polars-df 0.10.0-x86_64-darwin → 0.11.0-x86_64-darwin
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +11 -0
- data/Cargo.lock +90 -48
- data/LICENSE-THIRD-PARTY.txt +152 -79
- data/README.md +6 -6
- data/lib/polars/3.1/polars.bundle +0 -0
- data/lib/polars/3.2/polars.bundle +0 -0
- data/lib/polars/3.3/polars.bundle +0 -0
- data/lib/polars/batched_csv_reader.rb +9 -3
- data/lib/polars/convert.rb +6 -1
- data/lib/polars/data_frame.rb +83 -302
- data/lib/polars/date_time_expr.rb +1 -0
- data/lib/polars/date_time_name_space.rb +5 -1
- data/lib/polars/dynamic_group_by.rb +2 -2
- data/lib/polars/exceptions.rb +4 -0
- data/lib/polars/expr.rb +1134 -20
- data/lib/polars/functions/range/date_range.rb +92 -0
- data/lib/polars/functions/range/datetime_range.rb +149 -0
- data/lib/polars/functions/range/time_range.rb +141 -0
- data/lib/polars/group_by.rb +88 -23
- data/lib/polars/io/avro.rb +24 -0
- data/lib/polars/{io.rb → io/csv.rb} +296 -490
- data/lib/polars/io/database.rb +73 -0
- data/lib/polars/io/ipc.rb +247 -0
- data/lib/polars/io/json.rb +18 -0
- data/lib/polars/io/ndjson.rb +69 -0
- data/lib/polars/io/parquet.rb +226 -0
- data/lib/polars/lazy_frame.rb +23 -166
- data/lib/polars/lazy_group_by.rb +100 -3
- data/lib/polars/rolling_group_by.rb +2 -2
- data/lib/polars/series.rb +2 -2
- data/lib/polars/string_expr.rb +37 -36
- data/lib/polars/utils.rb +35 -1
- data/lib/polars/version.rb +1 -1
- data/lib/polars.rb +9 -1
- metadata +12 -4
@@ -0,0 +1,73 @@
|
|
1
|
+
module Polars
|
2
|
+
module IO
|
3
|
+
# Read a SQL query into a DataFrame.
|
4
|
+
#
|
5
|
+
# @param query [Object]
|
6
|
+
# ActiveRecord::Relation or ActiveRecord::Result.
|
7
|
+
# @param schema_overrides [Hash]
|
8
|
+
# A hash mapping column names to dtypes, used to override the schema
|
9
|
+
# inferred from the query.
|
10
|
+
#
|
11
|
+
# @return [DataFrame]
|
12
|
+
def read_database(query, schema_overrides: nil)
|
13
|
+
if !defined?(ActiveRecord)
|
14
|
+
raise Error, "Active Record not available"
|
15
|
+
end
|
16
|
+
|
17
|
+
result =
|
18
|
+
if query.is_a?(ActiveRecord::Result)
|
19
|
+
query
|
20
|
+
elsif query.is_a?(ActiveRecord::Relation)
|
21
|
+
query.connection.select_all(query.to_sql)
|
22
|
+
elsif query.is_a?(::String)
|
23
|
+
ActiveRecord::Base.connection.select_all(query)
|
24
|
+
else
|
25
|
+
raise ArgumentError, "Expected ActiveRecord::Relation, ActiveRecord::Result, or String"
|
26
|
+
end
|
27
|
+
|
28
|
+
data = {}
|
29
|
+
schema_overrides = (schema_overrides || {}).transform_keys(&:to_s)
|
30
|
+
|
31
|
+
result.columns.each_with_index do |k, i|
|
32
|
+
column_type = result.column_types[i]
|
33
|
+
|
34
|
+
data[k] =
|
35
|
+
if column_type
|
36
|
+
result.rows.map { |r| column_type.deserialize(r[i]) }
|
37
|
+
else
|
38
|
+
result.rows.map { |r| r[i] }
|
39
|
+
end
|
40
|
+
|
41
|
+
polars_type =
|
42
|
+
case column_type&.type
|
43
|
+
when :binary
|
44
|
+
Binary
|
45
|
+
when :boolean
|
46
|
+
Boolean
|
47
|
+
when :date
|
48
|
+
Date
|
49
|
+
when :datetime, :timestamp
|
50
|
+
Datetime
|
51
|
+
when :decimal
|
52
|
+
Decimal
|
53
|
+
when :float
|
54
|
+
Float64
|
55
|
+
when :integer
|
56
|
+
Int64
|
57
|
+
when :string, :text
|
58
|
+
String
|
59
|
+
when :time
|
60
|
+
Time
|
61
|
+
# TODO fix issue with null
|
62
|
+
# when :json, :jsonb
|
63
|
+
# Struct
|
64
|
+
end
|
65
|
+
|
66
|
+
schema_overrides[k] ||= polars_type if polars_type
|
67
|
+
end
|
68
|
+
|
69
|
+
DataFrame.new(data, schema_overrides: schema_overrides)
|
70
|
+
end
|
71
|
+
alias_method :read_sql, :read_database
|
72
|
+
end
|
73
|
+
end
|
@@ -0,0 +1,247 @@
|
|
1
|
+
module Polars
|
2
|
+
module IO
|
3
|
+
# Read into a DataFrame from Arrow IPC (Feather v2) file.
|
4
|
+
#
|
5
|
+
# @param source [Object]
|
6
|
+
# Path to a file or a file-like object.
|
7
|
+
# @param columns [Object]
|
8
|
+
# Columns to select. Accepts a list of column indices (starting at zero) or a list
|
9
|
+
# of column names.
|
10
|
+
# @param n_rows [Integer]
|
11
|
+
# Stop reading from IPC file after reading `n_rows`.
|
12
|
+
# @param memory_map [Boolean]
|
13
|
+
# Try to memory map the file. This can greatly improve performance on repeated
|
14
|
+
# queries as the OS may cache pages.
|
15
|
+
# Only uncompressed IPC files can be memory mapped.
|
16
|
+
# @param storage_options [Hash]
|
17
|
+
# Extra options that make sense for a particular storage connection.
|
18
|
+
# @param row_count_name [String]
|
19
|
+
# If not nil, this will insert a row count column with give name into the
|
20
|
+
# DataFrame.
|
21
|
+
# @param row_count_offset [Integer]
|
22
|
+
# Offset to start the row_count column (only use if the name is set).
|
23
|
+
# @param rechunk [Boolean]
|
24
|
+
# Make sure that all data is contiguous.
|
25
|
+
#
|
26
|
+
# @return [DataFrame]
|
27
|
+
def read_ipc(
|
28
|
+
source,
|
29
|
+
columns: nil,
|
30
|
+
n_rows: nil,
|
31
|
+
memory_map: true,
|
32
|
+
storage_options: nil,
|
33
|
+
row_count_name: nil,
|
34
|
+
row_count_offset: 0,
|
35
|
+
rechunk: true
|
36
|
+
)
|
37
|
+
storage_options ||= {}
|
38
|
+
_prepare_file_arg(source, **storage_options) do |data|
|
39
|
+
_read_ipc_impl(
|
40
|
+
data,
|
41
|
+
columns: columns,
|
42
|
+
n_rows: n_rows,
|
43
|
+
row_count_name: row_count_name,
|
44
|
+
row_count_offset: row_count_offset,
|
45
|
+
rechunk: rechunk,
|
46
|
+
memory_map: memory_map
|
47
|
+
)
|
48
|
+
end
|
49
|
+
end
|
50
|
+
|
51
|
+
# @private
|
52
|
+
def _read_ipc_impl(
|
53
|
+
file,
|
54
|
+
columns: nil,
|
55
|
+
n_rows: nil,
|
56
|
+
row_count_name: nil,
|
57
|
+
row_count_offset: 0,
|
58
|
+
rechunk: true,
|
59
|
+
memory_map: true
|
60
|
+
)
|
61
|
+
if Utils.pathlike?(file)
|
62
|
+
file = Utils.normalize_filepath(file)
|
63
|
+
end
|
64
|
+
if columns.is_a?(::String)
|
65
|
+
columns = [columns]
|
66
|
+
end
|
67
|
+
|
68
|
+
if file.is_a?(::String) && file.include?("*")
|
69
|
+
raise Todo
|
70
|
+
end
|
71
|
+
|
72
|
+
projection, columns = Utils.handle_projection_columns(columns)
|
73
|
+
rbdf =
|
74
|
+
RbDataFrame.read_ipc(
|
75
|
+
file,
|
76
|
+
columns,
|
77
|
+
projection,
|
78
|
+
n_rows,
|
79
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset),
|
80
|
+
memory_map
|
81
|
+
)
|
82
|
+
Utils.wrap_df(rbdf)
|
83
|
+
end
|
84
|
+
|
85
|
+
# Read into a DataFrame from Arrow IPC record batch stream.
|
86
|
+
#
|
87
|
+
# See "Streaming format" on https://arrow.apache.org/docs/python/ipc.html.
|
88
|
+
#
|
89
|
+
# @param source [Object]
|
90
|
+
# Path to a file or a file-like object.
|
91
|
+
# @param columns [Array]
|
92
|
+
# Columns to select. Accepts a list of column indices (starting at zero) or a list
|
93
|
+
# of column names.
|
94
|
+
# @param n_rows [Integer]
|
95
|
+
# Stop reading from IPC stream after reading `n_rows`.
|
96
|
+
# @param storage_options [Hash]
|
97
|
+
# Extra options that make sense for a particular storage connection.
|
98
|
+
# @param row_index_name [String]
|
99
|
+
# Insert a row index column with the given name into the DataFrame as the first
|
100
|
+
# column. If set to `nil` (default), no row index column is created.
|
101
|
+
# @param row_index_offset [Integer]
|
102
|
+
# Start the row index at this offset. Cannot be negative.
|
103
|
+
# Only used if `row_index_name` is set.
|
104
|
+
# @param rechunk [Boolean]
|
105
|
+
# Make sure that all data is contiguous.
|
106
|
+
#
|
107
|
+
# @return [DataFrame]
|
108
|
+
def read_ipc_stream(
|
109
|
+
source,
|
110
|
+
columns: nil,
|
111
|
+
n_rows: nil,
|
112
|
+
storage_options: nil,
|
113
|
+
row_index_name: nil,
|
114
|
+
row_index_offset: 0,
|
115
|
+
rechunk: true
|
116
|
+
)
|
117
|
+
storage_options ||= {}
|
118
|
+
_prepare_file_arg(source, **storage_options) do |data|
|
119
|
+
_read_ipc_stream_impl(
|
120
|
+
data,
|
121
|
+
columns: columns,
|
122
|
+
n_rows: n_rows,
|
123
|
+
row_index_name: row_index_name,
|
124
|
+
row_index_offset: row_index_offset,
|
125
|
+
rechunk: rechunk
|
126
|
+
)
|
127
|
+
end
|
128
|
+
end
|
129
|
+
|
130
|
+
# @private
|
131
|
+
def _read_ipc_stream_impl(
|
132
|
+
source,
|
133
|
+
columns: nil,
|
134
|
+
n_rows: nil,
|
135
|
+
row_index_name: nil,
|
136
|
+
row_index_offset: 0,
|
137
|
+
rechunk: true
|
138
|
+
)
|
139
|
+
if Utils.pathlike?(source)
|
140
|
+
source = Utils.normalize_filepath(source)
|
141
|
+
end
|
142
|
+
if columns.is_a?(String)
|
143
|
+
columns = [columns]
|
144
|
+
end
|
145
|
+
|
146
|
+
projection, columns = Utils.handle_projection_columns(columns)
|
147
|
+
pydf = RbDataFrame.read_ipc_stream(
|
148
|
+
source,
|
149
|
+
columns,
|
150
|
+
projection,
|
151
|
+
n_rows,
|
152
|
+
Utils._prepare_row_count_args(row_index_name, row_index_offset),
|
153
|
+
rechunk
|
154
|
+
)
|
155
|
+
Utils.wrap_df(pydf)
|
156
|
+
end
|
157
|
+
|
158
|
+
# Get a schema of the IPC file without reading data.
|
159
|
+
#
|
160
|
+
# @param source [Object]
|
161
|
+
# Path to a file or a file-like object.
|
162
|
+
#
|
163
|
+
# @return [Hash]
|
164
|
+
def read_ipc_schema(source)
|
165
|
+
if Utils.pathlike?(source)
|
166
|
+
source = Utils.normalize_filepath(source)
|
167
|
+
end
|
168
|
+
|
169
|
+
Plr.ipc_schema(source)
|
170
|
+
end
|
171
|
+
|
172
|
+
# Lazily read from an Arrow IPC (Feather v2) file or multiple files via glob patterns.
|
173
|
+
#
|
174
|
+
# This allows the query optimizer to push down predicates and projections to the scan
|
175
|
+
# level, thereby potentially reducing memory overhead.
|
176
|
+
#
|
177
|
+
# @param source [String]
|
178
|
+
# Path to a IPC file.
|
179
|
+
# @param n_rows [Integer]
|
180
|
+
# Stop reading from IPC file after reading `n_rows`.
|
181
|
+
# @param cache [Boolean]
|
182
|
+
# Cache the result after reading.
|
183
|
+
# @param rechunk [Boolean]
|
184
|
+
# Reallocate to contiguous memory when all chunks/ files are parsed.
|
185
|
+
# @param row_count_name [String]
|
186
|
+
# If not nil, this will insert a row count column with give name into the
|
187
|
+
# DataFrame.
|
188
|
+
# @param row_count_offset [Integer]
|
189
|
+
# Offset to start the row_count column (only use if the name is set).
|
190
|
+
# @param storage_options [Hash]
|
191
|
+
# Extra options that make sense for a particular storage connection.
|
192
|
+
# @param memory_map [Boolean]
|
193
|
+
# Try to memory map the file. This can greatly improve performance on repeated
|
194
|
+
# queries as the OS may cache pages.
|
195
|
+
# Only uncompressed IPC files can be memory mapped.
|
196
|
+
#
|
197
|
+
# @return [LazyFrame]
|
198
|
+
def scan_ipc(
|
199
|
+
source,
|
200
|
+
n_rows: nil,
|
201
|
+
cache: true,
|
202
|
+
rechunk: true,
|
203
|
+
row_count_name: nil,
|
204
|
+
row_count_offset: 0,
|
205
|
+
storage_options: nil,
|
206
|
+
memory_map: true
|
207
|
+
)
|
208
|
+
_scan_ipc_impl(
|
209
|
+
source,
|
210
|
+
n_rows: n_rows,
|
211
|
+
cache: cache,
|
212
|
+
rechunk: rechunk,
|
213
|
+
row_count_name: row_count_name,
|
214
|
+
row_count_offset: row_count_offset,
|
215
|
+
storage_options: storage_options,
|
216
|
+
memory_map: memory_map
|
217
|
+
)
|
218
|
+
end
|
219
|
+
|
220
|
+
# @private
|
221
|
+
def _scan_ipc_impl(
|
222
|
+
file,
|
223
|
+
n_rows: nil,
|
224
|
+
cache: true,
|
225
|
+
rechunk: true,
|
226
|
+
row_count_name: nil,
|
227
|
+
row_count_offset: 0,
|
228
|
+
storage_options: nil,
|
229
|
+
memory_map: true
|
230
|
+
)
|
231
|
+
if Utils.pathlike?(file)
|
232
|
+
file = Utils.normalize_filepath(file)
|
233
|
+
end
|
234
|
+
|
235
|
+
rblf =
|
236
|
+
RbLazyFrame.new_from_ipc(
|
237
|
+
file,
|
238
|
+
n_rows,
|
239
|
+
cache,
|
240
|
+
rechunk,
|
241
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset),
|
242
|
+
memory_map
|
243
|
+
)
|
244
|
+
Utils.wrap_ldf(rblf)
|
245
|
+
end
|
246
|
+
end
|
247
|
+
end
|
@@ -0,0 +1,18 @@
|
|
1
|
+
module Polars
|
2
|
+
module IO
|
3
|
+
# Read into a DataFrame from a JSON file.
|
4
|
+
#
|
5
|
+
# @param source [Object]
|
6
|
+
# Path to a file or a file-like object.
|
7
|
+
#
|
8
|
+
# @return [DataFrame]
|
9
|
+
def read_json(source)
|
10
|
+
if Utils.pathlike?(source)
|
11
|
+
source = Utils.normalize_filepath(source)
|
12
|
+
end
|
13
|
+
|
14
|
+
rbdf = RbDataFrame.read_json(source)
|
15
|
+
Utils.wrap_df(rbdf)
|
16
|
+
end
|
17
|
+
end
|
18
|
+
end
|
@@ -0,0 +1,69 @@
|
|
1
|
+
module Polars
|
2
|
+
module IO
|
3
|
+
# Read into a DataFrame from a newline delimited JSON file.
|
4
|
+
#
|
5
|
+
# @param source [Object]
|
6
|
+
# Path to a file or a file-like object.
|
7
|
+
#
|
8
|
+
# @return [DataFrame]
|
9
|
+
def read_ndjson(source)
|
10
|
+
if Utils.pathlike?(source)
|
11
|
+
source = Utils.normalize_filepath(source)
|
12
|
+
end
|
13
|
+
|
14
|
+
rbdf = RbDataFrame.read_ndjson(source)
|
15
|
+
Utils.wrap_df(rbdf)
|
16
|
+
end
|
17
|
+
|
18
|
+
# Lazily read from a newline delimited JSON file.
|
19
|
+
#
|
20
|
+
# This allows the query optimizer to push down predicates and projections to the scan
|
21
|
+
# level, thereby potentially reducing memory overhead.
|
22
|
+
#
|
23
|
+
# @param source [String]
|
24
|
+
# Path to a file.
|
25
|
+
# @param infer_schema_length [Integer]
|
26
|
+
# Infer the schema length from the first `infer_schema_length` rows.
|
27
|
+
# @param batch_size [Integer]
|
28
|
+
# Number of rows to read in each batch.
|
29
|
+
# @param n_rows [Integer]
|
30
|
+
# Stop reading from JSON file after reading `n_rows`.
|
31
|
+
# @param low_memory [Boolean]
|
32
|
+
# Reduce memory pressure at the expense of performance.
|
33
|
+
# @param rechunk [Boolean]
|
34
|
+
# Reallocate to contiguous memory when all chunks/ files are parsed.
|
35
|
+
# @param row_count_name [String]
|
36
|
+
# If not nil, this will insert a row count column with give name into the
|
37
|
+
# DataFrame.
|
38
|
+
# @param row_count_offset [Integer]
|
39
|
+
# Offset to start the row_count column (only use if the name is set).
|
40
|
+
#
|
41
|
+
# @return [LazyFrame]
|
42
|
+
def scan_ndjson(
|
43
|
+
source,
|
44
|
+
infer_schema_length: 100,
|
45
|
+
batch_size: 1024,
|
46
|
+
n_rows: nil,
|
47
|
+
low_memory: false,
|
48
|
+
rechunk: true,
|
49
|
+
row_count_name: nil,
|
50
|
+
row_count_offset: 0
|
51
|
+
)
|
52
|
+
if Utils.pathlike?(source)
|
53
|
+
source = Utils.normalize_filepath(source)
|
54
|
+
end
|
55
|
+
|
56
|
+
rblf =
|
57
|
+
RbLazyFrame.new_from_ndjson(
|
58
|
+
source,
|
59
|
+
infer_schema_length,
|
60
|
+
batch_size,
|
61
|
+
n_rows,
|
62
|
+
low_memory,
|
63
|
+
rechunk,
|
64
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset)
|
65
|
+
)
|
66
|
+
Utils.wrap_ldf(rblf)
|
67
|
+
end
|
68
|
+
end
|
69
|
+
end
|
@@ -0,0 +1,226 @@
|
|
1
|
+
module Polars
|
2
|
+
module IO
|
3
|
+
# Read into a DataFrame from a parquet file.
|
4
|
+
#
|
5
|
+
# @param source [String, Pathname, StringIO]
|
6
|
+
# Path to a file or a file-like object.
|
7
|
+
# @param columns [Object]
|
8
|
+
# Columns to select. Accepts a list of column indices (starting at zero) or a list
|
9
|
+
# of column names.
|
10
|
+
# @param n_rows [Integer]
|
11
|
+
# Stop reading from parquet file after reading `n_rows`.
|
12
|
+
# @param storage_options [Hash]
|
13
|
+
# Extra options that make sense for a particular storage connection.
|
14
|
+
# @param parallel ["auto", "columns", "row_groups", "none"]
|
15
|
+
# This determines the direction of parallelism. 'auto' will try to determine the
|
16
|
+
# optimal direction.
|
17
|
+
# @param row_count_name [String]
|
18
|
+
# If not nil, this will insert a row count column with give name into the
|
19
|
+
# DataFrame.
|
20
|
+
# @param row_count_offset [Integer]
|
21
|
+
# Offset to start the row_count column (only use if the name is set).
|
22
|
+
# @param low_memory [Boolean]
|
23
|
+
# Reduce memory pressure at the expense of performance.
|
24
|
+
# @param use_statistics [Boolean]
|
25
|
+
# Use statistics in the parquet to determine if pages
|
26
|
+
# can be skipped from reading.
|
27
|
+
# @param rechunk [Boolean]
|
28
|
+
# Make sure that all columns are contiguous in memory by
|
29
|
+
# aggregating the chunks into a single array.
|
30
|
+
#
|
31
|
+
# @return [DataFrame]
|
32
|
+
#
|
33
|
+
# @note
|
34
|
+
# This operation defaults to a `rechunk` operation at the end, meaning that
|
35
|
+
# all data will be stored continuously in memory.
|
36
|
+
# Set `rechunk: false` if you are benchmarking the parquet-reader. A `rechunk` is
|
37
|
+
# an expensive operation.
|
38
|
+
def read_parquet(
|
39
|
+
source,
|
40
|
+
columns: nil,
|
41
|
+
n_rows: nil,
|
42
|
+
storage_options: nil,
|
43
|
+
parallel: "auto",
|
44
|
+
row_count_name: nil,
|
45
|
+
row_count_offset: 0,
|
46
|
+
low_memory: false,
|
47
|
+
use_statistics: true,
|
48
|
+
rechunk: true
|
49
|
+
)
|
50
|
+
_prepare_file_arg(source) do |data|
|
51
|
+
_read_parquet_impl(
|
52
|
+
data,
|
53
|
+
columns: columns,
|
54
|
+
n_rows: n_rows,
|
55
|
+
parallel: parallel,
|
56
|
+
row_count_name: row_count_name,
|
57
|
+
row_count_offset: row_count_offset,
|
58
|
+
low_memory: low_memory,
|
59
|
+
use_statistics: use_statistics,
|
60
|
+
rechunk: rechunk
|
61
|
+
)
|
62
|
+
end
|
63
|
+
end
|
64
|
+
|
65
|
+
# @private
|
66
|
+
def _read_parquet_impl(
|
67
|
+
source,
|
68
|
+
columns: nil,
|
69
|
+
n_rows: nil,
|
70
|
+
parallel: "auto",
|
71
|
+
row_count_name: nil,
|
72
|
+
row_count_offset: 0,
|
73
|
+
low_memory: false,
|
74
|
+
use_statistics: true,
|
75
|
+
rechunk: true
|
76
|
+
)
|
77
|
+
if Utils.pathlike?(source)
|
78
|
+
source = Utils.normalize_filepath(source)
|
79
|
+
end
|
80
|
+
if columns.is_a?(::String)
|
81
|
+
columns = [columns]
|
82
|
+
end
|
83
|
+
|
84
|
+
if source.is_a?(::String) && source.include?("*") && Utils.local_file?(source)
|
85
|
+
scan =
|
86
|
+
scan_parquet(
|
87
|
+
source,
|
88
|
+
n_rows: n_rows,
|
89
|
+
rechunk: true,
|
90
|
+
parallel: parallel,
|
91
|
+
row_count_name: row_count_name,
|
92
|
+
row_count_offset: row_count_offset,
|
93
|
+
low_memory: low_memory
|
94
|
+
)
|
95
|
+
|
96
|
+
if columns.nil?
|
97
|
+
return scan.collect
|
98
|
+
elsif Utils.is_str_sequence(columns, allow_str: false)
|
99
|
+
return scan.select(columns).collect
|
100
|
+
else
|
101
|
+
raise ArgumentError, "cannot use glob patterns and integer based projection as `columns` argument; Use columns: Array[String]"
|
102
|
+
end
|
103
|
+
end
|
104
|
+
|
105
|
+
projection, columns = Utils.handle_projection_columns(columns)
|
106
|
+
rbdf =
|
107
|
+
RbDataFrame.read_parquet(
|
108
|
+
source,
|
109
|
+
columns,
|
110
|
+
projection,
|
111
|
+
n_rows,
|
112
|
+
parallel,
|
113
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset),
|
114
|
+
low_memory,
|
115
|
+
use_statistics,
|
116
|
+
rechunk
|
117
|
+
)
|
118
|
+
Utils.wrap_df(rbdf)
|
119
|
+
end
|
120
|
+
|
121
|
+
# Get a schema of the Parquet file without reading data.
|
122
|
+
#
|
123
|
+
# @param source [Object]
|
124
|
+
# Path to a file or a file-like object.
|
125
|
+
#
|
126
|
+
# @return [Hash]
|
127
|
+
def read_parquet_schema(source)
|
128
|
+
if Utils.pathlike?(source)
|
129
|
+
source = Utils.normalize_filepath(source)
|
130
|
+
end
|
131
|
+
|
132
|
+
Plr.parquet_schema(source)
|
133
|
+
end
|
134
|
+
|
135
|
+
# Lazily read from a parquet file or multiple files via glob patterns.
|
136
|
+
#
|
137
|
+
# This allows the query optimizer to push down predicates and projections to the scan
|
138
|
+
# level, thereby potentially reducing memory overhead.
|
139
|
+
#
|
140
|
+
# @param source [String]
|
141
|
+
# Path to a file.
|
142
|
+
# @param n_rows [Integer]
|
143
|
+
# Stop reading from parquet file after reading `n_rows`.
|
144
|
+
# @param cache [Boolean]
|
145
|
+
# Cache the result after reading.
|
146
|
+
# @param parallel ["auto", "columns", "row_groups", "none"]
|
147
|
+
# This determines the direction of parallelism. 'auto' will try to determine the
|
148
|
+
# optimal direction.
|
149
|
+
# @param rechunk [Boolean]
|
150
|
+
# In case of reading multiple files via a glob pattern rechunk the final DataFrame
|
151
|
+
# into contiguous memory chunks.
|
152
|
+
# @param row_count_name [String]
|
153
|
+
# If not nil, this will insert a row count column with give name into the
|
154
|
+
# DataFrame.
|
155
|
+
# @param row_count_offset [Integer]
|
156
|
+
# Offset to start the row_count column (only use if the name is set).
|
157
|
+
# @param storage_options [Hash]
|
158
|
+
# Extra options that make sense for a particular storage connection.
|
159
|
+
# @param low_memory [Boolean]
|
160
|
+
# Reduce memory pressure at the expense of performance.
|
161
|
+
#
|
162
|
+
# @return [LazyFrame]
|
163
|
+
def scan_parquet(
|
164
|
+
source,
|
165
|
+
n_rows: nil,
|
166
|
+
cache: true,
|
167
|
+
parallel: "auto",
|
168
|
+
glob: true,
|
169
|
+
rechunk: true,
|
170
|
+
row_count_name: nil,
|
171
|
+
row_count_offset: 0,
|
172
|
+
storage_options: nil,
|
173
|
+
low_memory: false
|
174
|
+
)
|
175
|
+
if Utils.pathlike?(source)
|
176
|
+
source = Utils.normalize_filepath(source)
|
177
|
+
end
|
178
|
+
|
179
|
+
_scan_parquet_impl(
|
180
|
+
source,
|
181
|
+
n_rows:n_rows,
|
182
|
+
cache: cache,
|
183
|
+
parallel: parallel,
|
184
|
+
rechunk: rechunk,
|
185
|
+
row_count_name: row_count_name,
|
186
|
+
row_count_offset: row_count_offset,
|
187
|
+
storage_options: storage_options,
|
188
|
+
low_memory: low_memory,
|
189
|
+
glob: glob
|
190
|
+
)
|
191
|
+
end
|
192
|
+
|
193
|
+
# @private
|
194
|
+
def _scan_parquet_impl(
|
195
|
+
file,
|
196
|
+
n_rows: nil,
|
197
|
+
cache: true,
|
198
|
+
parallel: "auto",
|
199
|
+
rechunk: true,
|
200
|
+
row_count_name: nil,
|
201
|
+
row_count_offset: 0,
|
202
|
+
storage_options: nil,
|
203
|
+
low_memory: false,
|
204
|
+
use_statistics: true,
|
205
|
+
hive_partitioning: true,
|
206
|
+
glob: true
|
207
|
+
)
|
208
|
+
rblf =
|
209
|
+
RbLazyFrame.new_from_parquet(
|
210
|
+
file,
|
211
|
+
[],
|
212
|
+
n_rows,
|
213
|
+
cache,
|
214
|
+
parallel,
|
215
|
+
rechunk,
|
216
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset),
|
217
|
+
low_memory,
|
218
|
+
use_statistics,
|
219
|
+
hive_partitioning,
|
220
|
+
nil,
|
221
|
+
glob
|
222
|
+
)
|
223
|
+
Utils.wrap_ldf(rblf)
|
224
|
+
end
|
225
|
+
end
|
226
|
+
end
|