
  # # ╞═════╪═════╡
3064
- # # │ 1 ┆ 1.0 │
3065
- # # │ 2 ┆ NaN │
3066
- # # │ 3 ┆ 3.0 │
3132
+ # # │ 1.0 ┆ 1.0 │
3133
+ # # │ 2.0 ┆ NaN │
3134
+ # # │ 3.0 ┆ 3.0 │
3067
3135
  # # └─────┴─────┘
3068
3136
  def interpolate(method: "linear")
3069
3137
  wrap_expr(_rbexpr.interpolate(method))
@@ -3114,7 +3182,7 @@ module Polars
3114
3182
  #
3115
3183
  # @note
3116
3184
  # If you want to compute multiple aggregation statistics over the same dynamic
3117
- # window, consider using `groupby_rolling` this method can cache the window size
3185
+ # window, consider using `group_by_rolling` this method can cache the window size
3118
3186
  # computation.
3119
3187
  #
3120
3188
  # @return [Expr]
@@ -3203,7 +3271,7 @@ module Polars
3203
3271
  #
3204
3272
  # @note
3205
3273
  # If you want to compute multiple aggregation statistics over the same dynamic
3206
- # window, consider using `groupby_rolling` this method can cache the window size
3274
+ # window, consider using `group_by_rolling` this method can cache the window size
3207
3275
  # computation.
3208
3276
  #
3209
3277
  # @return [Expr]
@@ -3292,7 +3360,7 @@ module Polars
3292
3360
  #
3293
3361
  # @note
3294
3362
  # If you want to compute multiple aggregation statistics over the same dynamic
3295
- # window, consider using `groupby_rolling` this method can cache the window size
3363
+ # window, consider using `group_by_rolling` this method can cache the window size
3296
3364
  # computation.
3297
3365
  #
3298
3366
  # @return [Expr]
@@ -3381,7 +3449,7 @@ module Polars
3381
3449
  #
3382
3450
  # @note
3383
3451
  # If you want to compute multiple aggregation statistics over the same dynamic
3384
- # window, consider using `groupby_rolling` this method can cache the window size
3452
+ # window, consider using `group_by_rolling` this method can cache the window size
3385
3453
  # computation.
3386
3454
  #
3387
3455
  # @return [Expr]
@@ -3470,7 +3538,7 @@ module Polars
3470
3538
  #
3471
3539
  # @note
3472
3540
  # If you want to compute multiple aggregation statistics over the same dynamic
3473
- # window, consider using `groupby_rolling` this method can cache the window size
3541
+ # window, consider using `group_by_rolling` this method can cache the window size
3474
3542
  # computation.
3475
3543
  #
3476
3544
  # @return [Expr]
@@ -3502,14 +3570,15 @@ module Polars
3502
3570
  min_periods: nil,
3503
3571
  center: false,
3504
3572
  by: nil,
3505
- closed: "left"
3573
+ closed: "left",
3574
+ ddof: 1
3506
3575
  )
3507
3576
  window_size, min_periods = _prepare_rolling_window_args(
3508
3577
  window_size, min_periods
3509
3578
  )
3510
3579
  wrap_expr(
3511
3580
  _rbexpr.rolling_std(
3512
- window_size, weights, min_periods, center, by, closed
3581
+ window_size, weights, min_periods, center, by, closed, ddof
3513
3582
  )
3514
3583
  )
3515
3584
  end
@@ -3559,7 +3628,7 @@ module Polars
3559
3628
  #
3560
3629
  # @note
3561
3630
  # If you want to compute multiple aggregation statistics over the same dynamic
3562
- # window, consider using `groupby_rolling` this method can cache the window size
3631
+ # window, consider using `group_by_rolling` this method can cache the window size
3563
3632
  # computation.
3564
3633
  #
3565
3634
  # @return [Expr]
@@ -3591,14 +3660,15 @@ module Polars
3591
3660
  min_periods: nil,
3592
3661
  center: false,
3593
3662
  by: nil,
3594
- closed: "left"
3663
+ closed: "left",
3664
+ ddof: 1
3595
3665
  )
3596
3666
  window_size, min_periods = _prepare_rolling_window_args(
3597
3667
  window_size, min_periods
3598
3668
  )
3599
3669
  wrap_expr(
3600
3670
  _rbexpr.rolling_var(
3601
- window_size, weights, min_periods, center, by, closed
3671
+ window_size, weights, min_periods, center, by, closed, ddof
3602
3672
  )
3603
3673
  )
3604
3674
  end
@@ -3644,7 +3714,7 @@ module Polars
3644
3714
  #
3645
3715
  # @note
3646
3716
  # If you want to compute multiple aggregation statistics over the same dynamic
3647
- # window, consider using `groupby_rolling` this method can cache the window size
3717
+ # window, consider using `group_by_rolling` this method can cache the window size
3648
3718
  # computation.
3649
3719
  #
3650
3720
  # @return [Expr]
@@ -3733,7 +3803,7 @@ module Polars
3733
3803
  #
3734
3804
  # @note
3735
3805
  # If you want to compute multiple aggregation statistics over the same dynamic
3736
- # window, consider using `groupby_rolling` this method can cache the window size
3806
+ # window, consider using `group_by_rolling` this method can cache the window size
3737
3807
  # computation.
3738
3808
  #
3739
3809
  # @return [Expr]
@@ -3948,7 +4018,7 @@ module Polars
3948
4018
  # # ┌─────┐
3949
4019
  # # │ a │
3950
4020
  # # │ --- │
3951
- # # │ f32
4021
+ # # │ f64
3952
4022
  # # ╞═════╡
3953
4023
  # # │ 3.0 │
3954
4024
  # # │ 4.5 │
@@ -4041,6 +4111,7 @@ module Polars
4041
4111
  # # │ 12 ┆ 0.0 │
4042
4112
  # # └──────┴────────────┘
4043
4113
  def pct_change(n: 1)
4114
+ n = Utils.parse_as_expression(n)
4044
4115
  wrap_expr(_rbexpr.pct_change(n))
4045
4116
  end
4046
4117
 
@@ -4105,16 +4176,14 @@ module Polars
4105
4176
  wrap_expr(_rbexpr.kurtosis(fisher, bias))
4106
4177
  end
4107
4178
 
4108
- # Clip (limit) the values in an array to a `min` and `max` boundary.
4109
- #
4110
- # Only works for numerical types.
4179
+ # Set values outside the given boundaries to the boundary value.
4111
4180
  #
4112
- # If you want to clip other dtypes, consider writing a "when, then, otherwise"
4113
- # expression. See `when` for more information.
4181
+ # Only works for numeric and temporal columns. If you want to clip other data
4182
+ # types, consider writing a `when-then-otherwise` expression.
4114
4183
  #
4115
- # @param min_val [Numeric]
4184
+ # @param lower_bound [Numeric]
4116
4185
  # Minimum value.
4117
- # @param max_val [Numeric]
4186
+ # @param upper_bound [Numeric]
4118
4187
  # Maximum value.
4119
4188
  #
4120
4189
  # @return [Expr]
@@ -4134,8 +4203,14 @@ module Polars
4134
4203
  # # │ null ┆ null │
4135
4204
  # # │ 50 ┆ 10 │
4136
4205
  # # └──────┴─────────────┘
4137
- def clip(min_val, max_val)
4138
- wrap_expr(_rbexpr.clip(min_val, max_val))
4206
+ def clip(lower_bound, upper_bound)
4207
+ if !lower_bound.nil?
4208
+ lower_bound = Utils.parse_as_expression(lower_bound, str_as_lit: true)
4209
+ end
4210
+ if !upper_bound.nil?
4211
+ upper_bound = Utils.parse_as_expression(upper_bound, str_as_lit: true)
4212
+ end
4213
+ wrap_expr(_rbexpr.clip(lower_bound, upper_bound))
4139
4214
  end
4140
4215
 
4141
4216
  # Clip (limit) the values in an array to a `min` boundary.
@@ -4145,7 +4220,7 @@ module Polars
4145
4220
  # If you want to clip other dtypes, consider writing a "when, then, otherwise"
4146
4221
  # expression. See `when` for more information.
4147
4222
  #
4148
- # @param min_val [Numeric]
4223
+ # @param lower_bound [Numeric]
4149
4224
  # Minimum value.
4150
4225
  #
4151
4226
  # @return [Expr]
@@ -4165,8 +4240,8 @@ module Polars
4165
4240
  # # │ null ┆ null │
4166
4241
  # # │ 50 ┆ 50 │
4167
4242
  # # └──────┴─────────────┘
4168
- def clip_min(min_val)
4169
- wrap_expr(_rbexpr.clip_min(min_val))
4243
+ def clip_min(lower_bound)
4244
+ clip(lower_bound, nil)
4170
4245
  end
4171
4246
 
4172
4247
  # Clip (limit) the values in an array to a `max` boundary.
@@ -4176,7 +4251,7 @@ module Polars
4176
4251
  # If you want to clip other dtypes, consider writing a "when, then, otherwise"
4177
4252
  # expression. See `when` for more information.
4178
4253
  #
4179
- # @param max_val [Numeric]
4254
+ # @param upper_bound [Numeric]
4180
4255
  # Maximum value.
4181
4256
  #
4182
4257
  # @return [Expr]
@@ -4196,8 +4271,8 @@ module Polars
4196
4271
  # # │ null ┆ null │
4197
4272
  # # │ 50 ┆ 0 │
4198
4273
  # # └──────┴─────────────┘
4199
- def clip_max(max_val)
4200
- wrap_expr(_rbexpr.clip_max(max_val))
4274
+ def clip_max(upper_bound)
4275
+ clip(nil, upper_bound)
4201
4276
  end
4202
4277
 
4203
4278
  # Calculate the lower bound.
@@ -4607,12 +4682,14 @@ module Polars
4607
4682
  end
4608
4683
 
4609
4684
  if !n.nil? && frac.nil?
4685
+ n = Utils.parse_as_expression(n)
4610
4686
  return wrap_expr(_rbexpr.sample_n(n, with_replacement, shuffle, seed))
4611
4687
  end
4612
4688
 
4613
4689
  if frac.nil?
4614
4690
  frac = 1.0
4615
4691
  end
4692
+ frac = Utils.parse_as_expression(frac)
4616
4693
  wrap_expr(
4617
4694
  _rbexpr.sample_frac(frac, with_replacement, shuffle, seed)
4618
4695
  )
@@ -4884,7 +4961,7 @@ module Polars
4884
4961
  # Number of valid values there should be in the window before the expression
4885
4962
  # is evaluated. valid values = `length - null_count`
4886
4963
  # @param parallel [Boolean]
4887
- # Run in parallel. Don't do this in a groupby or another operation that
4964
+ # Run in parallel. Don't do this in a group by or another operation that
4888
4965
  # already has much parallelization.
4889
4966
  #
4890
4967
  # @return [Expr]
@@ -4929,8 +5006,8 @@ module Polars
4929
5006
  #
4930
5007
  # Enables downstream code to user fast paths for sorted arrays.
4931
5008
  #
4932
- # @param reverse [Boolean]
4933
- # If the `Series` order is reversed, e.g. descending.
5009
+ # @param descending [Boolean]
5010
+ # Whether the `Series` order is descending.
4934
5011
  #
4935
5012
  # @return [Expr]
4936
5013
  #
@@ -4950,9 +5027,9 @@ module Polars
4950
5027
  # # ╞════════╡
4951
5028
  # # │ 3 │
4952
5029
  # # └────────┘
4953
- # def set_sorted(reverse: false)
4954
- # map { |s| s.set_sorted(reverse) }
4955
- # end
5030
+ def set_sorted(descending: false)
5031
+ wrap_expr(_rbexpr.set_sorted_flag(descending))
5032
+ end
4956
5033
 
4957
5034
  # Aggregate to list.
4958
5035
  #
@@ -4965,7 +5042,7 @@ module Polars
4965
5042
  # "b" => [4, 5, 6]
4966
5043
  # }
4967
5044
  # )
4968
- # df.select(Polars.all.list)
5045
+ # df.select(Polars.all.implode)
4969
5046
  # # =>
4970
5047
  # # shape: (1, 2)
4971
5048
  # # ┌───────────┬───────────┐
@@ -4978,7 +5055,6 @@ module Polars
4978
5055
  def implode
4979
5056
  wrap_expr(_rbexpr.implode)
4980
5057
  end
4981
- alias_method :list, :implode
4982
5058
 
4983
5059
  # Shrink numeric columns to the minimal required datatype.
4984
5060
  #
@@ -5018,10 +5094,17 @@ module Polars
5018
5094
  # Create an object namespace of all list related methods.
5019
5095
  #
5020
5096
  # @return [ListExpr]
5021
- def arr
5097
+ def list
5022
5098
  ListExpr.new(self)
5023
5099
  end
5024
5100
 
5101
+ # Create an object namespace of all array related methods.
5102
+ #
5103
+ # @return [ArrayExpr]
5104
+ def arr
5105
+ ArrayExpr.new(self)
5106
+ end
5107
+
5025
5108
  # Create an object namespace of all binary related methods.
5026
5109
  #
5027
5110
  # @return [BinaryExpr]
@@ -5050,6 +5133,13 @@ module Polars
5050
5133
  MetaExpr.new(self)
5051
5134
  end
5052
5135
 
5136
+ # Create an object namespace of all expressions that modify expression names.
5137
+ #
5138
+ # @return [NameExpr]
5139
+ def name
5140
+ NameExpr.new(self)
5141
+ end
5142
+
5053
5143
  # Create an object namespace of all string related methods.
5054
5144
  #
5055
5145
  # @return [StringExpr]