polars-df 0.5.0-x86_64-darwin → 0.7.0-x86_64-darwin

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/README.md CHANGED
@@ -20,12 +20,12 @@ This library follows the [Polars Python API](https://pola-rs.github.io/polars/py
20
20
  Polars.read_csv("iris.csv")
21
21
  .lazy
22
22
  .filter(Polars.col("sepal_length") > 5)
23
- .groupby("species")
23
+ .group_by("species")
24
24
  .agg(Polars.all.sum)
25
25
  .collect
26
26
  ```
27
27
 
28
- You can follow [Polars tutorials](https://pola-rs.github.io/polars-book/user-guide/introduction.html) and convert the code to Ruby in many cases. Feel free to open an issue if you run into problems.
28
+ You can follow [Polars tutorials](https://pola-rs.github.io/polars-book/user-guide/) and convert the code to Ruby in many cases. Feel free to open an issue if you run into problems.
29
29
 
30
30
  ## Reference
31
31
 
@@ -260,19 +260,19 @@ df["a"].var
260
260
  Group
261
261
 
262
262
  ```ruby
263
- df.groupby("a").count
263
+ df.group_by("a").count
264
264
  ```
265
265
 
266
266
  Works with all summary statistics
267
267
 
268
268
  ```ruby
269
- df.groupby("a").max
269
+ df.group_by("a").max
270
270
  ```
271
271
 
272
272
  Multiple groups
273
273
 
274
274
  ```ruby
275
- df.groupby(["a", "b"]).count
275
+ df.group_by(["a", "b"]).count
276
276
  ```
277
277
 
278
278
  ## Combining Data Frames
@@ -348,7 +348,7 @@ df.to_numo
348
348
  You can specify column types when creating a data frame
349
349
 
350
350
  ```ruby
351
- Polars::DataFrame.new(data, columns: {"a" => Polars::Int32, "b" => Polars::Float32})
351
+ Polars::DataFrame.new(data, schema: {"a" => Polars::Int32, "b" => Polars::Float32})
352
352
  ```
353
353
 
354
354
  Supported types are:
@@ -357,8 +357,10 @@ Supported types are:
357
357
  - float - `Float64`, `Float32`
358
358
  - integer - `Int64`, `Int32`, `Int16`, `Int8`
359
359
  - unsigned integer - `UInt64`, `UInt32`, `UInt16`, `UInt8`
360
- - string - `Utf8`, `Categorical`
360
+ - string - `Utf8`, `Binary`, `Categorical`
361
361
  - temporal - `Date`, `Datetime`, `Time`, `Duration`
362
+ - nested - `List`, `Struct`, `Array`
363
+ - other - `Object`, `Null`
362
364
 
363
365
  Get column types
364
366
 
@@ -401,13 +403,13 @@ df.plot("a", "b", type: "pie")
401
403
  Group data
402
404
 
403
405
  ```ruby
404
- df.groupby("c").plot("a", "b")
406
+ df.group_by("c").plot("a", "b")
405
407
  ```
406
408
 
407
409
  Stacked columns or bars
408
410
 
409
411
  ```ruby
410
- df.groupby("c").plot("a", "b", stacked: true)
412
+ df.group_by("c").plot("a", "b", stacked: true)
411
413
  ```
412
414
 
413
415
  ## History
Binary file
Binary file
Binary file
@@ -0,0 +1,84 @@
1
+ module Polars
2
+ # Namespace for array related expressions.
3
+ class ArrayExpr
4
+ # @private
5
+ attr_accessor :_rbexpr
6
+
7
+ # @private
8
+ def initialize(expr)
9
+ self._rbexpr = expr._rbexpr
10
+ end
11
+
12
+ # Compute the min values of the sub-arrays.
13
+ #
14
+ # @return [Expr]
15
+ #
16
+ # @example
17
+ # df = Polars::DataFrame.new(
18
+ # {"a" => [[1, 2], [4, 3]]},
19
+ # schema: {"a" => Polars::Array.new(2, Polars::Int64)}
20
+ # )
21
+ # df.select(Polars.col("a").arr.min)
22
+ # # =>
23
+ # # shape: (2, 1)
24
+ # # ┌─────┐
25
+ # # │ a │
26
+ # # │ --- │
27
+ # # │ i64 │
28
+ # # ╞═════╡
29
+ # # │ 1 │
30
+ # # │ 3 │
31
+ # # └─────┘
32
+ def min
33
+ Utils.wrap_expr(_rbexpr.array_min)
34
+ end
35
+
36
+ # Compute the max values of the sub-arrays.
37
+ #
38
+ # @return [Expr]
39
+ #
40
+ # @example
41
+ # df = Polars::DataFrame.new(
42
+ # {"a" => [[1, 2], [4, 3]]},
43
+ # schema: {"a" => Polars::Array.new(2, Polars::Int64)}
44
+ # )
45
+ # df.select(Polars.col("a").arr.max)
46
+ # # =>
47
+ # # shape: (2, 1)
48
+ # # ┌─────┐
49
+ # # │ a │
50
+ # # │ --- │
51
+ # # │ i64 │
52
+ # # ╞═════╡
53
+ # # │ 2 │
54
+ # # │ 4 │
55
+ # # └─────┘
56
+ def max
57
+ Utils.wrap_expr(_rbexpr.array_max)
58
+ end
59
+
60
+ # Compute the sum values of the sub-arrays.
61
+ #
62
+ # @return [Expr]
63
+ #
64
+ # @example
65
+ # df = Polars::DataFrame.new(
66
+ # {"a" => [[1, 2], [4, 3]]},
67
+ # schema: {"a" => Polars::Array.new(2, Polars::Int64)}
68
+ # )
69
+ # df.select(Polars.col("a").arr.sum)
70
+ # # =>
71
+ # # shape: (2, 1)
72
+ # # ┌─────┐
73
+ # # │ a │
74
+ # # │ --- │
75
+ # # │ i64 │
76
+ # # ╞═════╡
77
+ # # │ 3 │
78
+ # # │ 7 │
79
+ # # └─────┘
80
+ def sum
81
+ Utils.wrap_expr(_rbexpr.array_sum)
82
+ end
83
+ end
84
+ end
@@ -0,0 +1,77 @@
1
+ module Polars
2
+ # Series.arr namespace.
3
+ class ArrayNameSpace
4
+ include ExprDispatch
5
+
6
+ self._accessor = "arr"
7
+
8
+ # @private
9
+ def initialize(series)
10
+ self._s = series._s
11
+ end
12
+
13
+ # Compute the min values of the sub-arrays.
14
+ #
15
+ # @return [Series]
16
+ #
17
+ # @example
18
+ # s = Polars::Series.new(
19
+ # "a", [[1, 2], [4, 3]], dtype: Polars::Array.new(2, Polars::Int64)
20
+ # )
21
+ # s.arr.min
22
+ # # =>
23
+ # # shape: (2,)
24
+ # # Series: 'a' [i64]
25
+ # # [
26
+ # # 1
27
+ # # 3
28
+ # # ]
29
+ def min
30
+ super
31
+ end
32
+
33
+ # Compute the max values of the sub-arrays.
34
+ #
35
+ # @return [Series]
36
+ #
37
+ # @example
38
+ # s = Polars::Series.new(
39
+ # "a", [[1, 2], [4, 3]], dtype: Polars::Array.new(2, Polars::Int64)
40
+ # )
41
+ # s.arr.max
42
+ # # =>
43
+ # # shape: (2,)
44
+ # # Series: 'a' [i64]
45
+ # # [
46
+ # # 2
47
+ # # 4
48
+ # # ]
49
+ def max
50
+ super
51
+ end
52
+
53
+ # Compute the sum values of the sub-arrays.
54
+ #
55
+ # @return [Series]
56
+ #
57
+ # @example
58
+ # df = Polars::DataFrame.new(
59
+ # {"a" => [[1, 2], [4, 3]]},
60
+ # schema: {"a" => Polars::Array.new(2, Polars::Int64)}
61
+ # )
62
+ # df.select(Polars.col("a").arr.sum)
63
+ # # =>
64
+ # # shape: (2, 1)
65
+ # # ┌─────┐
66
+ # # │ a │
67
+ # # │ --- │
68
+ # # │ i64 │
69
+ # # ╞═════╡
70
+ # # │ 3 │
71
+ # # │ 7 │
72
+ # # └─────┘
73
+ def sum
74
+ super
75
+ end
76
+ end
77
+ end
@@ -41,7 +41,7 @@ module Polars
41
41
  dtypes.each do|k, v|
42
42
  dtype_list << [k, Utils.rb_type_to_dtype(v)]
43
43
  end
44
- elsif dtypes.is_a?(Array)
44
+ elsif dtypes.is_a?(::Array)
45
45
  dtype_slice = dtypes
46
46
  else
47
47
  raise ArgumentError, "dtype arg should be list or dict"