polars-df 0.14.0-x64-mingw-ucrt → 0.16.0-x64-mingw-ucrt

Sign up to get free protection for your applications and to get access to all the features.
Files changed (45) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +35 -0
  3. data/Cargo.lock +1523 -378
  4. data/LICENSE-THIRD-PARTY.txt +24369 -14580
  5. data/LICENSE.txt +1 -0
  6. data/README.md +38 -4
  7. data/lib/polars/3.2/polars.so +0 -0
  8. data/lib/polars/3.3/polars.so +0 -0
  9. data/lib/polars/{3.1 → 3.4}/polars.so +0 -0
  10. data/lib/polars/batched_csv_reader.rb +0 -2
  11. data/lib/polars/binary_expr.rb +133 -9
  12. data/lib/polars/binary_name_space.rb +101 -6
  13. data/lib/polars/config.rb +4 -0
  14. data/lib/polars/data_frame.rb +452 -101
  15. data/lib/polars/data_type_group.rb +28 -0
  16. data/lib/polars/data_types.rb +3 -1
  17. data/lib/polars/date_time_expr.rb +244 -0
  18. data/lib/polars/date_time_name_space.rb +87 -0
  19. data/lib/polars/expr.rb +103 -2
  20. data/lib/polars/functions/aggregation/horizontal.rb +10 -4
  21. data/lib/polars/functions/as_datatype.rb +51 -2
  22. data/lib/polars/functions/col.rb +1 -1
  23. data/lib/polars/functions/eager.rb +1 -3
  24. data/lib/polars/functions/lazy.rb +95 -13
  25. data/lib/polars/functions/range/time_range.rb +21 -21
  26. data/lib/polars/io/csv.rb +14 -16
  27. data/lib/polars/io/database.rb +2 -2
  28. data/lib/polars/io/delta.rb +126 -0
  29. data/lib/polars/io/ipc.rb +14 -4
  30. data/lib/polars/io/ndjson.rb +10 -0
  31. data/lib/polars/io/parquet.rb +168 -111
  32. data/lib/polars/lazy_frame.rb +684 -20
  33. data/lib/polars/list_name_space.rb +169 -0
  34. data/lib/polars/selectors.rb +1226 -0
  35. data/lib/polars/series.rb +465 -35
  36. data/lib/polars/string_cache.rb +27 -1
  37. data/lib/polars/string_expr.rb +0 -1
  38. data/lib/polars/string_name_space.rb +73 -3
  39. data/lib/polars/struct_name_space.rb +31 -7
  40. data/lib/polars/utils/various.rb +5 -1
  41. data/lib/polars/utils.rb +45 -10
  42. data/lib/polars/version.rb +1 -1
  43. data/lib/polars.rb +17 -1
  44. metadata +9 -8
  45. data/lib/polars/functions.rb +0 -57
@@ -0,0 +1,1226 @@
1
+ module Polars
2
+ module Selectors
3
+ # @private
4
+ class SelectorProxy < Expr
5
+ attr_accessor :_attrs
6
+ attr_accessor :_repr_override
7
+
8
+ def initialize(
9
+ expr,
10
+ name:,
11
+ parameters: nil
12
+ )
13
+ self._rbexpr = expr._rbexpr
14
+ self._attrs = {
15
+ name: name,
16
+ params: parameters
17
+ }
18
+ end
19
+
20
+ def inspect
21
+ if !_attrs
22
+ as_expr.inspect
23
+ elsif _repr_override
24
+ _repr_override
25
+ else
26
+ selector_name = _attrs[:name]
27
+ params = _attrs[:params] || {}
28
+ set_ops = {"and" => "&", "or" => "|", "sub" => "-", "xor" => "^"}
29
+ if set_ops.include?(selector_name)
30
+ op = set_ops[selector_name]
31
+ "(#{params.values.map(&:inspect).join(" #{op} ")})"
32
+ else
33
+ str_params = params.map { |k, v| k.start_with?("*") ? v.inspect[1..-2] : "#{k}=#{v.inspect}" }.join(", ")
34
+ "Polars.cs.#{selector_name}(#{str_params})"
35
+ end
36
+ end
37
+ end
38
+
39
+ def ~
40
+ if Utils.is_selector(self)
41
+ inverted = Selectors.all - self
42
+ inverted._repr_override = "~#{inspect}"
43
+ else
44
+ inverted = ~as_expr
45
+ end
46
+ inverted
47
+ end
48
+
49
+ def -(other)
50
+ if Utils.is_selector(other)
51
+ SelectorProxy.new(
52
+ meta._as_selector.meta._selector_sub(other),
53
+ parameters: {"self" => self, "other" => other},
54
+ name: "sub"
55
+ )
56
+ else
57
+ as_expr - other
58
+ end
59
+ end
60
+
61
+ def &(other)
62
+ if Utils.is_column(other)
63
+ raise Todo
64
+ end
65
+ if Utils.is_selector(other)
66
+ SelectorProxy.new(
67
+ meta._as_selector.meta._selector_and(other),
68
+ parameters: {"self" => self, "other" => other},
69
+ name: "and"
70
+ )
71
+ else
72
+ as_expr & other
73
+ end
74
+ end
75
+
76
+ def |(other)
77
+ if Utils.is_column(other)
78
+ raise Todo
79
+ end
80
+ if Utils.is_selector(other)
81
+ SelectorProxy.new(
82
+ meta._as_selector.meta._selector_and(other),
83
+ parameters: {"self" => self, "other" => other},
84
+ name: "or"
85
+ )
86
+ else
87
+ as_expr | other
88
+ end
89
+ end
90
+
91
+ def ^(other)
92
+ if Utils.is_column(other)
93
+ raise Todo
94
+ end
95
+ if Utils.is_selector(other)
96
+ SelectorProxy.new(
97
+ meta._as_selector.meta._selector_and(other),
98
+ parameters: {"self" => self, "other" => other},
99
+ name: "xor"
100
+ )
101
+ else
102
+ as_expr ^ other
103
+ end
104
+ end
105
+
106
+ def as_expr
107
+ Expr._from_rbexpr(_rbexpr)
108
+ end
109
+ end
110
+
111
+ # @private
112
+ def self._selector_proxy_(...)
113
+ SelectorProxy.new(...)
114
+ end
115
+
116
+ # @private
117
+ def self._re_string(string, escape: true)
118
+ if string.is_a?(::String)
119
+ rx = escape ? Utils.re_escape(string) : string
120
+ else
121
+ strings = []
122
+ string.each do |st|
123
+ if st.is_a?(Array)
124
+ strings.concat(st)
125
+ else
126
+ strings << st
127
+ end
128
+ end
129
+ rx = strings.map { |x| escape ? Utils.re_escape(x) : x }.join("|")
130
+ end
131
+ "(#{rx})"
132
+ end
133
+
134
+ # Select all columns.
135
+ #
136
+ # @return [SelectorProxy]
137
+ #
138
+ # @example
139
+ # df = Polars::DataFrame.new(
140
+ # {
141
+ # "dt" => [Date.new(1999, 12, 31), Date.new(2024, 1, 1)],
142
+ # "value" => [1_234_500, 5_000_555]
143
+ # },
144
+ # schema_overrides: {"value" => Polars::Int32}
145
+ # )
146
+ #
147
+ # @example Select all columns, casting them to string:
148
+ # df.select(Polars.cs.all.cast(Polars::String))
149
+ # # =>
150
+ # # shape: (2, 2)
151
+ # # ┌────────────┬─────────┐
152
+ # # │ dt ┆ value │
153
+ # # │ --- ┆ --- │
154
+ # # │ str ┆ str │
155
+ # # ╞════════════╪═════════╡
156
+ # # │ 1999-12-31 ┆ 1234500 │
157
+ # # │ 2024-01-01 ┆ 5000555 │
158
+ # # └────────────┴─────────┘
159
+ #
160
+ # @example Select all columns *except* for those matching the given dtypes:
161
+ # df.select(Polars.cs.all - Polars.cs.numeric)
162
+ # # =>
163
+ # # shape: (2, 1)
164
+ # # ┌────────────┐
165
+ # # │ dt │
166
+ # # │ --- │
167
+ # # │ date │
168
+ # # ╞════════════╡
169
+ # # │ 1999-12-31 │
170
+ # # │ 2024-01-01 │
171
+ # # └────────────┘
172
+ def self.all
173
+ _selector_proxy_(F.all, name: "all")
174
+ end
175
+
176
+ # Select all columns with alphabetic names (eg: only letters).
177
+ #
178
+ # @param ascii_only [Boolean]
179
+ # Indicate whether to consider only ASCII alphabetic characters, or the full
180
+ # Unicode range of valid letters (accented, idiographic, etc).
181
+ # @param ignore_spaces [Boolean]
182
+ # Indicate whether to ignore the presence of spaces in column names; if so,
183
+ # only the other (non-space) characters are considered.
184
+ #
185
+ # @return [SelectorProxy]
186
+ #
187
+ # @note
188
+ # Matching column names cannot contain *any* non-alphabetic characters. Note
189
+ # that the definition of "alphabetic" consists of all valid Unicode alphabetic
190
+ # characters (`\p{Alphabetic}`) by default; this can be changed by setting
191
+ # `ascii_only: true`.
192
+ #
193
+ # @example
194
+ # df = Polars::DataFrame.new(
195
+ # {
196
+ # "no1" => [100, 200, 300],
197
+ # "café" => ["espresso", "latte", "mocha"],
198
+ # "t or f" => [true, false, nil],
199
+ # "hmm" => ["aaa", "bbb", "ccc"],
200
+ # "都市" => ["東京", "大阪", "京都"]
201
+ # }
202
+ # )
203
+ #
204
+ # @example Select columns with alphabetic names; note that accented characters and kanji are recognised as alphabetic here:
205
+ # df.select(Polars.cs.alpha)
206
+ # # =>
207
+ # # shape: (3, 3)
208
+ # # ┌──────────┬─────┬──────┐
209
+ # # │ café ┆ hmm ┆ 都市 │
210
+ # # │ --- ┆ --- ┆ --- │
211
+ # # │ str ┆ str ┆ str │
212
+ # # ╞══════════╪═════╪══════╡
213
+ # # │ espresso ┆ aaa ┆ 東京 │
214
+ # # │ latte ┆ bbb ┆ 大阪 │
215
+ # # │ mocha ┆ ccc ┆ 京都 │
216
+ # # └──────────┴─────┴──────┘
217
+ #
218
+ # @example Constrain the definition of "alphabetic" to ASCII characters only:
219
+ # df.select(Polars.cs.alpha(ascii_only: true))
220
+ # # =>
221
+ # # shape: (3, 1)
222
+ # # ┌─────┐
223
+ # # │ hmm │
224
+ # # │ --- │
225
+ # # │ str │
226
+ # # ╞═════╡
227
+ # # │ aaa │
228
+ # # │ bbb │
229
+ # # │ ccc │
230
+ # # └─────┘
231
+ #
232
+ # @example
233
+ # df.select(Polars.cs.alpha(ascii_only: true, ignore_spaces: true))
234
+ # # =>
235
+ # # shape: (3, 2)
236
+ # # ┌────────┬─────┐
237
+ # # │ t or f ┆ hmm │
238
+ # # │ --- ┆ --- │
239
+ # # │ bool ┆ str │
240
+ # # ╞════════╪═════╡
241
+ # # │ true ┆ aaa │
242
+ # # │ false ┆ bbb │
243
+ # # │ null ┆ ccc │
244
+ # # └────────┴─────┘
245
+ #
246
+ # @example Select all columns *except* for those with alphabetic names:
247
+ # df.select(~Polars.cs.alpha)
248
+ # # =>
249
+ # # shape: (3, 2)
250
+ # # ┌─────┬────────┐
251
+ # # │ no1 ┆ t or f │
252
+ # # │ --- ┆ --- │
253
+ # # │ i64 ┆ bool │
254
+ # # ╞═════╪════════╡
255
+ # # │ 100 ┆ true │
256
+ # # │ 200 ┆ false │
257
+ # # │ 300 ┆ null │
258
+ # # └─────┴────────┘
259
+ #
260
+ # @example
261
+ # df.select(~Polars.cs.alpha(ignore_spaces: true))
262
+ # # =>
263
+ # # shape: (3, 1)
264
+ # # ┌─────┐
265
+ # # │ no1 │
266
+ # # │ --- │
267
+ # # │ i64 │
268
+ # # ╞═════╡
269
+ # # │ 100 │
270
+ # # │ 200 │
271
+ # # │ 300 │
272
+ # # └─────┘
273
+ def self.alpha(ascii_only: false, ignore_spaces: false)
274
+ # note that we need to supply a pattern compatible with the *rust* regex crate
275
+ re_alpha = ascii_only ? "a-zA-Z" : "\\p{Alphabetic}"
276
+ re_space = ignore_spaces ? " " : ""
277
+ _selector_proxy_(
278
+ F.col("^[#{re_alpha}#{re_space}]+$"),
279
+ name: "alpha",
280
+ parameters: {"ascii_only" => ascii_only, "ignore_spaces" => ignore_spaces},
281
+ )
282
+ end
283
+
284
+ # TODO
285
+ # def alphanumeric
286
+ # end
287
+
288
+ # Select all binary columns.
289
+ #
290
+ # @return [SelectorProxy]
291
+ #
292
+ # @example
293
+ # df = Polars::DataFrame.new({"a" => ["hello".b], "b" => ["world"], "c" => ["!".b], "d" => [":)"]})
294
+ # # =>
295
+ # # shape: (1, 4)
296
+ # # ┌──────────┬───────┬────────┬─────┐
297
+ # # │ a ┆ b ┆ c ┆ d │
298
+ # # │ --- ┆ --- ┆ --- ┆ --- │
299
+ # # │ binary ┆ str ┆ binary ┆ str │
300
+ # # ╞══════════╪═══════╪════════╪═════╡
301
+ # # │ b"hello" ┆ world ┆ b"!" ┆ :) │
302
+ # # └──────────┴───────┴────────┴─────┘
303
+ #
304
+ # @example Select binary columns and export as a dict:
305
+ # df.select(Polars.cs.binary).to_h(as_series: false)
306
+ # # => {"a"=>["hello"], "c"=>["!"]}
307
+ #
308
+ # @example Select all columns *except* for those that are binary:
309
+ # df.select(~Polars.cs.binary).to_h(as_series: false)
310
+ # # => {"b"=>["world"], "d"=>[":)"]}
311
+ def self.binary
312
+ _selector_proxy_(F.col(Binary), name: "binary")
313
+ end
314
+
315
+ # Select all boolean columns.
316
+ #
317
+ # @return [SelectorProxy]
318
+ #
319
+ # @example
320
+ # df = Polars::DataFrame.new({"n" => 1..4}).with_columns(n_even: Polars.col("n") % 2 == 0)
321
+ # # =>
322
+ # # shape: (4, 2)
323
+ # # ┌─────┬────────┐
324
+ # # │ n ┆ n_even │
325
+ # # │ --- ┆ --- │
326
+ # # │ i64 ┆ bool │
327
+ # # ╞═════╪════════╡
328
+ # # │ 1 ┆ false │
329
+ # # │ 2 ┆ true │
330
+ # # │ 3 ┆ false │
331
+ # # │ 4 ┆ true │
332
+ # # └─────┴────────┘
333
+ #
334
+ # @example Select and invert boolean columns:
335
+ # df.with_columns(is_odd: Polars.cs.boolean.not_)
336
+ # # =>
337
+ # # shape: (4, 3)
338
+ # # ┌─────┬────────┬────────┐
339
+ # # │ n ┆ n_even ┆ is_odd │
340
+ # # │ --- ┆ --- ┆ --- │
341
+ # # │ i64 ┆ bool ┆ bool │
342
+ # # ╞═════╪════════╪════════╡
343
+ # # │ 1 ┆ false ┆ true │
344
+ # # │ 2 ┆ true ┆ false │
345
+ # # │ 3 ┆ false ┆ true │
346
+ # # │ 4 ┆ true ┆ false │
347
+ # # └─────┴────────┴────────┘
348
+ #
349
+ # @example Select all columns *except* for those that are boolean:
350
+ # df.select(~Polars.cs.boolean)
351
+ # # =>
352
+ # # shape: (4, 1)
353
+ # # ┌─────┐
354
+ # # │ n │
355
+ # # │ --- │
356
+ # # │ i64 │
357
+ # # ╞═════╡
358
+ # # │ 1 │
359
+ # # │ 2 │
360
+ # # │ 3 │
361
+ # # │ 4 │
362
+ # # └─────┘
363
+ def self.boolean
364
+ _selector_proxy_(F.col(Boolean), name: "boolean")
365
+ end
366
+
367
+ # TODO
368
+ # def by_dtype
369
+ # end
370
+
371
+ # TODO
372
+ # def by_index
373
+ # end
374
+
375
+ # Select all columns matching the given names.
376
+ #
377
+ # @param names [Array]
378
+ # One or more names of columns to select.
379
+ # @param require_all [Boolean]
380
+ # Whether to match *all* names (the default) or *any* of the names.
381
+ #
382
+ # @return [SelectorProxy]
383
+ #
384
+ # @note
385
+ # Matching columns are returned in the order in which they are declared in
386
+ # the selector, not the underlying schema order.
387
+ #
388
+ # @example
389
+ # df = Polars::DataFrame.new(
390
+ # {
391
+ # "foo" => ["x", "y"],
392
+ # "bar" => [123, 456],
393
+ # "baz" => [2.0, 5.5],
394
+ # "zap" => [false, true]
395
+ # }
396
+ # )
397
+ #
398
+ # @example Select columns by name:
399
+ # df.select(Polars.cs.by_name("foo", "bar"))
400
+ # # =>
401
+ # # shape: (2, 2)
402
+ # # ┌─────┬─────┐
403
+ # # │ foo ┆ bar │
404
+ # # │ --- ┆ --- │
405
+ # # │ str ┆ i64 │
406
+ # # ╞═════╪═════╡
407
+ # # │ x ┆ 123 │
408
+ # # │ y ┆ 456 │
409
+ # # └─────┴─────┘
410
+ #
411
+ # @example Match *any* of the given columns by name:
412
+ # df.select(Polars.cs.by_name("baz", "moose", "foo", "bear", require_all: false))
413
+ # # =>
414
+ # # shape: (2, 2)
415
+ # # ┌─────┬─────┐
416
+ # # │ foo ┆ baz │
417
+ # # │ --- ┆ --- │
418
+ # # │ str ┆ f64 │
419
+ # # ╞═════╪═════╡
420
+ # # │ x ┆ 2.0 │
421
+ # # │ y ┆ 5.5 │
422
+ # # └─────┴─────┘
423
+ #
424
+ # @example Match all columns *except* for those given:
425
+ # df.select(~Polars.cs.by_name("foo", "bar"))
426
+ # # =>
427
+ # # shape: (2, 2)
428
+ # # ┌─────┬───────┐
429
+ # # │ baz ┆ zap │
430
+ # # │ --- ┆ --- │
431
+ # # │ f64 ┆ bool │
432
+ # # ╞═════╪═══════╡
433
+ # # │ 2.0 ┆ false │
434
+ # # │ 5.5 ┆ true │
435
+ # # └─────┴───────┘
436
+ def self.by_name(*names, require_all: true)
437
+ all_names = []
438
+ names.each do |nm|
439
+ if nm.is_a?(::String)
440
+ all_names << nm
441
+ else
442
+ msg = "invalid name: #{nm.inspect}"
443
+ raise TypeError, msg
444
+ end
445
+ end
446
+
447
+ selector_params = {"*names" => all_names}
448
+ match_cols = all_names
449
+ if !require_all
450
+ match_cols = "^(#{all_names.map { |nm| Utils.re_escape(nm) }.join("|")})$"
451
+ selector_params["require_all"] = require_all
452
+ end
453
+
454
+ _selector_proxy_(
455
+ F.col(match_cols),
456
+ name: "by_name",
457
+ parameters: selector_params
458
+ )
459
+ end
460
+
461
+ # Select all categorical columns.
462
+ #
463
+ # @return [SelectorProxy]
464
+ #
465
+ # @example
466
+ # df = Polars::DataFrame.new(
467
+ # {
468
+ # "foo" => ["xx", "yy"],
469
+ # "bar" => [123, 456],
470
+ # "baz" => [2.0, 5.5]
471
+ # },
472
+ # schema_overrides: {"foo" => Polars::Categorical}
473
+ # )
474
+ #
475
+ # @example Select all categorical columns:
476
+ # df.select(Polars.cs.categorical)
477
+ # # =>
478
+ # # shape: (2, 1)
479
+ # # ┌─────┐
480
+ # # │ foo │
481
+ # # │ --- │
482
+ # # │ cat │
483
+ # # ╞═════╡
484
+ # # │ xx │
485
+ # # │ yy │
486
+ # # └─────┘
487
+ #
488
+ # @example Select all columns *except* for those that are categorical:
489
+ # df.select(~Polars.cs.categorical)
490
+ # # =>
491
+ # # shape: (2, 2)
492
+ # # ┌─────┬─────┐
493
+ # # │ bar ┆ baz │
494
+ # # │ --- ┆ --- │
495
+ # # │ i64 ┆ f64 │
496
+ # # ╞═════╪═════╡
497
+ # # │ 123 ┆ 2.0 │
498
+ # # │ 456 ┆ 5.5 │
499
+ # # └─────┴─────┘
500
+ def self.categorical
501
+ _selector_proxy_(F.col(Categorical), name: "categorical")
502
+ end
503
+
504
+ # Select columns whose names contain the given literal substring(s).
505
+ #
506
+ # @param substring [Object]
507
+ # Substring(s) that matching column names should contain.
508
+ #
509
+ # @return [SelectorProxy]
510
+ #
511
+ # @example
512
+ # df = Polars::DataFrame.new(
513
+ # {
514
+ # "foo" => ["x", "y"],
515
+ # "bar" => [123, 456],
516
+ # "baz" => [2.0, 5.5],
517
+ # "zap" => [false, true]
518
+ # }
519
+ # )
520
+ #
521
+ # @example Select columns that contain the substring 'ba':
522
+ # df.select(Polars.cs.contains("ba"))
523
+ # # =>
524
+ # # shape: (2, 2)
525
+ # # ┌─────┬─────┐
526
+ # # │ bar ┆ baz │
527
+ # # │ --- ┆ --- │
528
+ # # │ i64 ┆ f64 │
529
+ # # ╞═════╪═════╡
530
+ # # │ 123 ┆ 2.0 │
531
+ # # │ 456 ┆ 5.5 │
532
+ # # └─────┴─────┘
533
+ #
534
+ # @example Select columns that contain the substring 'ba' or the letter 'z':
535
+ # df.select(Polars.cs.contains("ba", "z"))
536
+ # # =>
537
+ # # shape: (2, 3)
538
+ # # ┌─────┬─────┬───────┐
539
+ # # │ bar ┆ baz ┆ zap │
540
+ # # │ --- ┆ --- ┆ --- │
541
+ # # │ i64 ┆ f64 ┆ bool │
542
+ # # ╞═════╪═════╪═══════╡
543
+ # # │ 123 ┆ 2.0 ┆ false │
544
+ # # │ 456 ┆ 5.5 ┆ true │
545
+ # # └─────┴─────┴───────┘
546
+ #
547
+ # @example Select all columns *except* for those that contain the substring 'ba':
548
+ # df.select(~Polars.cs.contains("ba"))
549
+ # # =>
550
+ # # shape: (2, 2)
551
+ # # ┌─────┬───────┐
552
+ # # │ foo ┆ zap │
553
+ # # │ --- ┆ --- │
554
+ # # │ str ┆ bool │
555
+ # # ╞═════╪═══════╡
556
+ # # │ x ┆ false │
557
+ # # │ y ┆ true │
558
+ # # └─────┴───────┘
559
+ def self.contains(*substring)
560
+ escaped_substring = _re_string(substring)
561
+ raw_params = "^.*#{escaped_substring}.*$"
562
+
563
+ _selector_proxy_(
564
+ F.col(raw_params),
565
+ name: "contains",
566
+ parameters: {"*substring" => escaped_substring}
567
+ )
568
+ end
569
+
570
+ # Select all date columns.
571
+ #
572
+ # @return [SelectorProxy]
573
+ #
574
+ # @example
575
+ # df = Polars::DataFrame.new(
576
+ # {
577
+ # "dtm" => [DateTime.new(2001, 5, 7, 10, 25), DateTime.new(2031, 12, 31, 0, 30)],
578
+ # "dt" => [Date.new(1999, 12, 31), Date.new(2024, 8, 9)]
579
+ # }
580
+ # )
581
+ #
582
+ # @example Select all date columns:
583
+ # df.select(Polars.cs.date)
584
+ # # =>
585
+ # # shape: (2, 1)
586
+ # # ┌────────────┐
587
+ # # │ dt │
588
+ # # │ --- │
589
+ # # │ date │
590
+ # # ╞════════════╡
591
+ # # │ 1999-12-31 │
592
+ # # │ 2024-08-09 │
593
+ # # └────────────┘
594
+ #
595
+ # @example Select all columns *except* for those that are dates:
596
+ # df.select(~Polars.cs.date)
597
+ # # =>
598
+ # # shape: (2, 1)
599
+ # # ┌─────────────────────┐
600
+ # # │ dtm │
601
+ # # │ --- │
602
+ # # │ datetime[ns] │
603
+ # # ╞═════════════════════╡
604
+ # # │ 2001-05-07 10:25:00 │
605
+ # # │ 2031-12-31 00:30:00 │
606
+ # # └─────────────────────┘
607
+ def self.date
608
+ _selector_proxy_(F.col(Date), name: "date")
609
+ end
610
+
611
+ # TODO
612
+ # def datetime
613
+ # end
614
+
615
+ # Select all decimal columns.
616
+ #
617
+ # @return [SelectorProxy]
618
+ #
619
+ # @example
620
+ # df = Polars::DataFrame.new(
621
+ # {
622
+ # "foo" => ["x", "y"],
623
+ # "bar" => [BigDecimal("123"), BigDecimal("456")],
624
+ # "baz" => [BigDecimal("2.0005"), BigDecimal("-50.5555")],
625
+ # },
626
+ # schema_overrides: {"baz" => Polars::Decimal.new(10, 5)}
627
+ # )
628
+ #
629
+ # @example Select all decimal columns:
630
+ # df.select(Polars.cs.decimal)
631
+ # # =>
632
+ # # shape: (2, 2)
633
+ # # ┌──────────────┬───────────────┐
634
+ # # │ bar ┆ baz │
635
+ # # │ --- ┆ --- │
636
+ # # │ decimal[*,0] ┆ decimal[10,5] │
637
+ # # ╞══════════════╪═══════════════╡
638
+ # # │ 123 ┆ 2.00050 │
639
+ # # │ 456 ┆ -50.55550 │
640
+ # # └──────────────┴───────────────┘
641
+ #
642
+ # @example Select all columns *except* the decimal ones:
643
+ #
644
+ # df.select(~Polars.cs.decimal)
645
+ # # =>
646
+ # # shape: (2, 1)
647
+ # # ┌─────┐
648
+ # # │ foo │
649
+ # # │ --- │
650
+ # # │ str │
651
+ # # ╞═════╡
652
+ # # │ x │
653
+ # # │ y │
654
+ # # └─────┘
655
+ def self.decimal
656
+ # TODO: allow explicit selection by scale/precision?
657
+ _selector_proxy_(F.col(Decimal), name: "decimal")
658
+ end
659
+
660
+ # Select columns that end with the given substring(s).
661
+ #
662
+ # @param suffix [Object]
663
+ # Substring(s) that matching column names should end with.
664
+ #
665
+ # @return [SelectorProxy]
666
+ #
667
+ # @example
668
+ # df = Polars::DataFrame.new(
669
+ # {
670
+ # "foo" => ["x", "y"],
671
+ # "bar" => [123, 456],
672
+ # "baz" => [2.0, 5.5],
673
+ # "zap" => [false, true]
674
+ # }
675
+ # )
676
+ #
677
+ # @example Select columns that end with the substring 'z':
678
+ # df.select(Polars.cs.ends_with("z"))
679
+ # # =>
680
+ # # shape: (2, 1)
681
+ # # ┌─────┐
682
+ # # │ baz │
683
+ # # │ --- │
684
+ # # │ f64 │
685
+ # # ╞═════╡
686
+ # # │ 2.0 │
687
+ # # │ 5.5 │
688
+ # # └─────┘
689
+ #
690
+ # @example Select columns that end with *either* the letter 'z' or 'r':
691
+ # df.select(Polars.cs.ends_with("z", "r"))
692
+ # # =>
693
+ # # shape: (2, 2)
694
+ # # ┌─────┬─────┐
695
+ # # │ bar ┆ baz │
696
+ # # │ --- ┆ --- │
697
+ # # │ i64 ┆ f64 │
698
+ # # ╞═════╪═════╡
699
+ # # │ 123 ┆ 2.0 │
700
+ # # │ 456 ┆ 5.5 │
701
+ # # └─────┴─────┘
702
+ #
703
+ # @example Select all columns *except* for those that end with the substring 'z':
704
+ # df.select(~Polars.cs.ends_with("z"))
705
+ # # =>
706
+ # # shape: (2, 3)
707
+ # # ┌─────┬─────┬───────┐
708
+ # # │ foo ┆ bar ┆ zap │
709
+ # # │ --- ┆ --- ┆ --- │
710
+ # # │ str ┆ i64 ┆ bool │
711
+ # # ╞═════╪═════╪═══════╡
712
+ # # │ x ┆ 123 ┆ false │
713
+ # # │ y ┆ 456 ┆ true │
714
+ # # └─────┴─────┴───────┘
715
+ def self.ends_with(*suffix)
716
+ escaped_suffix = _re_string(suffix)
717
+ raw_params = "^.*#{escaped_suffix}$"
718
+
719
+ _selector_proxy_(
720
+ F.col(raw_params),
721
+ name: "ends_with",
722
+ parameters: {"*suffix" => escaped_suffix},
723
+ )
724
+ end
725
+
726
+ # Select the first column in the current scope.
727
+ #
728
+ # @return [SelectorProxy]
729
+ #
730
+ # @example
731
+ # df = Polars::DataFrame.new(
732
+ # {
733
+ # "foo" => ["x", "y"],
734
+ # "bar" => [123, 456],
735
+ # "baz" => [2.0, 5.5],
736
+ # "zap" => [0, 1]
737
+ # }
738
+ # )
739
+ #
740
+ # @example Select the first column:
741
+ # df.select(Polars.cs.first)
742
+ # # =>
743
+ # # shape: (2, 1)
744
+ # # ┌─────┐
745
+ # # │ foo │
746
+ # # │ --- │
747
+ # # │ str │
748
+ # # ╞═════╡
749
+ # # │ x │
750
+ # # │ y │
751
+ # # └─────┘
752
+ #
753
+ # @example Select everything *except* for the first column:
754
+ # df.select(~Polars.cs.first)
755
+ # # =>
756
+ # # shape: (2, 3)
757
+ # # ┌─────┬─────┬─────┐
758
+ # # │ bar ┆ baz ┆ zap │
759
+ # # │ --- ┆ --- ┆ --- │
760
+ # # │ i64 ┆ f64 ┆ i64 │
761
+ # # ╞═════╪═════╪═════╡
762
+ # # │ 123 ┆ 2.0 ┆ 0 │
763
+ # # │ 456 ┆ 5.5 ┆ 1 │
764
+ # # └─────┴─────┴─────┘
765
+ def self.first
766
+ _selector_proxy_(F.first, name: "first")
767
+ end
768
+
769
+ # Select all float columns.
770
+ #
771
+ # @return [SelectorProxy]
772
+ #
773
+ # @example
774
+ # df = Polars::DataFrame.new(
775
+ # {
776
+ # "foo" => ["x", "y"],
777
+ # "bar" => [123, 456],
778
+ # "baz" => [2.0, 5.5],
779
+ # "zap" => [0.0, 1.0]
780
+ # },
781
+ # schema_overrides: {"baz" => Polars::Float32, "zap" => Polars::Float64}
782
+ # )
783
+ #
784
+ # @example Select all float columns:
785
+ # df.select(Polars.cs.float)
786
+ # # =>
787
+ # # shape: (2, 2)
788
+ # # ┌─────┬─────┐
789
+ # # │ baz ┆ zap │
790
+ # # │ --- ┆ --- │
791
+ # # │ f32 ┆ f64 │
792
+ # # ╞═════╪═════╡
793
+ # # │ 2.0 ┆ 0.0 │
794
+ # # │ 5.5 ┆ 1.0 │
795
+ # # └─────┴─────┘
796
+ #
797
+ # @example Select all columns *except* for those that are float:
798
+ # df.select(~Polars.cs.float)
799
+ # # =>
800
+ # # shape: (2, 2)
801
+ # # ┌─────┬─────┐
802
+ # # │ foo ┆ bar │
803
+ # # │ --- ┆ --- │
804
+ # # │ str ┆ i64 │
805
+ # # ╞═════╪═════╡
806
+ # # │ x ┆ 123 │
807
+ # # │ y ┆ 456 │
808
+ # # └─────┴─────┘
809
+ def self.float
810
+ _selector_proxy_(F.col(FLOAT_DTYPES), name: "float")
811
+ end
812
+
813
+ # Select all integer columns.
814
+ #
815
+ # @return [SelectorProxy]
816
+ #
817
+ # @example
818
+ # df = Polars::DataFrame.new(
819
+ # {
820
+ # "foo" => ["x", "y"],
821
+ # "bar" => [123, 456],
822
+ # "baz" => [2.0, 5.5],
823
+ # "zap" => [0, 1]
824
+ # }
825
+ # )
826
+ #
827
+ # @example Select all integer columns:
828
+ # df.select(Polars.cs.integer)
829
+ # # =>
830
+ # # shape: (2, 2)
831
+ # # ┌─────┬─────┐
832
+ # # │ bar ┆ zap │
833
+ # # │ --- ┆ --- │
834
+ # # │ i64 ┆ i64 │
835
+ # # ╞═════╪═════╡
836
+ # # │ 123 ┆ 0 │
837
+ # # │ 456 ┆ 1 │
838
+ # # └─────┴─────┘
839
+ #
840
+ # @example Select all columns *except* for those that are integer:
841
+ # df.select(~Polars.cs.integer)
842
+ # # =>
843
+ # # shape: (2, 2)
844
+ # # ┌─────┬─────┐
845
+ # # │ foo ┆ baz │
846
+ # # │ --- ┆ --- │
847
+ # # │ str ┆ f64 │
848
+ # # ╞═════╪═════╡
849
+ # # │ x ┆ 2.0 │
850
+ # # │ y ┆ 5.5 │
851
+ # # └─────┴─────┘
852
+ def self.integer
853
+ _selector_proxy_(F.col(INTEGER_DTYPES), name: "integer")
854
+ end
855
+
856
+ # Select all signed integer columns.
857
+ #
858
+ # @return [SelectorProxy]
859
+ #
860
+ # @example
861
+ # df = Polars::DataFrame.new(
862
+ # {
863
+ # "foo" => [-123, -456],
864
+ # "bar" => [3456, 6789],
865
+ # "baz" => [7654, 4321],
866
+ # "zap" => ["ab", "cd"]
867
+ # },
868
+ # schema_overrides: {"bar" => Polars::UInt32, "baz" => Polars::UInt64}
869
+ # )
870
+ #
871
+ # @example Select all signed integer columns:
872
+ # df.select(Polars.cs.signed_integer)
873
+ # # =>
874
+ # # shape: (2, 1)
875
+ # # ┌──────┐
876
+ # # │ foo │
877
+ # # │ --- │
878
+ # # │ i64 │
879
+ # # ╞══════╡
880
+ # # │ -123 │
881
+ # # │ -456 │
882
+ # # └──────┘
883
+ #
884
+ # @example
885
+ # df.select(~Polars.cs.signed_integer)
886
+ # # =>
887
+ # # shape: (2, 3)
888
+ # # ┌──────┬──────┬─────┐
889
+ # # │ bar ┆ baz ┆ zap │
890
+ # # │ --- ┆ --- ┆ --- │
891
+ # # │ u32 ┆ u64 ┆ str │
892
+ # # ╞══════╪══════╪═════╡
893
+ # # │ 3456 ┆ 7654 ┆ ab │
894
+ # # │ 6789 ┆ 4321 ┆ cd │
895
+ # # └──────┴──────┴─────┘
896
+ #
897
+ # @example Select all integer columns (both signed and unsigned):
898
+ # df.select(Polars.cs.integer)
899
+ # # =>
900
+ # # shape: (2, 3)
901
+ # # ┌──────┬──────┬──────┐
902
+ # # │ foo ┆ bar ┆ baz │
903
+ # # │ --- ┆ --- ┆ --- │
904
+ # # │ i64 ┆ u32 ┆ u64 │
905
+ # # ╞══════╪══════╪══════╡
906
+ # # │ -123 ┆ 3456 ┆ 7654 │
907
+ # # │ -456 ┆ 6789 ┆ 4321 │
908
+ # # └──────┴──────┴──────┘
909
+ def self.signed_integer
910
+ _selector_proxy_(F.col(SIGNED_INTEGER_DTYPES), name: "signed_integer")
911
+ end
912
+
913
+ # Select all unsigned integer columns.
914
+ #
915
+ # @return [SelectorProxy]
916
+ #
917
+ # @example
918
+ # df = Polars::DataFrame.new(
919
+ # {
920
+ # "foo" => [-123, -456],
921
+ # "bar" => [3456, 6789],
922
+ # "baz" => [7654, 4321],
923
+ # "zap" => ["ab", "cd"]
924
+ # },
925
+ # schema_overrides: {"bar" => Polars::UInt32, "baz" => Polars::UInt64}
926
+ # )
927
+ #
928
+ # @example Select all unsigned integer columns:
929
+ # df.select(Polars.cs.unsigned_integer)
930
+ # # =>
931
+ # # shape: (2, 2)
932
+ # # ┌──────┬──────┐
933
+ # # │ bar ┆ baz │
934
+ # # │ --- ┆ --- │
935
+ # # │ u32 ┆ u64 │
936
+ # # ╞══════╪══════╡
937
+ # # │ 3456 ┆ 7654 │
938
+ # # │ 6789 ┆ 4321 │
939
+ # # └──────┴──────┘
940
+ #
941
+ # @example Select all columns *except* for those that are unsigned integers:
942
+ # df.select(~Polars.cs.unsigned_integer)
943
+ # # =>
944
+ # # shape: (2, 2)
945
+ # # ┌──────┬─────┐
946
+ # # │ foo ┆ zap │
947
+ # # │ --- ┆ --- │
948
+ # # │ i64 ┆ str │
949
+ # # ╞══════╪═════╡
950
+ # # │ -123 ┆ ab │
951
+ # # │ -456 ┆ cd │
952
+ # # └──────┴─────┘
953
+ #
954
+ # @example Select all integer columns (both signed and unsigned):
955
+ # df.select(Polars.cs.integer)
956
+ # # =>
957
+ # # shape: (2, 3)
958
+ # # ┌──────┬──────┬──────┐
959
+ # # │ foo ┆ bar ┆ baz │
960
+ # # │ --- ┆ --- ┆ --- │
961
+ # # │ i64 ┆ u32 ┆ u64 │
962
+ # # ╞══════╪══════╪══════╡
963
+ # # │ -123 ┆ 3456 ┆ 7654 │
964
+ # # │ -456 ┆ 6789 ┆ 4321 │
965
+ # # └──────┴──────┴──────┘
966
+ def self.unsigned_integer
967
+ _selector_proxy_(F.col(UNSIGNED_INTEGER_DTYPES), name: "unsigned_integer")
968
+ end
969
+
970
+ # Select the last column in the current scope.
971
+ #
972
+ # @return [SelectorProxy]
973
+ #
974
+ # @example
975
+ # df = Polars::DataFrame.new(
976
+ # {
977
+ # "foo" => ["x", "y"],
978
+ # "bar" => [123, 456],
979
+ # "baz" => [2.0, 5.5],
980
+ # "zap" => [0, 1]
981
+ # }
982
+ # )
983
+ #
984
+ # @example Select the last column:
985
+ # df.select(Polars.cs.last)
986
+ # # =>
987
+ # # shape: (2, 1)
988
+ # # ┌─────┐
989
+ # # │ zap │
990
+ # # │ --- │
991
+ # # │ i64 │
992
+ # # ╞═════╡
993
+ # # │ 0 │
994
+ # # │ 1 │
995
+ # # └─────┘
996
+ #
997
+ # @example Select everything *except* for the last column:
998
+ # df.select(~Polars.cs.last)
999
+ # # =>
1000
+ # # shape: (2, 3)
1001
+ # # ┌─────┬─────┬─────┐
1002
+ # # │ foo ┆ bar ┆ baz │
1003
+ # # │ --- ┆ --- ┆ --- │
1004
+ # # │ str ┆ i64 ┆ f64 │
1005
+ # # ╞═════╪═════╪═════╡
1006
+ # # │ x ┆ 123 ┆ 2.0 │
1007
+ # # │ y ┆ 456 ┆ 5.5 │
1008
+ # # └─────┴─────┴─────┘
1009
+ def self.last
1010
+ _selector_proxy_(F.last, name: "last")
1011
+ end
1012
+
1013
+ # Select all numeric columns.
1014
+ #
1015
+ # @return [SelectorProxy]
1016
+ #
1017
+ # @example
1018
+ # df = Polars::DataFrame.new(
1019
+ # {
1020
+ # "foo" => ["x", "y"],
1021
+ # "bar" => [123, 456],
1022
+ # "baz" => [2.0, 5.5],
1023
+ # "zap" => [0, 0]
1024
+ # },
1025
+ # schema_overrides: {"bar" => Polars::Int16, "baz" => Polars::Float32, "zap" => Polars::UInt8},
1026
+ # )
1027
+ #
1028
+ # @example Match all numeric columns:
1029
+ # df.select(Polars.cs.numeric)
1030
+ # # =>
1031
+ # # shape: (2, 3)
1032
+ # # ┌─────┬─────┬─────┐
1033
+ # # │ bar ┆ baz ┆ zap │
1034
+ # # │ --- ┆ --- ┆ --- │
1035
+ # # │ i16 ┆ f32 ┆ u8 │
1036
+ # # ╞═════╪═════╪═════╡
1037
+ # # │ 123 ┆ 2.0 ┆ 0 │
1038
+ # # │ 456 ┆ 5.5 ┆ 0 │
1039
+ # # └─────┴─────┴─────┘
1040
+ #
1041
+ # @example Match all columns *except* for those that are numeric:
1042
+ # df.select(~Polars.cs.numeric)
1043
+ # # =>
1044
+ # # shape: (2, 1)
1045
+ # # ┌─────┐
1046
+ # # │ foo │
1047
+ # # │ --- │
1048
+ # # │ str │
1049
+ # # ╞═════╡
1050
+ # # │ x │
1051
+ # # │ y │
1052
+ # # └─────┘
1053
+ def self.numeric
1054
+ _selector_proxy_(F.col(NUMERIC_DTYPES), name: "numeric")
1055
+ end
1056
+
1057
+ # Select columns that start with the given substring(s).
1058
+ #
1059
+ # @param prefix [Object]
1060
+ # Substring(s) that matching column names should start with.
1061
+ #
1062
+ # @return [SelectorProxy]
1063
+ #
1064
+ # @example
1065
+ # df = Polars::DataFrame.new(
1066
+ # {
1067
+ # "foo" => [1.0, 2.0],
1068
+ # "bar" => [3.0, 4.0],
1069
+ # "baz" => [5, 6],
1070
+ # "zap" => [7, 8]
1071
+ # }
1072
+ # )
1073
+ #
1074
+ # @example Match columns starting with a 'b':
1075
+ # df.select(Polars.cs.starts_with("b"))
1076
+ # # =>
1077
+ # # shape: (2, 2)
1078
+ # # ┌─────┬─────┐
1079
+ # # │ bar ┆ baz │
1080
+ # # │ --- ┆ --- │
1081
+ # # │ f64 ┆ i64 │
1082
+ # # ╞═════╪═════╡
1083
+ # # │ 3.0 ┆ 5 │
1084
+ # # │ 4.0 ┆ 6 │
1085
+ # # └─────┴─────┘
1086
+ #
1087
+ # @example Match columns starting with *either* the letter 'b' or 'z':
1088
+ # df.select(Polars.cs.starts_with("b", "z"))
1089
+ # # =>
1090
+ # # shape: (2, 3)
1091
+ # # ┌─────┬─────┬─────┐
1092
+ # # │ bar ┆ baz ┆ zap │
1093
+ # # │ --- ┆ --- ┆ --- │
1094
+ # # │ f64 ┆ i64 ┆ i64 │
1095
+ # # ╞═════╪═════╪═════╡
1096
+ # # │ 3.0 ┆ 5 ┆ 7 │
1097
+ # # │ 4.0 ┆ 6 ┆ 8 │
1098
+ # # └─────┴─────┴─────┘
1099
+ #
1100
+ # @example Match all columns *except* for those starting with 'b':
1101
+ # df.select(~Polars.cs.starts_with("b"))
1102
+ # # =>
1103
+ # # shape: (2, 2)
1104
+ # # ┌─────┬─────┐
1105
+ # # │ foo ┆ zap │
1106
+ # # │ --- ┆ --- │
1107
+ # # │ f64 ┆ i64 │
1108
+ # # ╞═════╪═════╡
1109
+ # # │ 1.0 ┆ 7 │
1110
+ # # │ 2.0 ┆ 8 │
1111
+ # # └─────┴─────┘
1112
+ def self.starts_with(*prefix)
1113
+ escaped_prefix = _re_string(prefix)
1114
+ raw_params = "^#{escaped_prefix}.*$"
1115
+
1116
+ _selector_proxy_(
1117
+ F.col(raw_params),
1118
+ name: "starts_with",
1119
+ parameters: {"*prefix" => prefix}
1120
+ )
1121
+ end
1122
+
1123
+ # Select all String (and, optionally, Categorical) string columns.
1124
+ #
1125
+ # @return [SelectorProxy]
1126
+ #
1127
+ # @example
1128
+ # df = Polars::DataFrame.new(
1129
+ # {
1130
+ # "w" => ["xx", "yy", "xx", "yy", "xx"],
1131
+ # "x" => [1, 2, 1, 4, -2],
1132
+ # "y" => [3.0, 4.5, 1.0, 2.5, -2.0],
1133
+ # "z" => ["a", "b", "a", "b", "b"]
1134
+ # },
1135
+ # ).with_columns(
1136
+ # z: Polars.col("z").cast(Polars::Categorical.new("lexical")),
1137
+ # )
1138
+ #
1139
+ # @example Group by all string columns, sum the numeric columns, then sort by the string cols:
1140
+ # >>> df.group_by(Polars.cs.string).agg(Polars.cs.numeric.sum).sort(Polars.cs.string)
1141
+ # shape: (2, 3)
1142
+ # ┌─────┬─────┬─────┐
1143
+ # │ w ┆ x ┆ y │
1144
+ # │ --- ┆ --- ┆ --- │
1145
+ # │ str ┆ i64 ┆ f64 │
1146
+ # ╞═════╪═════╪═════╡
1147
+ # │ xx ┆ 0 ┆ 2.0 │
1148
+ # │ yy ┆ 6 ┆ 7.0 │
1149
+ # └─────┴─────┴─────┘
1150
+ #
1151
+ # @example Group by all string *and* categorical columns:
1152
+ # df.group_by(Polars.cs.string(include_categorical: true)).agg(Polars.cs.numeric.sum).sort(
1153
+ # Polars.cs.string(include_categorical: true)
1154
+ # )
1155
+ # # =>
1156
+ # # shape: (3, 4)
1157
+ # # ┌─────┬─────┬─────┬──────┐
1158
+ # # │ w ┆ z ┆ x ┆ y │
1159
+ # # │ --- ┆ --- ┆ --- ┆ --- │
1160
+ # # │ str ┆ cat ┆ i64 ┆ f64 │
1161
+ # # ╞═════╪═════╪═════╪══════╡
1162
+ # # │ xx ┆ a ┆ 2 ┆ 4.0 │
1163
+ # # │ xx ┆ b ┆ -2 ┆ -2.0 │
1164
+ # # │ yy ┆ b ┆ 6 ┆ 7.0 │
1165
+ # # └─────┴─────┴─────┴──────┘
1166
+ def self.string(include_categorical: false)
1167
+ string_dtypes = [String]
1168
+ if include_categorical
1169
+ string_dtypes << Categorical
1170
+ end
1171
+
1172
+ _selector_proxy_(
1173
+ F.col(string_dtypes),
1174
+ name: "string",
1175
+ parameters: {"include_categorical" => include_categorical},
1176
+ )
1177
+ end
1178
+
1179
+ # Select all time columns.
1180
+ #
1181
+ # @return [SelectorProxy]
1182
+ #
1183
+ # @example
1184
+ # df = Polars::DataFrame.new(
1185
+ # {
1186
+ # "dtm" => [DateTime.new(2001, 5, 7, 10, 25), DateTime.new(2031, 12, 31, 0, 30)],
1187
+ # "dt" => [Date.new(1999, 12, 31), Date.new(2024, 8, 9)],
1188
+ # "tm" => [Time.utc(2001, 1, 1, 0, 0, 0), Time.utc(2001, 1, 1, 23, 59, 59)]
1189
+ # },
1190
+ # schema_overrides: {"tm" => Polars::Time}
1191
+ # )
1192
+ #
1193
+ # @example Select all time columns:
1194
+ # df.select(Polars.cs.time)
1195
+ # # =>
1196
+ # # shape: (2, 1)
1197
+ # # ┌──────────┐
1198
+ # # │ tm │
1199
+ # # │ --- │
1200
+ # # │ time │
1201
+ # # ╞══════════╡
1202
+ # # │ 00:00:00 │
1203
+ # # │ 23:59:59 │
1204
+ # # └──────────┘
1205
+ #
1206
+ # @example Select all columns *except* for those that are times:
1207
+ # df.select(~Polars.cs.time)
1208
+ # # =>
1209
+ # # shape: (2, 2)
1210
+ # # ┌─────────────────────┬────────────┐
1211
+ # # │ dtm ┆ dt │
1212
+ # # │ --- ┆ --- │
1213
+ # # │ datetime[ns] ┆ date │
1214
+ # # ╞═════════════════════╪════════════╡
1215
+ # # │ 2001-05-07 10:25:00 ┆ 1999-12-31 │
1216
+ # # │ 2031-12-31 00:30:00 ┆ 2024-08-09 │
1217
+ # # └─────────────────────┴────────────┘
1218
+ def self.time
1219
+ _selector_proxy_(F.col(Time), name: "time")
1220
+ end
1221
+ end
1222
+
1223
+ def self.cs
1224
+ Polars::Selectors
1225
+ end
1226
+ end