polars-df 0.2.0-aarch64-linux

Sign up to get free protection for your applications and to get access to all the features.
Files changed (46) hide show
  1. checksums.yaml +7 -0
  2. data/.yardopts +3 -0
  3. data/CHANGELOG.md +33 -0
  4. data/Cargo.lock +2230 -0
  5. data/Cargo.toml +10 -0
  6. data/LICENSE-THIRD-PARTY.txt +38828 -0
  7. data/LICENSE.txt +20 -0
  8. data/README.md +91 -0
  9. data/lib/polars/3.0/polars.so +0 -0
  10. data/lib/polars/3.1/polars.so +0 -0
  11. data/lib/polars/3.2/polars.so +0 -0
  12. data/lib/polars/batched_csv_reader.rb +96 -0
  13. data/lib/polars/cat_expr.rb +52 -0
  14. data/lib/polars/cat_name_space.rb +54 -0
  15. data/lib/polars/convert.rb +100 -0
  16. data/lib/polars/data_frame.rb +4833 -0
  17. data/lib/polars/data_types.rb +122 -0
  18. data/lib/polars/date_time_expr.rb +1418 -0
  19. data/lib/polars/date_time_name_space.rb +1484 -0
  20. data/lib/polars/dynamic_group_by.rb +52 -0
  21. data/lib/polars/exceptions.rb +20 -0
  22. data/lib/polars/expr.rb +5307 -0
  23. data/lib/polars/expr_dispatch.rb +22 -0
  24. data/lib/polars/functions.rb +453 -0
  25. data/lib/polars/group_by.rb +558 -0
  26. data/lib/polars/io.rb +814 -0
  27. data/lib/polars/lazy_frame.rb +2442 -0
  28. data/lib/polars/lazy_functions.rb +1195 -0
  29. data/lib/polars/lazy_group_by.rb +93 -0
  30. data/lib/polars/list_expr.rb +610 -0
  31. data/lib/polars/list_name_space.rb +346 -0
  32. data/lib/polars/meta_expr.rb +54 -0
  33. data/lib/polars/rolling_group_by.rb +35 -0
  34. data/lib/polars/series.rb +3730 -0
  35. data/lib/polars/slice.rb +104 -0
  36. data/lib/polars/string_expr.rb +972 -0
  37. data/lib/polars/string_name_space.rb +690 -0
  38. data/lib/polars/struct_expr.rb +100 -0
  39. data/lib/polars/struct_name_space.rb +64 -0
  40. data/lib/polars/utils.rb +192 -0
  41. data/lib/polars/version.rb +4 -0
  42. data/lib/polars/when.rb +16 -0
  43. data/lib/polars/when_then.rb +19 -0
  44. data/lib/polars-df.rb +1 -0
  45. data/lib/polars.rb +50 -0
  46. metadata +89 -0
data/LICENSE.txt ADDED
@@ -0,0 +1,20 @@
1
+ Copyright (c) 2020 Ritchie Vink
2
+ Copyright (c) 2022-2023 Andrew Kane
3
+
4
+ Permission is hereby granted, free of charge, to any person obtaining a copy
5
+ of this software and associated documentation files (the "Software"), to deal
6
+ in the Software without restriction, including without limitation the rights
7
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8
+ copies of the Software, and to permit persons to whom the Software is
9
+ furnished to do so, subject to the following conditions:
10
+
11
+ The above copyright notice and this permission notice shall be included in all
12
+ copies or substantial portions of the Software.
13
+
14
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
20
+ SOFTWARE.
data/README.md ADDED
@@ -0,0 +1,91 @@
1
+ # Polars Ruby
2
+
3
+ :fire: Blazingly fast DataFrames for Ruby, powered by [Polars](https://github.com/pola-rs/polars)
4
+
5
+ [![Build Status](https://github.com/ankane/polars-ruby/workflows/build/badge.svg?branch=master)](https://github.com/ankane/polars-ruby/actions)
6
+
7
+ ## Installation
8
+
9
+ Add this line to your application’s Gemfile:
10
+
11
+ ```ruby
12
+ gem "polars-df"
13
+ ```
14
+
15
+ ## Getting Started
16
+
17
+ This library follows the [Polars Python API](https://pola-rs.github.io/polars/py-polars/html/reference/index.html).
18
+
19
+ ```ruby
20
+ Polars.read_csv("iris.csv")
21
+ .lazy
22
+ .filter(Polars.col("sepal_length") > 5)
23
+ .groupby("species")
24
+ .agg(Polars.all.sum)
25
+ .collect
26
+ ```
27
+
28
+ You can follow [Polars tutorials](https://pola-rs.github.io/polars-book/user-guide/introduction.html) and convert the code to Ruby in many cases. Feel free to open an issue if you run into problems. Some methods are missing at the moment.
29
+
30
+ ## Examples
31
+
32
+ ### Creating DataFrames
33
+
34
+ From a CSV
35
+
36
+ ```ruby
37
+ Polars.read_csv("file.csv")
38
+ ```
39
+
40
+ From Parquet
41
+
42
+ ```ruby
43
+ Polars.read_parquet("file.parquet")
44
+ ```
45
+
46
+ From Active Record
47
+
48
+ ```ruby
49
+ Polars::DataFrame.new(User.all)
50
+ ```
51
+
52
+ From a hash
53
+
54
+ ```ruby
55
+ Polars::DataFrame.new({
56
+ a: [1, 2, 3],
57
+ b: ["one", "two", "three"]
58
+ })
59
+ ```
60
+
61
+ From an array of series
62
+
63
+ ```ruby
64
+ Polars::DataFrame.new([
65
+ Polars::Series.new("a", [1, 2, 3]),
66
+ Polars::Series.new("b", ["one", "two", "three"])
67
+ ])
68
+ ```
69
+
70
+ ## History
71
+
72
+ View the [changelog](CHANGELOG.md)
73
+
74
+ ## Contributing
75
+
76
+ Everyone is encouraged to help improve this project. Here are a few ways you can help:
77
+
78
+ - [Report bugs](https://github.com/ankane/polars-ruby/issues)
79
+ - Fix bugs and [submit pull requests](https://github.com/ankane/polars-ruby/pulls)
80
+ - Write, clarify, or fix documentation
81
+ - Suggest or add new features
82
+
83
+ To get started with development:
84
+
85
+ ```sh
86
+ git clone https://github.com/ankane/polars-ruby.git
87
+ cd polars-ruby
88
+ bundle install
89
+ bundle exec rake compile
90
+ bundle exec rake test
91
+ ```
Binary file
Binary file
Binary file
@@ -0,0 +1,96 @@
1
+ module Polars
2
+ # @private
3
+ class BatchedCsvReader
4
+ attr_accessor :_reader, :new_columns
5
+
6
+ def initialize(
7
+ file,
8
+ has_header: true,
9
+ columns: nil,
10
+ sep: ",",
11
+ comment_char: nil,
12
+ quote_char: '"',
13
+ skip_rows: 0,
14
+ dtypes: nil,
15
+ null_values: nil,
16
+ ignore_errors: false,
17
+ parse_dates: false,
18
+ n_threads: nil,
19
+ infer_schema_length: 100,
20
+ batch_size: 50_000,
21
+ n_rows: nil,
22
+ encoding: "utf8",
23
+ low_memory: false,
24
+ rechunk: true,
25
+ skip_rows_after_header: 0,
26
+ row_count_name: nil,
27
+ row_count_offset: 0,
28
+ sample_size: 1024,
29
+ eol_char: "\n",
30
+ new_columns: nil
31
+ )
32
+ if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
33
+ path = Utils.format_path(file)
34
+ end
35
+
36
+ dtype_list = nil
37
+ dtype_slice = nil
38
+ if !dtypes.nil?
39
+ if dtypes.is_a?(Hash)
40
+ dtype_list = []
41
+ dtypes.each do|k, v|
42
+ dtype_list << [k, Utils.rb_type_to_dtype(v)]
43
+ end
44
+ elsif dtypes.is_a?(Array)
45
+ dtype_slice = dtypes
46
+ else
47
+ raise ArgumentError, "dtype arg should be list or dict"
48
+ end
49
+ end
50
+
51
+ processed_null_values = Utils._process_null_values(null_values)
52
+ projection, columns = Utils.handle_projection_columns(columns)
53
+
54
+ self._reader = RbBatchedCsv.new(
55
+ infer_schema_length,
56
+ batch_size,
57
+ has_header,
58
+ ignore_errors,
59
+ n_rows,
60
+ skip_rows,
61
+ projection,
62
+ sep,
63
+ rechunk,
64
+ columns,
65
+ encoding,
66
+ n_threads,
67
+ path,
68
+ dtype_list,
69
+ dtype_slice,
70
+ low_memory,
71
+ comment_char,
72
+ quote_char,
73
+ processed_null_values,
74
+ parse_dates,
75
+ skip_rows_after_header,
76
+ Utils._prepare_row_count_args(row_count_name, row_count_offset),
77
+ sample_size,
78
+ eol_char
79
+ )
80
+ self.new_columns = new_columns
81
+ end
82
+
83
+ def next_batches(n)
84
+ batches = _reader.next_batches(n)
85
+ if !batches.nil?
86
+ if new_columns
87
+ batches.map { |df| Utils._update_columns(Utils.wrap_df(df), new_columns) }
88
+ else
89
+ batches.map { |df| Utils.wrap_df(df) }
90
+ end
91
+ else
92
+ nil
93
+ end
94
+ end
95
+ end
96
+ end
@@ -0,0 +1,52 @@
1
+ module Polars
2
+ # Namespace for categorical related expressions.
3
+ class CatExpr
4
+ # @private
5
+ attr_accessor :_rbexpr
6
+
7
+ # @private
8
+ def initialize(expr)
9
+ self._rbexpr = expr._rbexpr
10
+ end
11
+
12
+ # Determine how this categorical series should be sorted.
13
+ #
14
+ # @param ordering ["physical", "lexical"]
15
+ # Ordering type:
16
+ #
17
+ # - 'physical' -> Use the physical representation of the categories to determine the order (default).
18
+ # - 'lexical' -> Use the string values to determine the ordering.
19
+ #
20
+ # @return [Expr]
21
+ #
22
+ # @example
23
+ # df = Polars::DataFrame.new(
24
+ # {"cats" => ["z", "z", "k", "a", "b"], "vals" => [3, 1, 2, 2, 3]}
25
+ # ).with_columns(
26
+ # [
27
+ # Polars.col("cats").cast(:cat).cat.set_ordering("lexical")
28
+ # ]
29
+ # )
30
+ # df.sort(["cats", "vals"])
31
+ # # =>
32
+ # # shape: (5, 2)
33
+ # # ┌──────┬──────┐
34
+ # # │ cats ┆ vals │
35
+ # # │ --- ┆ --- │
36
+ # # │ cat ┆ i64 │
37
+ # # ╞══════╪══════╡
38
+ # # │ a ┆ 2 │
39
+ # # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
40
+ # # │ b ┆ 3 │
41
+ # # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
42
+ # # │ k ┆ 2 │
43
+ # # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
44
+ # # │ z ┆ 1 │
45
+ # # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
46
+ # # │ z ┆ 3 │
47
+ # # └──────┴──────┘
48
+ def set_ordering(ordering)
49
+ Utils.wrap_expr(_rbexpr.cat_set_ordering(ordering))
50
+ end
51
+ end
52
+ end
@@ -0,0 +1,54 @@
1
+ module Polars
2
+ # Series.cat namespace.
3
+ class CatNameSpace
4
+ include ExprDispatch
5
+
6
+ self._accessor = "cat"
7
+
8
+ # @private
9
+ def initialize(series)
10
+ self._s = series._s
11
+ end
12
+
13
+ # Determine how this categorical series should be sorted.
14
+ #
15
+ # @param ordering ["physical", "lexical"]
16
+ # Ordering type:
17
+ #
18
+ # - 'physical' -> Use the physical representation of the categories to
19
+ # determine the order (default).
20
+ # - 'lexical' -> Use the string values to determine the ordering.
21
+ #
22
+ # @return [Series]
23
+ #
24
+ # @example
25
+ # df = Polars::DataFrame.new(
26
+ # {"cats" => ["z", "z", "k", "a", "b"], "vals" => [3, 1, 2, 2, 3]}
27
+ # ).with_columns(
28
+ # [
29
+ # Polars.col("cats").cast(:cat).cat.set_ordering("lexical")
30
+ # ]
31
+ # )
32
+ # df.sort(["cats", "vals"])
33
+ # # =>
34
+ # # shape: (5, 2)
35
+ # # ┌──────┬──────┐
36
+ # # │ cats ┆ vals │
37
+ # # │ --- ┆ --- │
38
+ # # │ cat ┆ i64 │
39
+ # # ╞══════╪══════╡
40
+ # # │ a ┆ 2 │
41
+ # # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
42
+ # # │ b ┆ 3 │
43
+ # # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
44
+ # # │ k ┆ 2 │
45
+ # # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
46
+ # # │ z ┆ 1 │
47
+ # # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
48
+ # # │ z ┆ 3 │
49
+ # # └──────┴──────┘
50
+ def set_ordering(ordering)
51
+ super
52
+ end
53
+ end
54
+ end
@@ -0,0 +1,100 @@
1
+ module Polars
2
+ module Convert
3
+ # Construct a DataFrame from a dictionary of sequences.
4
+ #
5
+ # This operation clones data, unless you pass in a `Hash<String, Series>`.
6
+ #
7
+ # @param data [Hash]
8
+ # Two-dimensional data represented as a hash. Hash must contain
9
+ # arrays.
10
+ # @param columns [Array]
11
+ # Column labels to use for resulting DataFrame. If specified, overrides any
12
+ # labels already present in the data. Must match data dimensions.
13
+ #
14
+ # @return [DataFrame]
15
+ #
16
+ # @example
17
+ # data = {"a" => [1, 2], "b" => [3, 4]}
18
+ # Polars.from_hash(data)
19
+ # # =>
20
+ # # shape: (2, 2)
21
+ # # ┌─────┬─────┐
22
+ # # │ a ┆ b │
23
+ # # │ --- ┆ --- │
24
+ # # │ i64 ┆ i64 │
25
+ # # ╞═════╪═════╡
26
+ # # │ 1 ┆ 3 │
27
+ # # ├╌╌╌╌╌┼╌╌╌╌╌┤
28
+ # # │ 2 ┆ 4 │
29
+ # # └─────┴─────┘
30
+ def from_hash(data, columns: nil)
31
+ DataFrame._from_hash(data, columns: columns)
32
+ end
33
+
34
+ # Construct a DataFrame from a sequence of dictionaries. This operation clones data.
35
+ #
36
+ # @param hashes [Array]
37
+ # Array with hashes mapping column name to value.
38
+ # @param infer_schema_length [Integer]
39
+ # How many hashes/rows to scan to determine the data types
40
+ # if set to `nil` all rows are scanned. This will be slow.
41
+ # @param schema [Object]
42
+ # Schema that (partially) overwrites the inferred schema.
43
+ #
44
+ # @return [DataFrame]
45
+ #
46
+ # @example
47
+ # data = [{"a" => 1, "b" => 4}, {"a" => 2, "b" => 5}, {"a" => 3, "b" => 6}]
48
+ # Polars.from_hashes(data)
49
+ # # =>
50
+ # # shape: (3, 2)
51
+ # # ┌─────┬─────┐
52
+ # # │ a ┆ b │
53
+ # # │ --- ┆ --- │
54
+ # # │ i64 ┆ i64 │
55
+ # # ╞═════╪═════╡
56
+ # # │ 1 ┆ 4 │
57
+ # # ├╌╌╌╌╌┼╌╌╌╌╌┤
58
+ # # │ 2 ┆ 5 │
59
+ # # ├╌╌╌╌╌┼╌╌╌╌╌┤
60
+ # # │ 3 ┆ 6 │
61
+ # # └─────┴─────┘
62
+ #
63
+ # @example Overwrite first column name and dtype
64
+ # Polars.from_hashes(data, schema: {"c" => :i32})
65
+ # # =>
66
+ # # shape: (3, 2)
67
+ # # ┌─────┬─────┐
68
+ # # │ c ┆ b │
69
+ # # │ --- ┆ --- │
70
+ # # │ i32 ┆ i64 │
71
+ # # ╞═════╪═════╡
72
+ # # │ 1 ┆ 4 │
73
+ # # ├╌╌╌╌╌┼╌╌╌╌╌┤
74
+ # # │ 2 ┆ 5 │
75
+ # # ├╌╌╌╌╌┼╌╌╌╌╌┤
76
+ # # │ 3 ┆ 6 │
77
+ # # └─────┴─────┘
78
+ #
79
+ # @example Let polars infer the dtypes but inform about a 3rd column
80
+ # Polars.from_hashes(data, schema: {"a" => :unknown, "b" => :unknown, "c" => :i32})
81
+ # # shape: (3, 3)
82
+ # # ┌─────┬─────┬──────┐
83
+ # # │ a ┆ b ┆ c │
84
+ # # │ --- ┆ --- ┆ --- │
85
+ # # │ i64 ┆ i64 ┆ i32 │
86
+ # # ╞═════╪═════╪══════╡
87
+ # # │ 1 ┆ 4 ┆ null │
88
+ # # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┤
89
+ # # │ 2 ┆ 5 ┆ null │
90
+ # # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┤
91
+ # # │ 3 ┆ 6 ┆ null │
92
+ # # └─────┴─────┴──────┘
93
+ # def from_hashes(hashes, infer_schema_length: 50, schema: nil)
94
+ # DataFrame._from_hashes(hashes, infer_schema_length: infer_schema_length, schema: schema)
95
+ # end
96
+
97
+ # def from_records
98
+ # end
99
+ end
100
+ end