polars-df 0.5.0-x86_64-darwin → 0.7.0-x86_64-darwin
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +26 -0
- data/Cargo.lock +595 -709
- data/Cargo.toml +1 -0
- data/LICENSE-THIRD-PARTY.txt +4572 -5214
- data/README.md +11 -9
- data/lib/polars/3.0/polars.bundle +0 -0
- data/lib/polars/3.1/polars.bundle +0 -0
- data/lib/polars/3.2/polars.bundle +0 -0
- data/lib/polars/array_expr.rb +84 -0
- data/lib/polars/array_name_space.rb +77 -0
- data/lib/polars/batched_csv_reader.rb +1 -1
- data/lib/polars/config.rb +530 -0
- data/lib/polars/data_frame.rb +206 -131
- data/lib/polars/data_types.rb +163 -29
- data/lib/polars/date_time_expr.rb +13 -18
- data/lib/polars/date_time_name_space.rb +22 -28
- data/lib/polars/dynamic_group_by.rb +2 -2
- data/lib/polars/expr.rb +241 -151
- data/lib/polars/functions.rb +29 -38
- data/lib/polars/group_by.rb +38 -76
- data/lib/polars/io.rb +37 -2
- data/lib/polars/lazy_frame.rb +174 -95
- data/lib/polars/lazy_functions.rb +87 -63
- data/lib/polars/lazy_group_by.rb +7 -8
- data/lib/polars/list_expr.rb +40 -36
- data/lib/polars/list_name_space.rb +15 -15
- data/lib/polars/name_expr.rb +198 -0
- data/lib/polars/rolling_group_by.rb +6 -4
- data/lib/polars/series.rb +95 -28
- data/lib/polars/sql_context.rb +194 -0
- data/lib/polars/string_expr.rb +249 -69
- data/lib/polars/string_name_space.rb +155 -25
- data/lib/polars/utils.rb +119 -57
- data/lib/polars/version.rb +1 -1
- data/lib/polars.rb +6 -0
- metadata +7 -2
data/README.md
CHANGED
@@ -20,12 +20,12 @@ This library follows the [Polars Python API](https://pola-rs.github.io/polars/py
|
|
20
20
|
Polars.read_csv("iris.csv")
|
21
21
|
.lazy
|
22
22
|
.filter(Polars.col("sepal_length") > 5)
|
23
|
-
.
|
23
|
+
.group_by("species")
|
24
24
|
.agg(Polars.all.sum)
|
25
25
|
.collect
|
26
26
|
```
|
27
27
|
|
28
|
-
You can follow [Polars tutorials](https://pola-rs.github.io/polars-book/user-guide/
|
28
|
+
You can follow [Polars tutorials](https://pola-rs.github.io/polars-book/user-guide/) and convert the code to Ruby in many cases. Feel free to open an issue if you run into problems.
|
29
29
|
|
30
30
|
## Reference
|
31
31
|
|
@@ -260,19 +260,19 @@ df["a"].var
|
|
260
260
|
Group
|
261
261
|
|
262
262
|
```ruby
|
263
|
-
df.
|
263
|
+
df.group_by("a").count
|
264
264
|
```
|
265
265
|
|
266
266
|
Works with all summary statistics
|
267
267
|
|
268
268
|
```ruby
|
269
|
-
df.
|
269
|
+
df.group_by("a").max
|
270
270
|
```
|
271
271
|
|
272
272
|
Multiple groups
|
273
273
|
|
274
274
|
```ruby
|
275
|
-
df.
|
275
|
+
df.group_by(["a", "b"]).count
|
276
276
|
```
|
277
277
|
|
278
278
|
## Combining Data Frames
|
@@ -348,7 +348,7 @@ df.to_numo
|
|
348
348
|
You can specify column types when creating a data frame
|
349
349
|
|
350
350
|
```ruby
|
351
|
-
Polars::DataFrame.new(data,
|
351
|
+
Polars::DataFrame.new(data, schema: {"a" => Polars::Int32, "b" => Polars::Float32})
|
352
352
|
```
|
353
353
|
|
354
354
|
Supported types are:
|
@@ -357,8 +357,10 @@ Supported types are:
|
|
357
357
|
- float - `Float64`, `Float32`
|
358
358
|
- integer - `Int64`, `Int32`, `Int16`, `Int8`
|
359
359
|
- unsigned integer - `UInt64`, `UInt32`, `UInt16`, `UInt8`
|
360
|
-
- string - `Utf8`, `Categorical`
|
360
|
+
- string - `Utf8`, `Binary`, `Categorical`
|
361
361
|
- temporal - `Date`, `Datetime`, `Time`, `Duration`
|
362
|
+
- nested - `List`, `Struct`, `Array`
|
363
|
+
- other - `Object`, `Null`
|
362
364
|
|
363
365
|
Get column types
|
364
366
|
|
@@ -401,13 +403,13 @@ df.plot("a", "b", type: "pie")
|
|
401
403
|
Group data
|
402
404
|
|
403
405
|
```ruby
|
404
|
-
df.
|
406
|
+
df.group_by("c").plot("a", "b")
|
405
407
|
```
|
406
408
|
|
407
409
|
Stacked columns or bars
|
408
410
|
|
409
411
|
```ruby
|
410
|
-
df.
|
412
|
+
df.group_by("c").plot("a", "b", stacked: true)
|
411
413
|
```
|
412
414
|
|
413
415
|
## History
|
Binary file
|
Binary file
|
Binary file
|
@@ -0,0 +1,84 @@
|
|
1
|
+
module Polars
|
2
|
+
# Namespace for array related expressions.
|
3
|
+
class ArrayExpr
|
4
|
+
# @private
|
5
|
+
attr_accessor :_rbexpr
|
6
|
+
|
7
|
+
# @private
|
8
|
+
def initialize(expr)
|
9
|
+
self._rbexpr = expr._rbexpr
|
10
|
+
end
|
11
|
+
|
12
|
+
# Compute the min values of the sub-arrays.
|
13
|
+
#
|
14
|
+
# @return [Expr]
|
15
|
+
#
|
16
|
+
# @example
|
17
|
+
# df = Polars::DataFrame.new(
|
18
|
+
# {"a" => [[1, 2], [4, 3]]},
|
19
|
+
# schema: {"a" => Polars::Array.new(2, Polars::Int64)}
|
20
|
+
# )
|
21
|
+
# df.select(Polars.col("a").arr.min)
|
22
|
+
# # =>
|
23
|
+
# # shape: (2, 1)
|
24
|
+
# # ┌─────┐
|
25
|
+
# # │ a │
|
26
|
+
# # │ --- │
|
27
|
+
# # │ i64 │
|
28
|
+
# # ╞═════╡
|
29
|
+
# # │ 1 │
|
30
|
+
# # │ 3 │
|
31
|
+
# # └─────┘
|
32
|
+
def min
|
33
|
+
Utils.wrap_expr(_rbexpr.array_min)
|
34
|
+
end
|
35
|
+
|
36
|
+
# Compute the max values of the sub-arrays.
|
37
|
+
#
|
38
|
+
# @return [Expr]
|
39
|
+
#
|
40
|
+
# @example
|
41
|
+
# df = Polars::DataFrame.new(
|
42
|
+
# {"a" => [[1, 2], [4, 3]]},
|
43
|
+
# schema: {"a" => Polars::Array.new(2, Polars::Int64)}
|
44
|
+
# )
|
45
|
+
# df.select(Polars.col("a").arr.max)
|
46
|
+
# # =>
|
47
|
+
# # shape: (2, 1)
|
48
|
+
# # ┌─────┐
|
49
|
+
# # │ a │
|
50
|
+
# # │ --- │
|
51
|
+
# # │ i64 │
|
52
|
+
# # ╞═════╡
|
53
|
+
# # │ 2 │
|
54
|
+
# # │ 4 │
|
55
|
+
# # └─────┘
|
56
|
+
def max
|
57
|
+
Utils.wrap_expr(_rbexpr.array_max)
|
58
|
+
end
|
59
|
+
|
60
|
+
# Compute the sum values of the sub-arrays.
|
61
|
+
#
|
62
|
+
# @return [Expr]
|
63
|
+
#
|
64
|
+
# @example
|
65
|
+
# df = Polars::DataFrame.new(
|
66
|
+
# {"a" => [[1, 2], [4, 3]]},
|
67
|
+
# schema: {"a" => Polars::Array.new(2, Polars::Int64)}
|
68
|
+
# )
|
69
|
+
# df.select(Polars.col("a").arr.sum)
|
70
|
+
# # =>
|
71
|
+
# # shape: (2, 1)
|
72
|
+
# # ┌─────┐
|
73
|
+
# # │ a │
|
74
|
+
# # │ --- │
|
75
|
+
# # │ i64 │
|
76
|
+
# # ╞═════╡
|
77
|
+
# # │ 3 │
|
78
|
+
# # │ 7 │
|
79
|
+
# # └─────┘
|
80
|
+
def sum
|
81
|
+
Utils.wrap_expr(_rbexpr.array_sum)
|
82
|
+
end
|
83
|
+
end
|
84
|
+
end
|
@@ -0,0 +1,77 @@
|
|
1
|
+
module Polars
|
2
|
+
# Series.arr namespace.
|
3
|
+
class ArrayNameSpace
|
4
|
+
include ExprDispatch
|
5
|
+
|
6
|
+
self._accessor = "arr"
|
7
|
+
|
8
|
+
# @private
|
9
|
+
def initialize(series)
|
10
|
+
self._s = series._s
|
11
|
+
end
|
12
|
+
|
13
|
+
# Compute the min values of the sub-arrays.
|
14
|
+
#
|
15
|
+
# @return [Series]
|
16
|
+
#
|
17
|
+
# @example
|
18
|
+
# s = Polars::Series.new(
|
19
|
+
# "a", [[1, 2], [4, 3]], dtype: Polars::Array.new(2, Polars::Int64)
|
20
|
+
# )
|
21
|
+
# s.arr.min
|
22
|
+
# # =>
|
23
|
+
# # shape: (2,)
|
24
|
+
# # Series: 'a' [i64]
|
25
|
+
# # [
|
26
|
+
# # 1
|
27
|
+
# # 3
|
28
|
+
# # ]
|
29
|
+
def min
|
30
|
+
super
|
31
|
+
end
|
32
|
+
|
33
|
+
# Compute the max values of the sub-arrays.
|
34
|
+
#
|
35
|
+
# @return [Series]
|
36
|
+
#
|
37
|
+
# @example
|
38
|
+
# s = Polars::Series.new(
|
39
|
+
# "a", [[1, 2], [4, 3]], dtype: Polars::Array.new(2, Polars::Int64)
|
40
|
+
# )
|
41
|
+
# s.arr.max
|
42
|
+
# # =>
|
43
|
+
# # shape: (2,)
|
44
|
+
# # Series: 'a' [i64]
|
45
|
+
# # [
|
46
|
+
# # 2
|
47
|
+
# # 4
|
48
|
+
# # ]
|
49
|
+
def max
|
50
|
+
super
|
51
|
+
end
|
52
|
+
|
53
|
+
# Compute the sum values of the sub-arrays.
|
54
|
+
#
|
55
|
+
# @return [Series]
|
56
|
+
#
|
57
|
+
# @example
|
58
|
+
# df = Polars::DataFrame.new(
|
59
|
+
# {"a" => [[1, 2], [4, 3]]},
|
60
|
+
# schema: {"a" => Polars::Array.new(2, Polars::Int64)}
|
61
|
+
# )
|
62
|
+
# df.select(Polars.col("a").arr.sum)
|
63
|
+
# # =>
|
64
|
+
# # shape: (2, 1)
|
65
|
+
# # ┌─────┐
|
66
|
+
# # │ a │
|
67
|
+
# # │ --- │
|
68
|
+
# # │ i64 │
|
69
|
+
# # ╞═════╡
|
70
|
+
# # │ 3 │
|
71
|
+
# # │ 7 │
|
72
|
+
# # └─────┘
|
73
|
+
def sum
|
74
|
+
super
|
75
|
+
end
|
76
|
+
end
|
77
|
+
end
|