polars-df 0.10.0-aarch64-linux → 0.12.0-aarch64-linux
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +27 -0
- data/Cargo.lock +392 -351
- data/LICENSE-THIRD-PARTY.txt +1125 -865
- data/README.md +6 -6
- data/lib/polars/3.1/polars.so +0 -0
- data/lib/polars/3.2/polars.so +0 -0
- data/lib/polars/3.3/polars.so +0 -0
- data/lib/polars/array_expr.rb +4 -4
- data/lib/polars/batched_csv_reader.rb +11 -5
- data/lib/polars/cat_expr.rb +0 -36
- data/lib/polars/cat_name_space.rb +0 -37
- data/lib/polars/convert.rb +6 -1
- data/lib/polars/data_frame.rb +176 -403
- data/lib/polars/data_types.rb +1 -1
- data/lib/polars/date_time_expr.rb +525 -572
- data/lib/polars/date_time_name_space.rb +263 -460
- data/lib/polars/dynamic_group_by.rb +5 -5
- data/lib/polars/exceptions.rb +7 -0
- data/lib/polars/expr.rb +1394 -243
- data/lib/polars/expr_dispatch.rb +1 -1
- data/lib/polars/functions/aggregation/horizontal.rb +8 -8
- data/lib/polars/functions/as_datatype.rb +63 -40
- data/lib/polars/functions/lazy.rb +63 -14
- data/lib/polars/functions/lit.rb +1 -1
- data/lib/polars/functions/range/date_range.rb +90 -57
- data/lib/polars/functions/range/datetime_range.rb +149 -0
- data/lib/polars/functions/range/int_range.rb +2 -2
- data/lib/polars/functions/range/time_range.rb +141 -0
- data/lib/polars/functions/repeat.rb +1 -1
- data/lib/polars/functions/whenthen.rb +1 -1
- data/lib/polars/group_by.rb +88 -23
- data/lib/polars/io/avro.rb +24 -0
- data/lib/polars/{io.rb → io/csv.rb} +299 -493
- data/lib/polars/io/database.rb +73 -0
- data/lib/polars/io/ipc.rb +247 -0
- data/lib/polars/io/json.rb +29 -0
- data/lib/polars/io/ndjson.rb +80 -0
- data/lib/polars/io/parquet.rb +227 -0
- data/lib/polars/lazy_frame.rb +143 -272
- data/lib/polars/lazy_group_by.rb +100 -3
- data/lib/polars/list_expr.rb +11 -11
- data/lib/polars/list_name_space.rb +5 -1
- data/lib/polars/rolling_group_by.rb +7 -9
- data/lib/polars/series.rb +103 -187
- data/lib/polars/string_expr.rb +78 -102
- data/lib/polars/string_name_space.rb +5 -4
- data/lib/polars/testing.rb +2 -2
- data/lib/polars/utils/constants.rb +9 -0
- data/lib/polars/utils/convert.rb +97 -0
- data/lib/polars/utils/parse.rb +89 -0
- data/lib/polars/utils/various.rb +76 -0
- data/lib/polars/utils/wrap.rb +19 -0
- data/lib/polars/utils.rb +8 -300
- data/lib/polars/version.rb +1 -1
- data/lib/polars/whenthen.rb +6 -6
- data/lib/polars.rb +20 -1
- metadata +17 -4
data/lib/polars/expr.rb
CHANGED
@@ -82,8 +82,8 @@ module Polars
|
|
82
82
|
#
|
83
83
|
# @return [Expr]
|
84
84
|
def **(power)
|
85
|
-
exponent = Utils.
|
86
|
-
_from_rbexpr(_rbexpr.pow(exponent
|
85
|
+
exponent = Utils.parse_into_expression(power)
|
86
|
+
_from_rbexpr(_rbexpr.pow(exponent))
|
87
87
|
end
|
88
88
|
|
89
89
|
# Greater than or equal.
|
@@ -811,8 +811,8 @@ module Polars
|
|
811
811
|
# # │ 10 ┆ 4 │
|
812
812
|
# # └─────┴──────┘
|
813
813
|
def append(other, upcast: true)
|
814
|
-
other = Utils.
|
815
|
-
_from_rbexpr(_rbexpr.append(other
|
814
|
+
other = Utils.parse_into_expression(other)
|
815
|
+
_from_rbexpr(_rbexpr.append(other, upcast))
|
816
816
|
end
|
817
817
|
|
818
818
|
# Create a single chunk of memory for this Series.
|
@@ -1165,8 +1165,8 @@ module Polars
|
|
1165
1165
|
# # │ 44 │
|
1166
1166
|
# # └─────┘
|
1167
1167
|
def dot(other)
|
1168
|
-
other = Utils.
|
1169
|
-
_from_rbexpr(_rbexpr.dot(other
|
1168
|
+
other = Utils.parse_into_expression(other, str_as_lit: false)
|
1169
|
+
_from_rbexpr(_rbexpr.dot(other))
|
1170
1170
|
end
|
1171
1171
|
|
1172
1172
|
# Compute the most occurring value(s).
|
@@ -1252,12 +1252,12 @@ module Polars
|
|
1252
1252
|
# df = Polars::DataFrame.new(
|
1253
1253
|
# {
|
1254
1254
|
# "group" => [
|
1255
|
-
#
|
1256
|
-
#
|
1257
|
-
#
|
1258
|
-
#
|
1259
|
-
#
|
1260
|
-
#
|
1255
|
+
# "one",
|
1256
|
+
# "one",
|
1257
|
+
# "one",
|
1258
|
+
# "two",
|
1259
|
+
# "two",
|
1260
|
+
# "two"
|
1261
1261
|
# ],
|
1262
1262
|
# "value" => [1, 98, 2, 3, 99, 4]
|
1263
1263
|
# }
|
@@ -1346,7 +1346,7 @@ module Polars
|
|
1346
1346
|
# # │ 2 ┆ 98 │
|
1347
1347
|
# # └───────┴──────────┘
|
1348
1348
|
def top_k(k: 5)
|
1349
|
-
k = Utils.
|
1349
|
+
k = Utils.parse_into_expression(k)
|
1350
1350
|
_from_rbexpr(_rbexpr.top_k(k))
|
1351
1351
|
end
|
1352
1352
|
|
@@ -1385,7 +1385,7 @@ module Polars
|
|
1385
1385
|
# # │ 2 ┆ 98 │
|
1386
1386
|
# # └───────┴──────────┘
|
1387
1387
|
def bottom_k(k: 5)
|
1388
|
-
k = Utils.
|
1388
|
+
k = Utils.parse_into_expression(k)
|
1389
1389
|
_from_rbexpr(_rbexpr.bottom_k(k))
|
1390
1390
|
end
|
1391
1391
|
|
@@ -1498,8 +1498,8 @@ module Polars
|
|
1498
1498
|
# # │ 0 ┆ 2 ┆ 4 │
|
1499
1499
|
# # └──────┴───────┴─────┘
|
1500
1500
|
def search_sorted(element, side: "any")
|
1501
|
-
element = Utils.
|
1502
|
-
_from_rbexpr(_rbexpr.search_sorted(element
|
1501
|
+
element = Utils.parse_into_expression(element, str_as_lit: false)
|
1502
|
+
_from_rbexpr(_rbexpr.search_sorted(element, side))
|
1503
1503
|
end
|
1504
1504
|
|
1505
1505
|
# Sort this column by the ordering of another column, or multiple other columns.
|
@@ -1545,13 +1545,14 @@ module Polars
|
|
1545
1545
|
# # │ two │
|
1546
1546
|
# # └───────┘
|
1547
1547
|
def sort_by(by, *more_by, reverse: false, nulls_last: false, multithreaded: true, maintain_order: false)
|
1548
|
-
by = Utils.
|
1549
|
-
|
1550
|
-
|
1551
|
-
|
1552
|
-
|
1553
|
-
|
1554
|
-
|
1548
|
+
by = Utils.parse_into_list_of_expressions(by, *more_by)
|
1549
|
+
reverse = Utils.extend_bool(reverse, by.length, "reverse", "by")
|
1550
|
+
nulls_last = Utils.extend_bool(nulls_last, by.length, "nulls_last", "by")
|
1551
|
+
_from_rbexpr(
|
1552
|
+
_rbexpr.sort_by(
|
1553
|
+
by, reverse, nulls_last, multithreaded, maintain_order
|
1554
|
+
)
|
1555
|
+
)
|
1555
1556
|
end
|
1556
1557
|
|
1557
1558
|
# Take values by index.
|
@@ -1588,14 +1589,51 @@ module Polars
|
|
1588
1589
|
# # └───────┴───────────┘
|
1589
1590
|
def gather(indices)
|
1590
1591
|
if indices.is_a?(::Array)
|
1591
|
-
indices_lit = Polars.lit(Series.new("", indices, dtype: :u32))
|
1592
|
+
indices_lit = Polars.lit(Series.new("", indices, dtype: :u32))._rbexpr
|
1592
1593
|
else
|
1593
|
-
indices_lit = Utils.
|
1594
|
+
indices_lit = Utils.parse_into_expression(indices, str_as_lit: false)
|
1594
1595
|
end
|
1595
|
-
_from_rbexpr(_rbexpr.gather(indices_lit
|
1596
|
+
_from_rbexpr(_rbexpr.gather(indices_lit))
|
1596
1597
|
end
|
1597
1598
|
alias_method :take, :gather
|
1598
1599
|
|
1600
|
+
# Return a single value by index.
|
1601
|
+
#
|
1602
|
+
# @param index [Object]
|
1603
|
+
# An expression that leads to a UInt32 index.
|
1604
|
+
#
|
1605
|
+
# @return [Expr]
|
1606
|
+
#
|
1607
|
+
# @example
|
1608
|
+
# df = Polars::DataFrame.new(
|
1609
|
+
# {
|
1610
|
+
# "group" => [
|
1611
|
+
# "one",
|
1612
|
+
# "one",
|
1613
|
+
# "one",
|
1614
|
+
# "two",
|
1615
|
+
# "two",
|
1616
|
+
# "two"
|
1617
|
+
# ],
|
1618
|
+
# "value" => [1, 98, 2, 3, 99, 4]
|
1619
|
+
# }
|
1620
|
+
# )
|
1621
|
+
# df.group_by("group", maintain_order: true).agg(Polars.col("value").get(1))
|
1622
|
+
# # =>
|
1623
|
+
# # shape: (2, 2)
|
1624
|
+
# # ┌───────┬───────┐
|
1625
|
+
# # │ group ┆ value │
|
1626
|
+
# # │ --- ┆ --- │
|
1627
|
+
# # │ str ┆ i64 │
|
1628
|
+
# # ╞═══════╪═══════╡
|
1629
|
+
# # │ one ┆ 98 │
|
1630
|
+
# # │ two ┆ 99 │
|
1631
|
+
# # └───────┴───────┘
|
1632
|
+
def get(index)
|
1633
|
+
index_lit = Utils.parse_into_expression(index)
|
1634
|
+
_from_rbexpr(_rbexpr.get(index_lit))
|
1635
|
+
end
|
1636
|
+
|
1599
1637
|
# Shift the values by a given period.
|
1600
1638
|
#
|
1601
1639
|
# @param n [Integer]
|
@@ -1622,9 +1660,9 @@ module Polars
|
|
1622
1660
|
# # └──────┘
|
1623
1661
|
def shift(n = 1, fill_value: nil)
|
1624
1662
|
if !fill_value.nil?
|
1625
|
-
fill_value = Utils.
|
1663
|
+
fill_value = Utils.parse_into_expression(fill_value, str_as_lit: true)
|
1626
1664
|
end
|
1627
|
-
n = Utils.
|
1665
|
+
n = Utils.parse_into_expression(n)
|
1628
1666
|
_from_rbexpr(_rbexpr.shift(n, fill_value))
|
1629
1667
|
end
|
1630
1668
|
|
@@ -1727,8 +1765,8 @@ module Polars
|
|
1727
1765
|
end
|
1728
1766
|
|
1729
1767
|
if !value.nil?
|
1730
|
-
value = Utils.
|
1731
|
-
_from_rbexpr(_rbexpr.fill_null(value
|
1768
|
+
value = Utils.parse_into_expression(value, str_as_lit: true)
|
1769
|
+
_from_rbexpr(_rbexpr.fill_null(value))
|
1732
1770
|
else
|
1733
1771
|
_from_rbexpr(_rbexpr.fill_null_with_strategy(strategy, limit))
|
1734
1772
|
end
|
@@ -1758,8 +1796,8 @@ module Polars
|
|
1758
1796
|
# # │ zero ┆ 6.0 │
|
1759
1797
|
# # └──────┴──────┘
|
1760
1798
|
def fill_nan(fill_value)
|
1761
|
-
fill_value = Utils.
|
1762
|
-
_from_rbexpr(_rbexpr.fill_nan(fill_value
|
1799
|
+
fill_value = Utils.parse_into_expression(fill_value, str_as_lit: true)
|
1800
|
+
_from_rbexpr(_rbexpr.fill_nan(fill_value))
|
1763
1801
|
end
|
1764
1802
|
|
1765
1803
|
# Fill missing values with the latest seen values.
|
@@ -2275,7 +2313,7 @@ module Polars
|
|
2275
2313
|
# # │ 4 │
|
2276
2314
|
# # └────────┘
|
2277
2315
|
def over(expr)
|
2278
|
-
rbexprs = Utils.
|
2316
|
+
rbexprs = Utils.parse_into_list_of_expressions(expr)
|
2279
2317
|
_from_rbexpr(_rbexpr.over(rbexprs))
|
2280
2318
|
end
|
2281
2319
|
|
@@ -2470,8 +2508,8 @@ module Polars
|
|
2470
2508
|
# # │ 1.5 │
|
2471
2509
|
# # └─────┘
|
2472
2510
|
def quantile(quantile, interpolation: "nearest")
|
2473
|
-
quantile = Utils.
|
2474
|
-
_from_rbexpr(_rbexpr.quantile(quantile
|
2511
|
+
quantile = Utils.parse_into_expression(quantile, str_as_lit: false)
|
2512
|
+
_from_rbexpr(_rbexpr.quantile(quantile, interpolation))
|
2475
2513
|
end
|
2476
2514
|
|
2477
2515
|
# Bin continuous values into discrete categories.
|
@@ -2515,17 +2553,17 @@ module Polars
|
|
2515
2553
|
# ).unnest("cut")
|
2516
2554
|
# # =>
|
2517
2555
|
# # shape: (5, 3)
|
2518
|
-
# #
|
2519
|
-
# # │ foo ┆
|
2520
|
-
# # │ --- ┆ ---
|
2521
|
-
# # │ i64 ┆ f64
|
2522
|
-
# #
|
2523
|
-
# # │ -2 ┆ -1.0
|
2524
|
-
# # │ -1 ┆ -1.0
|
2525
|
-
# # │ 0 ┆ 1.0
|
2526
|
-
# # │ 1 ┆ 1.0
|
2527
|
-
# # │ 2 ┆ inf
|
2528
|
-
# #
|
2556
|
+
# # ┌─────┬────────────┬────────────┐
|
2557
|
+
# # │ foo ┆ breakpoint ┆ category │
|
2558
|
+
# # │ --- ┆ --- ┆ --- │
|
2559
|
+
# # │ i64 ┆ f64 ┆ cat │
|
2560
|
+
# # ╞═════╪════════════╪════════════╡
|
2561
|
+
# # │ -2 ┆ -1.0 ┆ (-inf, -1] │
|
2562
|
+
# # │ -1 ┆ -1.0 ┆ (-inf, -1] │
|
2563
|
+
# # │ 0 ┆ 1.0 ┆ (-1, 1] │
|
2564
|
+
# # │ 1 ┆ 1.0 ┆ (-1, 1] │
|
2565
|
+
# # │ 2 ┆ inf ┆ (1, inf] │
|
2566
|
+
# # └─────┴────────────┴────────────┘
|
2529
2567
|
def cut(breaks, labels: nil, left_closed: false, include_breaks: false)
|
2530
2568
|
_from_rbexpr(_rbexpr.cut(breaks, labels, left_closed, include_breaks))
|
2531
2569
|
end
|
@@ -2596,17 +2634,17 @@ module Polars
|
|
2596
2634
|
# ).unnest("qcut")
|
2597
2635
|
# # =>
|
2598
2636
|
# # shape: (5, 3)
|
2599
|
-
# #
|
2600
|
-
# # │ foo ┆
|
2601
|
-
# # │ --- ┆ ---
|
2602
|
-
# # │ i64 ┆ f64
|
2603
|
-
# #
|
2604
|
-
# # │ -2 ┆ -1.0
|
2605
|
-
# # │ -1 ┆ -1.0
|
2606
|
-
# # │ 0 ┆ 1.0
|
2607
|
-
# # │ 1 ┆ 1.0
|
2608
|
-
# # │ 2 ┆ inf
|
2609
|
-
# #
|
2637
|
+
# # ┌─────┬────────────┬────────────┐
|
2638
|
+
# # │ foo ┆ breakpoint ┆ category │
|
2639
|
+
# # │ --- ┆ --- ┆ --- │
|
2640
|
+
# # │ i64 ┆ f64 ┆ cat │
|
2641
|
+
# # ╞═════╪════════════╪════════════╡
|
2642
|
+
# # │ -2 ┆ -1.0 ┆ (-inf, -1] │
|
2643
|
+
# # │ -1 ┆ -1.0 ┆ (-inf, -1] │
|
2644
|
+
# # │ 0 ┆ 1.0 ┆ (-1, 1] │
|
2645
|
+
# # │ 1 ┆ 1.0 ┆ (-1, 1] │
|
2646
|
+
# # │ 2 ┆ inf ┆ (1, inf] │
|
2647
|
+
# # └─────┴────────────┴────────────┘
|
2610
2648
|
def qcut(quantiles, labels: nil, left_closed: false, allow_duplicates: false, include_breaks: false)
|
2611
2649
|
if quantiles.is_a?(Integer)
|
2612
2650
|
rbexpr = _rbexpr.qcut_uniform(
|
@@ -2630,18 +2668,18 @@ module Polars
|
|
2630
2668
|
# df.select(Polars.col("s").rle).unnest("s")
|
2631
2669
|
# # =>
|
2632
2670
|
# # shape: (6, 2)
|
2633
|
-
# #
|
2634
|
-
# # │
|
2635
|
-
# # │ ---
|
2636
|
-
# # │
|
2637
|
-
# #
|
2638
|
-
# # │ 2
|
2639
|
-
# # │ 1
|
2640
|
-
# # │ 1
|
2641
|
-
# # │ 1
|
2642
|
-
# # │ 1
|
2643
|
-
# # │ 2
|
2644
|
-
# #
|
2671
|
+
# # ┌─────┬───────┐
|
2672
|
+
# # │ len ┆ value │
|
2673
|
+
# # │ --- ┆ --- │
|
2674
|
+
# # │ u32 ┆ i64 │
|
2675
|
+
# # ╞═════╪═══════╡
|
2676
|
+
# # │ 2 ┆ 1 │
|
2677
|
+
# # │ 1 ┆ 2 │
|
2678
|
+
# # │ 1 ┆ 1 │
|
2679
|
+
# # │ 1 ┆ null │
|
2680
|
+
# # │ 1 ┆ 1 │
|
2681
|
+
# # │ 2 ┆ 3 │
|
2682
|
+
# # └─────┴───────┘
|
2645
2683
|
def rle
|
2646
2684
|
_from_rbexpr(_rbexpr.rle)
|
2647
2685
|
end
|
@@ -2764,6 +2802,9 @@ module Polars
|
|
2764
2802
|
# Dtype of the output Series.
|
2765
2803
|
# @param agg_list [Boolean]
|
2766
2804
|
# Aggregate list.
|
2805
|
+
# @param is_elementwise [Boolean]
|
2806
|
+
# If set to true this can run in the streaming engine, but may yield
|
2807
|
+
# incorrect results in group-by. Ensure you know what you are doing!
|
2767
2808
|
#
|
2768
2809
|
# @return [Expr]
|
2769
2810
|
#
|
@@ -2784,12 +2825,21 @@ module Polars
|
|
2784
2825
|
# # ╞══════╪════════╡
|
2785
2826
|
# # │ 1 ┆ 0 │
|
2786
2827
|
# # └──────┴────────┘
|
2787
|
-
# def
|
2828
|
+
# def map_batches(return_dtype: nil, agg_list: false, is_elementwise: false, &f)
|
2788
2829
|
# if !return_dtype.nil?
|
2789
2830
|
# return_dtype = Utils.rb_type_to_dtype(return_dtype)
|
2790
2831
|
# end
|
2791
|
-
# _from_rbexpr(
|
2832
|
+
# _from_rbexpr(
|
2833
|
+
# _rbexpr.map_batches(
|
2834
|
+
# # TODO _map_batches_wrapper
|
2835
|
+
# f,
|
2836
|
+
# return_dtype,
|
2837
|
+
# agg_list,
|
2838
|
+
# is_elementwise
|
2839
|
+
# )
|
2840
|
+
# )
|
2792
2841
|
# end
|
2842
|
+
# alias_method :map, :map_batches
|
2793
2843
|
|
2794
2844
|
# Apply a custom/user-defined function (UDF) in a GroupBy or Projection context.
|
2795
2845
|
#
|
@@ -2831,7 +2881,7 @@ module Polars
|
|
2831
2881
|
#
|
2832
2882
|
# @example In a selection context, the function is applied by row.
|
2833
2883
|
# df.with_column(
|
2834
|
-
# Polars.col("a").
|
2884
|
+
# Polars.col("a").map_elements { |x| x * 2 }.alias("a_times_2")
|
2835
2885
|
# )
|
2836
2886
|
# # =>
|
2837
2887
|
# # shape: (4, 3)
|
@@ -2851,7 +2901,7 @@ module Polars
|
|
2851
2901
|
# .group_by("b", maintain_order: true)
|
2852
2902
|
# .agg(
|
2853
2903
|
# [
|
2854
|
-
# Polars.col("a").
|
2904
|
+
# Polars.col("a").map_elements { |x| x.sum }
|
2855
2905
|
# ]
|
2856
2906
|
# )
|
2857
2907
|
# .collect
|
@@ -2866,12 +2916,23 @@ module Polars
|
|
2866
2916
|
# # │ b ┆ 2 │
|
2867
2917
|
# # │ c ┆ 4 │
|
2868
2918
|
# # └─────┴─────┘
|
2869
|
-
# def
|
2870
|
-
#
|
2871
|
-
#
|
2919
|
+
# def map_elements(
|
2920
|
+
# return_dtype: nil,
|
2921
|
+
# skip_nulls: true,
|
2922
|
+
# pass_name: false,
|
2923
|
+
# strategy: "thread_local",
|
2924
|
+
# &f
|
2925
|
+
# )
|
2926
|
+
# if pass_name
|
2927
|
+
# raise Todo
|
2928
|
+
# else
|
2929
|
+
# wrap_f = lambda do |x|
|
2930
|
+
# x.map_elements(return_dtype: return_dtype, skip_nulls: skip_nulls, &f)
|
2931
|
+
# end
|
2872
2932
|
# end
|
2873
|
-
#
|
2933
|
+
# map_batches(agg_list: true, return_dtype: return_dtype, &wrap_f)
|
2874
2934
|
# end
|
2935
|
+
# alias_method :apply, :map_elements
|
2875
2936
|
|
2876
2937
|
# Explode a list or utf8 Series. This means that every item is expanded to a new
|
2877
2938
|
# row.
|
@@ -3081,7 +3142,7 @@ module Polars
|
|
3081
3142
|
# # │ null ┆ null ┆ null ┆ true │
|
3082
3143
|
# # └──────┴──────┴────────┴────────────────┘
|
3083
3144
|
def eq_missing(other)
|
3084
|
-
other = Utils.
|
3145
|
+
other = Utils.parse_into_expression(other, str_as_lit: true)
|
3085
3146
|
_from_rbexpr(_rbexpr.eq_missing(other))
|
3086
3147
|
end
|
3087
3148
|
|
@@ -3285,7 +3346,7 @@ module Polars
|
|
3285
3346
|
# # │ null ┆ null ┆ null ┆ false │
|
3286
3347
|
# # └──────┴──────┴────────┴────────────────┘
|
3287
3348
|
def ne_missing(other)
|
3288
|
-
other = Utils.
|
3349
|
+
other = Utils.parse_into_expression(other, str_as_lit: true)
|
3289
3350
|
_from_rbexpr(_rbexpr.neq_missing(other))
|
3290
3351
|
end
|
3291
3352
|
|
@@ -3588,14 +3649,14 @@ module Polars
|
|
3588
3649
|
def is_in(other)
|
3589
3650
|
if other.is_a?(::Array)
|
3590
3651
|
if other.length == 0
|
3591
|
-
other = Polars.lit(nil)
|
3652
|
+
other = Polars.lit(nil)._rbexpr
|
3592
3653
|
else
|
3593
|
-
other = Polars.lit(Series.new(other))
|
3654
|
+
other = Polars.lit(Series.new(other))._rbexpr
|
3594
3655
|
end
|
3595
3656
|
else
|
3596
|
-
other = Utils.
|
3657
|
+
other = Utils.parse_into_expression(other, str_as_lit: false)
|
3597
3658
|
end
|
3598
|
-
_from_rbexpr(_rbexpr.is_in(other
|
3659
|
+
_from_rbexpr(_rbexpr.is_in(other))
|
3599
3660
|
end
|
3600
3661
|
alias_method :in?, :is_in
|
3601
3662
|
|
@@ -3630,15 +3691,15 @@ module Polars
|
|
3630
3691
|
# # │ ["z", "z", "z"] │
|
3631
3692
|
# # └─────────────────┘
|
3632
3693
|
def repeat_by(by)
|
3633
|
-
by = Utils.
|
3634
|
-
_from_rbexpr(_rbexpr.repeat_by(by
|
3694
|
+
by = Utils.parse_into_expression(by, str_as_lit: false)
|
3695
|
+
_from_rbexpr(_rbexpr.repeat_by(by))
|
3635
3696
|
end
|
3636
3697
|
|
3637
3698
|
# Check if this expression is between start and end.
|
3638
3699
|
#
|
3639
|
-
# @param
|
3700
|
+
# @param lower_bound [Object]
|
3640
3701
|
# Lower bound as primitive type or datetime.
|
3641
|
-
# @param
|
3702
|
+
# @param upper_bound [Object]
|
3642
3703
|
# Upper bound as primitive type or datetime.
|
3643
3704
|
# @param closed ["both", "left", "right", "none"]
|
3644
3705
|
# Define which sides of the interval are closed (inclusive).
|
@@ -3700,22 +3761,13 @@ module Polars
|
|
3700
3761
|
# # │ d ┆ false │
|
3701
3762
|
# # │ e ┆ false │
|
3702
3763
|
# # └─────┴────────────┘
|
3703
|
-
def is_between(
|
3704
|
-
|
3705
|
-
|
3706
|
-
|
3707
|
-
|
3708
|
-
|
3709
|
-
|
3710
|
-
when "both"
|
3711
|
-
(self >= start) & (self <= _end)
|
3712
|
-
when "right"
|
3713
|
-
(self > start) & (self <= _end)
|
3714
|
-
when "left"
|
3715
|
-
(self >= start) & (self < _end)
|
3716
|
-
else
|
3717
|
-
raise ArgumentError, "closed must be one of 'left', 'right', 'both', or 'none'"
|
3718
|
-
end
|
3764
|
+
def is_between(lower_bound, upper_bound, closed: "both")
|
3765
|
+
lower_bound = Utils.parse_into_expression(lower_bound)
|
3766
|
+
upper_bound = Utils.parse_into_expression(upper_bound)
|
3767
|
+
|
3768
|
+
_from_rbexpr(
|
3769
|
+
_rbexpr.is_between(lower_bound, upper_bound, closed)
|
3770
|
+
)
|
3719
3771
|
end
|
3720
3772
|
|
3721
3773
|
# Hash the elements in the selection.
|
@@ -3857,6 +3909,1002 @@ module Polars
|
|
3857
3909
|
_from_rbexpr(_rbexpr.interpolate(method))
|
3858
3910
|
end
|
3859
3911
|
|
3912
|
+
# Apply a rolling min based on another column.
|
3913
|
+
#
|
3914
|
+
# @param by [String]
|
3915
|
+
# This column must be of dtype Datetime or Date.
|
3916
|
+
# @param window_size [String]
|
3917
|
+
# The length of the window. Can be a dynamic temporal
|
3918
|
+
# size indicated by a timedelta or the following string language:
|
3919
|
+
#
|
3920
|
+
# - 1ns (1 nanosecond)
|
3921
|
+
# - 1us (1 microsecond)
|
3922
|
+
# - 1ms (1 millisecond)
|
3923
|
+
# - 1s (1 second)
|
3924
|
+
# - 1m (1 minute)
|
3925
|
+
# - 1h (1 hour)
|
3926
|
+
# - 1d (1 calendar day)
|
3927
|
+
# - 1w (1 calendar week)
|
3928
|
+
# - 1mo (1 calendar month)
|
3929
|
+
# - 1q (1 calendar quarter)
|
3930
|
+
# - 1y (1 calendar year)
|
3931
|
+
#
|
3932
|
+
# By "calendar day", we mean the corresponding time on the next day
|
3933
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
3934
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
3935
|
+
# "calendar year".
|
3936
|
+
# @param min_periods [Integer]
|
3937
|
+
# The number of values in the window that should be non-null before computing
|
3938
|
+
# a result.
|
3939
|
+
# @param closed ['left', 'right', 'both', 'none']
|
3940
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
3941
|
+
# defaults to `'right'`.
|
3942
|
+
# @param warn_if_unsorted [Boolean]
|
3943
|
+
# Warn if data is not known to be sorted by `by` column.
|
3944
|
+
#
|
3945
|
+
# @return [Expr]
|
3946
|
+
#
|
3947
|
+
# @note
|
3948
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
3949
|
+
# window, consider using `rolling` - this method can cache the window size
|
3950
|
+
# computation.
|
3951
|
+
#
|
3952
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
3953
|
+
# start = DateTime.new(2001, 1, 1)
|
3954
|
+
# stop = DateTime.new(2001, 1, 2)
|
3955
|
+
# df_temporal = Polars::DataFrame.new(
|
3956
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
3957
|
+
# ).with_row_index
|
3958
|
+
# # =>
|
3959
|
+
# # shape: (25, 2)
|
3960
|
+
# # ┌───────┬─────────────────────┐
|
3961
|
+
# # │ index ┆ date │
|
3962
|
+
# # │ --- ┆ --- │
|
3963
|
+
# # │ u32 ┆ datetime[ns] │
|
3964
|
+
# # ╞═══════╪═════════════════════╡
|
3965
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
3966
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
3967
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
3968
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
3969
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
3970
|
+
# # │ … ┆ … │
|
3971
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
3972
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
3973
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
3974
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
3975
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
3976
|
+
# # └───────┴─────────────────────┘
|
3977
|
+
#
|
3978
|
+
# @example Compute the rolling min with the temporal windows closed on the right (default)
|
3979
|
+
# df_temporal.with_columns(
|
3980
|
+
# rolling_row_min: Polars.col("index").rolling_min_by("date", "2h")
|
3981
|
+
# )
|
3982
|
+
# # =>
|
3983
|
+
# # shape: (25, 3)
|
3984
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
3985
|
+
# # │ index ┆ date ┆ rolling_row_min │
|
3986
|
+
# # │ --- ┆ --- ┆ --- │
|
3987
|
+
# # │ u32 ┆ datetime[ns] ┆ u32 │
|
3988
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
3989
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
|
3990
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0 │
|
3991
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1 │
|
3992
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2 │
|
3993
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3 │
|
3994
|
+
# # │ … ┆ … ┆ … │
|
3995
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19 │
|
3996
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20 │
|
3997
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21 │
|
3998
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22 │
|
3999
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23 │
|
4000
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4001
|
+
def rolling_min_by(
|
4002
|
+
by,
|
4003
|
+
window_size,
|
4004
|
+
min_periods: 1,
|
4005
|
+
closed: "right",
|
4006
|
+
warn_if_unsorted: nil
|
4007
|
+
)
|
4008
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4009
|
+
by = Utils.parse_into_expression(by)
|
4010
|
+
_from_rbexpr(
|
4011
|
+
_rbexpr.rolling_min_by(by, window_size, min_periods, closed)
|
4012
|
+
)
|
4013
|
+
end
|
4014
|
+
|
4015
|
+
# Apply a rolling max based on another column.
|
4016
|
+
#
|
4017
|
+
# @param by [String]
|
4018
|
+
# This column must be of dtype Datetime or Date.
|
4019
|
+
# @param window_size [String]
|
4020
|
+
# The length of the window. Can be a dynamic temporal
|
4021
|
+
# size indicated by a timedelta or the following string language:
|
4022
|
+
#
|
4023
|
+
# - 1ns (1 nanosecond)
|
4024
|
+
# - 1us (1 microsecond)
|
4025
|
+
# - 1ms (1 millisecond)
|
4026
|
+
# - 1s (1 second)
|
4027
|
+
# - 1m (1 minute)
|
4028
|
+
# - 1h (1 hour)
|
4029
|
+
# - 1d (1 calendar day)
|
4030
|
+
# - 1w (1 calendar week)
|
4031
|
+
# - 1mo (1 calendar month)
|
4032
|
+
# - 1q (1 calendar quarter)
|
4033
|
+
# - 1y (1 calendar year)
|
4034
|
+
#
|
4035
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4036
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4037
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4038
|
+
# "calendar year".
|
4039
|
+
# @param min_periods [Integer]
|
4040
|
+
# The number of values in the window that should be non-null before computing
|
4041
|
+
# a result.
|
4042
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4043
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4044
|
+
# defaults to `'right'`.
|
4045
|
+
# @param warn_if_unsorted [Boolean]
|
4046
|
+
# Warn if data is not known to be sorted by `by` column.
|
4047
|
+
#
|
4048
|
+
# @return [Expr]
|
4049
|
+
#
|
4050
|
+
# @note
|
4051
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4052
|
+
# window, consider using `rolling` - this method can cache the window size
|
4053
|
+
# computation.
|
4054
|
+
#
|
4055
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4056
|
+
# start = DateTime.new(2001, 1, 1)
|
4057
|
+
# stop = DateTime.new(2001, 1, 2)
|
4058
|
+
# df_temporal = Polars::DataFrame.new(
|
4059
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4060
|
+
# ).with_row_index
|
4061
|
+
# # =>
|
4062
|
+
# # shape: (25, 2)
|
4063
|
+
# # ┌───────┬─────────────────────┐
|
4064
|
+
# # │ index ┆ date │
|
4065
|
+
# # │ --- ┆ --- │
|
4066
|
+
# # │ u32 ┆ datetime[ns] │
|
4067
|
+
# # ╞═══════╪═════════════════════╡
|
4068
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4069
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4070
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4071
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4072
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4073
|
+
# # │ … ┆ … │
|
4074
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4075
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4076
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4077
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4078
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4079
|
+
# # └───────┴─────────────────────┘
|
4080
|
+
#
|
4081
|
+
# @example Compute the rolling max with the temporal windows closed on the right (default)
|
4082
|
+
# df_temporal.with_columns(
|
4083
|
+
# rolling_row_max: Polars.col("index").rolling_max_by("date", "2h")
|
4084
|
+
# )
|
4085
|
+
# # =>
|
4086
|
+
# # shape: (25, 3)
|
4087
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4088
|
+
# # │ index ┆ date ┆ rolling_row_max │
|
4089
|
+
# # │ --- ┆ --- ┆ --- │
|
4090
|
+
# # │ u32 ┆ datetime[ns] ┆ u32 │
|
4091
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4092
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
|
4093
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
|
4094
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 2 │
|
4095
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 3 │
|
4096
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 4 │
|
4097
|
+
# # │ … ┆ … ┆ … │
|
4098
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 20 │
|
4099
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 21 │
|
4100
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 22 │
|
4101
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 23 │
|
4102
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 24 │
|
4103
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4104
|
+
#
|
4105
|
+
# @example Compute the rolling max with the closure of windows on both sides
|
4106
|
+
# df_temporal.with_columns(
|
4107
|
+
# rolling_row_max: Polars.col("index").rolling_max_by(
|
4108
|
+
# "date", "2h", closed: "both"
|
4109
|
+
# )
|
4110
|
+
# )
|
4111
|
+
# # =>
|
4112
|
+
# # shape: (25, 3)
|
4113
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4114
|
+
# # │ index ┆ date ┆ rolling_row_max │
|
4115
|
+
# # │ --- ┆ --- ┆ --- │
|
4116
|
+
# # │ u32 ┆ datetime[ns] ┆ u32 │
|
4117
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4118
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
|
4119
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
|
4120
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 2 │
|
4121
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 3 │
|
4122
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 4 │
|
4123
|
+
# # │ … ┆ … ┆ … │
|
4124
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 20 │
|
4125
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 21 │
|
4126
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 22 │
|
4127
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 23 │
|
4128
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 24 │
|
4129
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4130
|
+
def rolling_max_by(
|
4131
|
+
by,
|
4132
|
+
window_size,
|
4133
|
+
min_periods: 1,
|
4134
|
+
closed: "right",
|
4135
|
+
warn_if_unsorted: nil
|
4136
|
+
)
|
4137
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4138
|
+
by = Utils.parse_into_expression(by)
|
4139
|
+
_from_rbexpr(
|
4140
|
+
_rbexpr.rolling_max_by(by, window_size, min_periods, closed)
|
4141
|
+
)
|
4142
|
+
end
|
4143
|
+
|
4144
|
+
# Apply a rolling mean based on another column.
|
4145
|
+
#
|
4146
|
+
# @param by [String]
|
4147
|
+
# This column must be of dtype Datetime or Date.
|
4148
|
+
# @param window_size [String]
|
4149
|
+
# The length of the window. Can be a dynamic temporal
|
4150
|
+
# size indicated by a timedelta or the following string language:
|
4151
|
+
#
|
4152
|
+
# - 1ns (1 nanosecond)
|
4153
|
+
# - 1us (1 microsecond)
|
4154
|
+
# - 1ms (1 millisecond)
|
4155
|
+
# - 1s (1 second)
|
4156
|
+
# - 1m (1 minute)
|
4157
|
+
# - 1h (1 hour)
|
4158
|
+
# - 1d (1 calendar day)
|
4159
|
+
# - 1w (1 calendar week)
|
4160
|
+
# - 1mo (1 calendar month)
|
4161
|
+
# - 1q (1 calendar quarter)
|
4162
|
+
# - 1y (1 calendar year)
|
4163
|
+
#
|
4164
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4165
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4166
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4167
|
+
# "calendar year".
|
4168
|
+
# @param min_periods [Integer]
|
4169
|
+
# The number of values in the window that should be non-null before computing
|
4170
|
+
# a result.
|
4171
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4172
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4173
|
+
# defaults to `'right'`.
|
4174
|
+
# @param warn_if_unsorted [Boolean]
|
4175
|
+
# Warn if data is not known to be sorted by `by` column.
|
4176
|
+
#
|
4177
|
+
# @return [Expr]
|
4178
|
+
#
|
4179
|
+
# @note
|
4180
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4181
|
+
# window, consider using `rolling` - this method can cache the window size
|
4182
|
+
# computation.
|
4183
|
+
#
|
4184
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4185
|
+
# start = DateTime.new(2001, 1, 1)
|
4186
|
+
# stop = DateTime.new(2001, 1, 2)
|
4187
|
+
# df_temporal = Polars::DataFrame.new(
|
4188
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4189
|
+
# ).with_row_index
|
4190
|
+
# # =>
|
4191
|
+
# # shape: (25, 2)
|
4192
|
+
# # ┌───────┬─────────────────────┐
|
4193
|
+
# # │ index ┆ date │
|
4194
|
+
# # │ --- ┆ --- │
|
4195
|
+
# # │ u32 ┆ datetime[ns] │
|
4196
|
+
# # ╞═══════╪═════════════════════╡
|
4197
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4198
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4199
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4200
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4201
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4202
|
+
# # │ … ┆ … │
|
4203
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4204
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4205
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4206
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4207
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4208
|
+
# # └───────┴─────────────────────┘
|
4209
|
+
#
|
4210
|
+
# @example Compute the rolling mean with the temporal windows closed on the right (default)
|
4211
|
+
# df_temporal.with_columns(
|
4212
|
+
# rolling_row_mean: Polars.col("index").rolling_mean_by(
|
4213
|
+
# "date", "2h"
|
4214
|
+
# )
|
4215
|
+
# )
|
4216
|
+
# # =>
|
4217
|
+
# # shape: (25, 3)
|
4218
|
+
# # ┌───────┬─────────────────────┬──────────────────┐
|
4219
|
+
# # │ index ┆ date ┆ rolling_row_mean │
|
4220
|
+
# # │ --- ┆ --- ┆ --- │
|
4221
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4222
|
+
# # ╞═══════╪═════════════════════╪══════════════════╡
|
4223
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
|
4224
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
|
4225
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.5 │
|
4226
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.5 │
|
4227
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.5 │
|
4228
|
+
# # │ … ┆ … ┆ … │
|
4229
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.5 │
|
4230
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.5 │
|
4231
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.5 │
|
4232
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.5 │
|
4233
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.5 │
|
4234
|
+
# # └───────┴─────────────────────┴──────────────────┘
|
4235
|
+
#
|
4236
|
+
# @example Compute the rolling mean with the closure of windows on both sides
|
4237
|
+
# df_temporal.with_columns(
|
4238
|
+
# rolling_row_mean: Polars.col("index").rolling_mean_by(
|
4239
|
+
# "date", "2h", closed: "both"
|
4240
|
+
# )
|
4241
|
+
# )
|
4242
|
+
# # =>
|
4243
|
+
# # shape: (25, 3)
|
4244
|
+
# # ┌───────┬─────────────────────┬──────────────────┐
|
4245
|
+
# # │ index ┆ date ┆ rolling_row_mean │
|
4246
|
+
# # │ --- ┆ --- ┆ --- │
|
4247
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4248
|
+
# # ╞═══════╪═════════════════════╪══════════════════╡
|
4249
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
|
4250
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
|
4251
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
|
4252
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.0 │
|
4253
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.0 │
|
4254
|
+
# # │ … ┆ … ┆ … │
|
4255
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.0 │
|
4256
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.0 │
|
4257
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.0 │
|
4258
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.0 │
|
4259
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.0 │
|
4260
|
+
# # └───────┴─────────────────────┴──────────────────┘
|
4261
|
+
def rolling_mean_by(
|
4262
|
+
by,
|
4263
|
+
window_size,
|
4264
|
+
min_periods: 1,
|
4265
|
+
closed: "right",
|
4266
|
+
warn_if_unsorted: nil
|
4267
|
+
)
|
4268
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4269
|
+
by = Utils.parse_into_expression(by)
|
4270
|
+
_from_rbexpr(
|
4271
|
+
_rbexpr.rolling_mean_by(
|
4272
|
+
by,
|
4273
|
+
window_size,
|
4274
|
+
min_periods,
|
4275
|
+
closed
|
4276
|
+
)
|
4277
|
+
)
|
4278
|
+
end
|
4279
|
+
|
4280
|
+
# Apply a rolling sum based on another column.
|
4281
|
+
#
|
4282
|
+
# @param by [String]
|
4283
|
+
# This column must of dtype `{Date, Datetime}`
|
4284
|
+
# @param window_size [String]
|
4285
|
+
# The length of the window. Can be a dynamic temporal
|
4286
|
+
# size indicated by a timedelta or the following string language:
|
4287
|
+
#
|
4288
|
+
# - 1ns (1 nanosecond)
|
4289
|
+
# - 1us (1 microsecond)
|
4290
|
+
# - 1ms (1 millisecond)
|
4291
|
+
# - 1s (1 second)
|
4292
|
+
# - 1m (1 minute)
|
4293
|
+
# - 1h (1 hour)
|
4294
|
+
# - 1d (1 calendar day)
|
4295
|
+
# - 1w (1 calendar week)
|
4296
|
+
# - 1mo (1 calendar month)
|
4297
|
+
# - 1q (1 calendar quarter)
|
4298
|
+
# - 1y (1 calendar year)
|
4299
|
+
#
|
4300
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4301
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4302
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4303
|
+
# "calendar year".
|
4304
|
+
# @param min_periods [Integer]
|
4305
|
+
# The number of values in the window that should be non-null before computing
|
4306
|
+
# a result.
|
4307
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4308
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4309
|
+
# defaults to `'right'`.
|
4310
|
+
# @param warn_if_unsorted [Boolean]
|
4311
|
+
# Warn if data is not known to be sorted by `by` column.
|
4312
|
+
#
|
4313
|
+
# @return [Expr]
|
4314
|
+
#
|
4315
|
+
# @note
|
4316
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4317
|
+
# window, consider using `rolling` - this method can cache the window size
|
4318
|
+
# computation.
|
4319
|
+
#
|
4320
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4321
|
+
# start = DateTime.new(2001, 1, 1)
|
4322
|
+
# stop = DateTime.new(2001, 1, 2)
|
4323
|
+
# df_temporal = Polars::DataFrame.new(
|
4324
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4325
|
+
# ).with_row_index
|
4326
|
+
# # =>
|
4327
|
+
# # shape: (25, 2)
|
4328
|
+
# # ┌───────┬─────────────────────┐
|
4329
|
+
# # │ index ┆ date │
|
4330
|
+
# # │ --- ┆ --- │
|
4331
|
+
# # │ u32 ┆ datetime[ns] │
|
4332
|
+
# # ╞═══════╪═════════════════════╡
|
4333
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4334
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4335
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4336
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4337
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4338
|
+
# # │ … ┆ … │
|
4339
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4340
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4341
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4342
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4343
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4344
|
+
# # └───────┴─────────────────────┘
|
4345
|
+
#
|
4346
|
+
# @example Compute the rolling sum with the temporal windows closed on the right (default)
|
4347
|
+
# df_temporal.with_columns(
|
4348
|
+
# rolling_row_sum: Polars.col("index").rolling_sum_by("date", "2h")
|
4349
|
+
# )
|
4350
|
+
# # =>
|
4351
|
+
# # shape: (25, 3)
|
4352
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4353
|
+
# # │ index ┆ date ┆ rolling_row_sum │
|
4354
|
+
# # │ --- ┆ --- ┆ --- │
|
4355
|
+
# # │ u32 ┆ datetime[ns] ┆ u32 │
|
4356
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4357
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
|
4358
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
|
4359
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 3 │
|
4360
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 5 │
|
4361
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 7 │
|
4362
|
+
# # │ … ┆ … ┆ … │
|
4363
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 39 │
|
4364
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 41 │
|
4365
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 43 │
|
4366
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 45 │
|
4367
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 47 │
|
4368
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4369
|
+
#
|
4370
|
+
# @example Compute the rolling sum with the closure of windows on both sides
|
4371
|
+
# df_temporal.with_columns(
|
4372
|
+
# rolling_row_sum: Polars.col("index").rolling_sum_by(
|
4373
|
+
# "date", "2h", closed: "both"
|
4374
|
+
# )
|
4375
|
+
# )
|
4376
|
+
# # =>
|
4377
|
+
# # shape: (25, 3)
|
4378
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4379
|
+
# # │ index ┆ date ┆ rolling_row_sum │
|
4380
|
+
# # │ --- ┆ --- ┆ --- │
|
4381
|
+
# # │ u32 ┆ datetime[ns] ┆ u32 │
|
4382
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4383
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
|
4384
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
|
4385
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 3 │
|
4386
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 6 │
|
4387
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 9 │
|
4388
|
+
# # │ … ┆ … ┆ … │
|
4389
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 57 │
|
4390
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 60 │
|
4391
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 63 │
|
4392
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 66 │
|
4393
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 69 │
|
4394
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4395
|
+
def rolling_sum_by(
|
4396
|
+
by,
|
4397
|
+
window_size,
|
4398
|
+
min_periods: 1,
|
4399
|
+
closed: "right",
|
4400
|
+
warn_if_unsorted: nil
|
4401
|
+
)
|
4402
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4403
|
+
by = Utils.parse_into_expression(by)
|
4404
|
+
_from_rbexpr(
|
4405
|
+
_rbexpr.rolling_sum_by(by, window_size, min_periods, closed)
|
4406
|
+
)
|
4407
|
+
end
|
4408
|
+
|
4409
|
+
# Compute a rolling standard deviation based on another column.
|
4410
|
+
#
|
4411
|
+
# @param by [String]
|
4412
|
+
# This column must be of dtype Datetime or Date.
|
4413
|
+
# @param window_size [String]
|
4414
|
+
# The length of the window. Can be a dynamic temporal
|
4415
|
+
# size indicated by a timedelta or the following string language:
|
4416
|
+
#
|
4417
|
+
# - 1ns (1 nanosecond)
|
4418
|
+
# - 1us (1 microsecond)
|
4419
|
+
# - 1ms (1 millisecond)
|
4420
|
+
# - 1s (1 second)
|
4421
|
+
# - 1m (1 minute)
|
4422
|
+
# - 1h (1 hour)
|
4423
|
+
# - 1d (1 calendar day)
|
4424
|
+
# - 1w (1 calendar week)
|
4425
|
+
# - 1mo (1 calendar month)
|
4426
|
+
# - 1q (1 calendar quarter)
|
4427
|
+
# - 1y (1 calendar year)
|
4428
|
+
#
|
4429
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4430
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4431
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4432
|
+
# "calendar year".
|
4433
|
+
# @param min_periods [Integer]
|
4434
|
+
# The number of values in the window that should be non-null before computing
|
4435
|
+
# a result.
|
4436
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4437
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4438
|
+
# defaults to `'right'`.
|
4439
|
+
# @param ddof [Integer]
|
4440
|
+
# "Delta Degrees of Freedom": The divisor for a length N window is N - ddof
|
4441
|
+
# @param warn_if_unsorted [Boolean]
|
4442
|
+
# Warn if data is not known to be sorted by `by` column.
|
4443
|
+
#
|
4444
|
+
# @return [Expr]
|
4445
|
+
#
|
4446
|
+
# @note
|
4447
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4448
|
+
# window, consider using `rolling` - this method can cache the window size
|
4449
|
+
# computation.
|
4450
|
+
#
|
4451
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4452
|
+
# start = DateTime.new(2001, 1, 1)
|
4453
|
+
# stop = DateTime.new(2001, 1, 2)
|
4454
|
+
# df_temporal = Polars::DataFrame.new(
|
4455
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4456
|
+
# ).with_row_index
|
4457
|
+
# # =>
|
4458
|
+
# # shape: (25, 2)
|
4459
|
+
# # ┌───────┬─────────────────────┐
|
4460
|
+
# # │ index ┆ date │
|
4461
|
+
# # │ --- ┆ --- │
|
4462
|
+
# # │ u32 ┆ datetime[ns] │
|
4463
|
+
# # ╞═══════╪═════════════════════╡
|
4464
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4465
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4466
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4467
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4468
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4469
|
+
# # │ … ┆ … │
|
4470
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4471
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4472
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4473
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4474
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4475
|
+
# # └───────┴─────────────────────┘
|
4476
|
+
#
|
4477
|
+
# @example Compute the rolling std with the temporal windows closed on the right (default)
|
4478
|
+
# df_temporal.with_columns(
|
4479
|
+
# rolling_row_std: Polars.col("index").rolling_std_by("date", "2h")
|
4480
|
+
# )
|
4481
|
+
# # =>
|
4482
|
+
# # shape: (25, 3)
|
4483
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4484
|
+
# # │ index ┆ date ┆ rolling_row_std │
|
4485
|
+
# # │ --- ┆ --- ┆ --- │
|
4486
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4487
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4488
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
|
4489
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.707107 │
|
4490
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 0.707107 │
|
4491
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 0.707107 │
|
4492
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 0.707107 │
|
4493
|
+
# # │ … ┆ … ┆ … │
|
4494
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 0.707107 │
|
4495
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 0.707107 │
|
4496
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 0.707107 │
|
4497
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 0.707107 │
|
4498
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 0.707107 │
|
4499
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4500
|
+
#
|
4501
|
+
# @example Compute the rolling std with the closure of windows on both sides
|
4502
|
+
# df_temporal.with_columns(
|
4503
|
+
# rolling_row_std: Polars.col("index").rolling_std_by(
|
4504
|
+
# "date", "2h", closed: "both"
|
4505
|
+
# )
|
4506
|
+
# )
|
4507
|
+
# # =>
|
4508
|
+
# # shape: (25, 3)
|
4509
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4510
|
+
# # │ index ┆ date ┆ rolling_row_std │
|
4511
|
+
# # │ --- ┆ --- ┆ --- │
|
4512
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4513
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4514
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
|
4515
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.707107 │
|
4516
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
|
4517
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 1.0 │
|
4518
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 1.0 │
|
4519
|
+
# # │ … ┆ … ┆ … │
|
4520
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 1.0 │
|
4521
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 1.0 │
|
4522
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 1.0 │
|
4523
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 1.0 │
|
4524
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 1.0 │
|
4525
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4526
|
+
def rolling_std_by(
|
4527
|
+
by,
|
4528
|
+
window_size,
|
4529
|
+
min_periods: 1,
|
4530
|
+
closed: "right",
|
4531
|
+
ddof: 1,
|
4532
|
+
warn_if_unsorted: nil
|
4533
|
+
)
|
4534
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4535
|
+
by = Utils.parse_into_expression(by)
|
4536
|
+
_from_rbexpr(
|
4537
|
+
_rbexpr.rolling_std_by(
|
4538
|
+
by,
|
4539
|
+
window_size,
|
4540
|
+
min_periods,
|
4541
|
+
closed,
|
4542
|
+
ddof
|
4543
|
+
)
|
4544
|
+
)
|
4545
|
+
end
|
4546
|
+
|
4547
|
+
# Compute a rolling variance based on another column.
|
4548
|
+
#
|
4549
|
+
# @param by [String]
|
4550
|
+
# This column must be of dtype Datetime or Date.
|
4551
|
+
# @param window_size [String]
|
4552
|
+
# The length of the window. Can be a dynamic temporal
|
4553
|
+
# size indicated by a timedelta or the following string language:
|
4554
|
+
#
|
4555
|
+
# - 1ns (1 nanosecond)
|
4556
|
+
# - 1us (1 microsecond)
|
4557
|
+
# - 1ms (1 millisecond)
|
4558
|
+
# - 1s (1 second)
|
4559
|
+
# - 1m (1 minute)
|
4560
|
+
# - 1h (1 hour)
|
4561
|
+
# - 1d (1 calendar day)
|
4562
|
+
# - 1w (1 calendar week)
|
4563
|
+
# - 1mo (1 calendar month)
|
4564
|
+
# - 1q (1 calendar quarter)
|
4565
|
+
# - 1y (1 calendar year)
|
4566
|
+
#
|
4567
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4568
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4569
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4570
|
+
# "calendar year".
|
4571
|
+
# @param min_periods [Integer]
|
4572
|
+
# The number of values in the window that should be non-null before computing
|
4573
|
+
# a result.
|
4574
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4575
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4576
|
+
# defaults to `'right'`.
|
4577
|
+
# @param ddof [Integer]
|
4578
|
+
# "Delta Degrees of Freedom": The divisor for a length N window is N - ddof
|
4579
|
+
# @param warn_if_unsorted [Boolean]
|
4580
|
+
# Warn if data is not known to be sorted by `by` column.
|
4581
|
+
#
|
4582
|
+
# @return [Expr]
|
4583
|
+
#
|
4584
|
+
# @note
|
4585
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4586
|
+
# window, consider using `rolling` - this method can cache the window size
|
4587
|
+
# computation.
|
4588
|
+
#
|
4589
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4590
|
+
# start = DateTime.new(2001, 1, 1)
|
4591
|
+
# stop = DateTime.new(2001, 1, 2)
|
4592
|
+
# df_temporal = Polars::DataFrame.new(
|
4593
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4594
|
+
# ).with_row_index
|
4595
|
+
# # =>
|
4596
|
+
# # shape: (25, 2)
|
4597
|
+
# # ┌───────┬─────────────────────┐
|
4598
|
+
# # │ index ┆ date │
|
4599
|
+
# # │ --- ┆ --- │
|
4600
|
+
# # │ u32 ┆ datetime[ns] │
|
4601
|
+
# # ╞═══════╪═════════════════════╡
|
4602
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4603
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4604
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4605
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4606
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4607
|
+
# # │ … ┆ … │
|
4608
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4609
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4610
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4611
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4612
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4613
|
+
# # └───────┴─────────────────────┘
|
4614
|
+
#
|
4615
|
+
# @example Compute the rolling var with the temporal windows closed on the right (default)
|
4616
|
+
# df_temporal.with_columns(
|
4617
|
+
# rolling_row_var: Polars.col("index").rolling_var_by("date", "2h")
|
4618
|
+
# )
|
4619
|
+
# # =>
|
4620
|
+
# # shape: (25, 3)
|
4621
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4622
|
+
# # │ index ┆ date ┆ rolling_row_var │
|
4623
|
+
# # │ --- ┆ --- ┆ --- │
|
4624
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4625
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4626
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
|
4627
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
|
4628
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 0.5 │
|
4629
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 0.5 │
|
4630
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 0.5 │
|
4631
|
+
# # │ … ┆ … ┆ … │
|
4632
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 0.5 │
|
4633
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 0.5 │
|
4634
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 0.5 │
|
4635
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 0.5 │
|
4636
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 0.5 │
|
4637
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4638
|
+
#
|
4639
|
+
# @example Compute the rolling var with the closure of windows on both sides
|
4640
|
+
# df_temporal.with_columns(
|
4641
|
+
# rolling_row_var: Polars.col("index").rolling_var_by(
|
4642
|
+
# "date", "2h", closed: "both"
|
4643
|
+
# )
|
4644
|
+
# )
|
4645
|
+
# # =>
|
4646
|
+
# # shape: (25, 3)
|
4647
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4648
|
+
# # │ index ┆ date ┆ rolling_row_var │
|
4649
|
+
# # │ --- ┆ --- ┆ --- │
|
4650
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4651
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4652
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
|
4653
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
|
4654
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
|
4655
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 1.0 │
|
4656
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 1.0 │
|
4657
|
+
# # │ … ┆ … ┆ … │
|
4658
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 1.0 │
|
4659
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 1.0 │
|
4660
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 1.0 │
|
4661
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 1.0 │
|
4662
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 1.0 │
|
4663
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4664
|
+
def rolling_var_by(
|
4665
|
+
by,
|
4666
|
+
window_size,
|
4667
|
+
min_periods: 1,
|
4668
|
+
closed: "right",
|
4669
|
+
ddof: 1,
|
4670
|
+
warn_if_unsorted: nil
|
4671
|
+
)
|
4672
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4673
|
+
by = Utils.parse_into_expression(by)
|
4674
|
+
_from_rbexpr(
|
4675
|
+
_rbexpr.rolling_var_by(
|
4676
|
+
by,
|
4677
|
+
window_size,
|
4678
|
+
min_periods,
|
4679
|
+
closed,
|
4680
|
+
ddof
|
4681
|
+
)
|
4682
|
+
)
|
4683
|
+
end
|
4684
|
+
|
4685
|
+
# Compute a rolling median based on another column.
|
4686
|
+
#
|
4687
|
+
# @param by [String]
|
4688
|
+
# This column must be of dtype Datetime or Date.
|
4689
|
+
# @param window_size [String]
|
4690
|
+
# The length of the window. Can be a dynamic temporal
|
4691
|
+
# size indicated by a timedelta or the following string language:
|
4692
|
+
#
|
4693
|
+
# - 1ns (1 nanosecond)
|
4694
|
+
# - 1us (1 microsecond)
|
4695
|
+
# - 1ms (1 millisecond)
|
4696
|
+
# - 1s (1 second)
|
4697
|
+
# - 1m (1 minute)
|
4698
|
+
# - 1h (1 hour)
|
4699
|
+
# - 1d (1 calendar day)
|
4700
|
+
# - 1w (1 calendar week)
|
4701
|
+
# - 1mo (1 calendar month)
|
4702
|
+
# - 1q (1 calendar quarter)
|
4703
|
+
# - 1y (1 calendar year)
|
4704
|
+
#
|
4705
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4706
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4707
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4708
|
+
# "calendar year".
|
4709
|
+
# @param min_periods [Integer]
|
4710
|
+
# The number of values in the window that should be non-null before computing
|
4711
|
+
# a result.
|
4712
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4713
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4714
|
+
# defaults to `'right'`.
|
4715
|
+
# @param warn_if_unsorted [Boolean]
|
4716
|
+
# Warn if data is not known to be sorted by `by` column.
|
4717
|
+
#
|
4718
|
+
# @return [Expr]
|
4719
|
+
#
|
4720
|
+
# @note
|
4721
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4722
|
+
# window, consider using `rolling` - this method can cache the window size
|
4723
|
+
# computation.
|
4724
|
+
#
|
4725
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4726
|
+
# start = DateTime.new(2001, 1, 1)
|
4727
|
+
# stop = DateTime.new(2001, 1, 2)
|
4728
|
+
# df_temporal = Polars::DataFrame.new(
|
4729
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4730
|
+
# ).with_row_index
|
4731
|
+
# # =>
|
4732
|
+
# # shape: (25, 2)
|
4733
|
+
# # ┌───────┬─────────────────────┐
|
4734
|
+
# # │ index ┆ date │
|
4735
|
+
# # │ --- ┆ --- │
|
4736
|
+
# # │ u32 ┆ datetime[ns] │
|
4737
|
+
# # ╞═══════╪═════════════════════╡
|
4738
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4739
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4740
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4741
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4742
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4743
|
+
# # │ … ┆ … │
|
4744
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4745
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4746
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4747
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4748
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4749
|
+
# # └───────┴─────────────────────┘
|
4750
|
+
#
|
4751
|
+
# @example Compute the rolling median with the temporal windows closed on the right:
|
4752
|
+
# df_temporal.with_columns(
|
4753
|
+
# rolling_row_median: Polars.col("index").rolling_median_by(
|
4754
|
+
# "date", "2h"
|
4755
|
+
# )
|
4756
|
+
# )
|
4757
|
+
# # =>
|
4758
|
+
# # shape: (25, 3)
|
4759
|
+
# # ┌───────┬─────────────────────┬────────────────────┐
|
4760
|
+
# # │ index ┆ date ┆ rolling_row_median │
|
4761
|
+
# # │ --- ┆ --- ┆ --- │
|
4762
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4763
|
+
# # ╞═══════╪═════════════════════╪════════════════════╡
|
4764
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
|
4765
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
|
4766
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.5 │
|
4767
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.5 │
|
4768
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.5 │
|
4769
|
+
# # │ … ┆ … ┆ … │
|
4770
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.5 │
|
4771
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.5 │
|
4772
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.5 │
|
4773
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.5 │
|
4774
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.5 │
|
4775
|
+
# # └───────┴─────────────────────┴────────────────────┘
|
4776
|
+
def rolling_median_by(
|
4777
|
+
by,
|
4778
|
+
window_size,
|
4779
|
+
min_periods: 1,
|
4780
|
+
closed: "right",
|
4781
|
+
warn_if_unsorted: nil
|
4782
|
+
)
|
4783
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4784
|
+
by = Utils.parse_into_expression(by)
|
4785
|
+
_from_rbexpr(
|
4786
|
+
_rbexpr.rolling_median_by(by, window_size, min_periods, closed)
|
4787
|
+
)
|
4788
|
+
end
|
4789
|
+
|
4790
|
+
# Compute a rolling quantile based on another column.
|
4791
|
+
#
|
4792
|
+
# @param by [String]
|
4793
|
+
# This column must be of dtype Datetime or Date.
|
4794
|
+
# @param quantile [Float]
|
4795
|
+
# Quantile between 0.0 and 1.0.
|
4796
|
+
# @param interpolation ['nearest', 'higher', 'lower', 'midpoint', 'linear']
|
4797
|
+
# Interpolation method.
|
4798
|
+
# @param window_size [String]
|
4799
|
+
# The length of the window. Can be a dynamic
|
4800
|
+
# temporal size indicated by a timedelta or the following string language:
|
4801
|
+
#
|
4802
|
+
# - 1ns (1 nanosecond)
|
4803
|
+
# - 1us (1 microsecond)
|
4804
|
+
# - 1ms (1 millisecond)
|
4805
|
+
# - 1s (1 second)
|
4806
|
+
# - 1m (1 minute)
|
4807
|
+
# - 1h (1 hour)
|
4808
|
+
# - 1d (1 calendar day)
|
4809
|
+
# - 1w (1 calendar week)
|
4810
|
+
# - 1mo (1 calendar month)
|
4811
|
+
# - 1q (1 calendar quarter)
|
4812
|
+
# - 1y (1 calendar year)
|
4813
|
+
#
|
4814
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4815
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4816
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4817
|
+
# "calendar year".
|
4818
|
+
# @param min_periods [Integer]
|
4819
|
+
# The number of values in the window that should be non-null before computing
|
4820
|
+
# a result.
|
4821
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4822
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4823
|
+
# defaults to `'right'`.
|
4824
|
+
# @param warn_if_unsorted [Boolean]
|
4825
|
+
# Warn if data is not known to be sorted by `by` column.
|
4826
|
+
#
|
4827
|
+
# @return [Expr]
|
4828
|
+
#
|
4829
|
+
# @note
|
4830
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4831
|
+
# window, consider using `rolling` - this method can cache the window size
|
4832
|
+
# computation.
|
4833
|
+
#
|
4834
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4835
|
+
# start = DateTime.new(2001, 1, 1)
|
4836
|
+
# stop = DateTime.new(2001, 1, 2)
|
4837
|
+
# df_temporal = Polars::DataFrame.new(
|
4838
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4839
|
+
# ).with_row_index
|
4840
|
+
# # =>
|
4841
|
+
# # shape: (25, 2)
|
4842
|
+
# # ┌───────┬─────────────────────┐
|
4843
|
+
# # │ index ┆ date │
|
4844
|
+
# # │ --- ┆ --- │
|
4845
|
+
# # │ u32 ┆ datetime[ns] │
|
4846
|
+
# # ╞═══════╪═════════════════════╡
|
4847
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4848
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4849
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4850
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4851
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4852
|
+
# # │ … ┆ … │
|
4853
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4854
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4855
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4856
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4857
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4858
|
+
# # └───────┴─────────────────────┘
|
4859
|
+
#
|
4860
|
+
# @example Compute the rolling quantile with the temporal windows closed on the right:
|
4861
|
+
# df_temporal.with_columns(
|
4862
|
+
# rolling_row_quantile: Polars.col("index").rolling_quantile_by(
|
4863
|
+
# "date", "2h", quantile: 0.3
|
4864
|
+
# )
|
4865
|
+
# )
|
4866
|
+
# # =>
|
4867
|
+
# # shape: (25, 3)
|
4868
|
+
# # ┌───────┬─────────────────────┬──────────────────────┐
|
4869
|
+
# # │ index ┆ date ┆ rolling_row_quantile │
|
4870
|
+
# # │ --- ┆ --- ┆ --- │
|
4871
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4872
|
+
# # ╞═══════╪═════════════════════╪══════════════════════╡
|
4873
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
|
4874
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.0 │
|
4875
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
|
4876
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.0 │
|
4877
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.0 │
|
4878
|
+
# # │ … ┆ … ┆ … │
|
4879
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.0 │
|
4880
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.0 │
|
4881
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.0 │
|
4882
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.0 │
|
4883
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.0 │
|
4884
|
+
# # └───────┴─────────────────────┴──────────────────────┘
|
4885
|
+
def rolling_quantile_by(
|
4886
|
+
by,
|
4887
|
+
window_size,
|
4888
|
+
quantile:,
|
4889
|
+
interpolation: "nearest",
|
4890
|
+
min_periods: 1,
|
4891
|
+
closed: "right",
|
4892
|
+
warn_if_unsorted: nil
|
4893
|
+
)
|
4894
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4895
|
+
by = Utils.parse_into_expression(by)
|
4896
|
+
_from_rbexpr(
|
4897
|
+
_rbexpr.rolling_quantile_by(
|
4898
|
+
by,
|
4899
|
+
quantile,
|
4900
|
+
interpolation,
|
4901
|
+
window_size,
|
4902
|
+
min_periods,
|
4903
|
+
closed,
|
4904
|
+
)
|
4905
|
+
)
|
4906
|
+
end
|
4907
|
+
|
3860
4908
|
# Apply a rolling min (moving min) over the values in this array.
|
3861
4909
|
#
|
3862
4910
|
# A window of length `window_size` will traverse the array. The values that fill
|
@@ -3889,12 +4937,6 @@ module Polars
|
|
3889
4937
|
# a result. If None, it will be set equal to window size.
|
3890
4938
|
# @param center [Boolean]
|
3891
4939
|
# Set the labels at the center of the window
|
3892
|
-
# @param by [String]
|
3893
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
3894
|
-
# set the column that will be used to determine the windows. This column must
|
3895
|
-
# be of dtype `{Date, Datetime}`
|
3896
|
-
# @param closed ["left", "right", "both", "none"]
|
3897
|
-
# Define whether the temporal window interval is closed or not.
|
3898
4940
|
#
|
3899
4941
|
# @note
|
3900
4942
|
# This functionality is experimental and may change without it being considered a
|
@@ -3932,16 +4974,11 @@ module Polars
|
|
3932
4974
|
window_size,
|
3933
4975
|
weights: nil,
|
3934
4976
|
min_periods: nil,
|
3935
|
-
center: false
|
3936
|
-
by: nil,
|
3937
|
-
closed: nil
|
4977
|
+
center: false
|
3938
4978
|
)
|
3939
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
3940
|
-
window_size, min_periods
|
3941
|
-
)
|
3942
4979
|
_from_rbexpr(
|
3943
4980
|
_rbexpr.rolling_min(
|
3944
|
-
window_size, weights, min_periods, center
|
4981
|
+
window_size, weights, min_periods, center
|
3945
4982
|
)
|
3946
4983
|
)
|
3947
4984
|
end
|
@@ -3978,12 +5015,6 @@ module Polars
|
|
3978
5015
|
# a result. If None, it will be set equal to window size.
|
3979
5016
|
# @param center [Boolean]
|
3980
5017
|
# Set the labels at the center of the window
|
3981
|
-
# @param by [String]
|
3982
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
3983
|
-
# set the column that will be used to determine the windows. This column must
|
3984
|
-
# be of dtype `{Date, Datetime}`
|
3985
|
-
# @param closed ["left", "right", "both", "none"]
|
3986
|
-
# Define whether the temporal window interval is closed or not.
|
3987
5018
|
#
|
3988
5019
|
# @note
|
3989
5020
|
# This functionality is experimental and may change without it being considered a
|
@@ -4021,16 +5052,11 @@ module Polars
|
|
4021
5052
|
window_size,
|
4022
5053
|
weights: nil,
|
4023
5054
|
min_periods: nil,
|
4024
|
-
center: false
|
4025
|
-
by: nil,
|
4026
|
-
closed: nil
|
5055
|
+
center: false
|
4027
5056
|
)
|
4028
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4029
|
-
window_size, min_periods
|
4030
|
-
)
|
4031
5057
|
_from_rbexpr(
|
4032
5058
|
_rbexpr.rolling_max(
|
4033
|
-
window_size, weights, min_periods, center
|
5059
|
+
window_size, weights, min_periods, center
|
4034
5060
|
)
|
4035
5061
|
)
|
4036
5062
|
end
|
@@ -4067,12 +5093,6 @@ module Polars
|
|
4067
5093
|
# a result. If None, it will be set equal to window size.
|
4068
5094
|
# @param center [Boolean]
|
4069
5095
|
# Set the labels at the center of the window
|
4070
|
-
# @param by [String]
|
4071
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4072
|
-
# set the column that will be used to determine the windows. This column must
|
4073
|
-
# be of dtype `{Date, Datetime}`
|
4074
|
-
# @param closed ["left", "right", "both", "none"]
|
4075
|
-
# Define whether the temporal window interval is closed or not.
|
4076
5096
|
#
|
4077
5097
|
# @note
|
4078
5098
|
# This functionality is experimental and may change without it being considered a
|
@@ -4110,16 +5130,11 @@ module Polars
|
|
4110
5130
|
window_size,
|
4111
5131
|
weights: nil,
|
4112
5132
|
min_periods: nil,
|
4113
|
-
center: false
|
4114
|
-
by: nil,
|
4115
|
-
closed: nil
|
5133
|
+
center: false
|
4116
5134
|
)
|
4117
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4118
|
-
window_size, min_periods
|
4119
|
-
)
|
4120
5135
|
_from_rbexpr(
|
4121
5136
|
_rbexpr.rolling_mean(
|
4122
|
-
window_size, weights, min_periods, center
|
5137
|
+
window_size, weights, min_periods, center
|
4123
5138
|
)
|
4124
5139
|
)
|
4125
5140
|
end
|
@@ -4156,12 +5171,6 @@ module Polars
|
|
4156
5171
|
# a result. If None, it will be set equal to window size.
|
4157
5172
|
# @param center [Boolean]
|
4158
5173
|
# Set the labels at the center of the window
|
4159
|
-
# @param by [String]
|
4160
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4161
|
-
# set the column that will be used to determine the windows. This column must
|
4162
|
-
# be of dtype `{Date, Datetime}`
|
4163
|
-
# @param closed ["left", "right", "both", "none"]
|
4164
|
-
# Define whether the temporal window interval is closed or not.
|
4165
5174
|
#
|
4166
5175
|
# @note
|
4167
5176
|
# This functionality is experimental and may change without it being considered a
|
@@ -4199,16 +5208,11 @@ module Polars
|
|
4199
5208
|
window_size,
|
4200
5209
|
weights: nil,
|
4201
5210
|
min_periods: nil,
|
4202
|
-
center: false
|
4203
|
-
by: nil,
|
4204
|
-
closed: nil
|
5211
|
+
center: false
|
4205
5212
|
)
|
4206
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4207
|
-
window_size, min_periods
|
4208
|
-
)
|
4209
5213
|
_from_rbexpr(
|
4210
5214
|
_rbexpr.rolling_sum(
|
4211
|
-
window_size, weights, min_periods, center
|
5215
|
+
window_size, weights, min_periods, center
|
4212
5216
|
)
|
4213
5217
|
)
|
4214
5218
|
end
|
@@ -4245,12 +5249,6 @@ module Polars
|
|
4245
5249
|
# a result. If None, it will be set equal to window size.
|
4246
5250
|
# @param center [Boolean]
|
4247
5251
|
# Set the labels at the center of the window
|
4248
|
-
# @param by [String]
|
4249
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4250
|
-
# set the column that will be used to determine the windows. This column must
|
4251
|
-
# be of dtype `{Date, Datetime}`
|
4252
|
-
# @param closed ["left", "right", "both", "none"]
|
4253
|
-
# Define whether the temporal window interval is closed or not.
|
4254
5252
|
#
|
4255
5253
|
# @note
|
4256
5254
|
# This functionality is experimental and may change without it being considered a
|
@@ -4289,17 +5287,11 @@ module Polars
|
|
4289
5287
|
weights: nil,
|
4290
5288
|
min_periods: nil,
|
4291
5289
|
center: false,
|
4292
|
-
|
4293
|
-
closed: nil,
|
4294
|
-
ddof: 1,
|
4295
|
-
warn_if_unsorted: true
|
5290
|
+
ddof: 1
|
4296
5291
|
)
|
4297
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4298
|
-
window_size, min_periods
|
4299
|
-
)
|
4300
5292
|
_from_rbexpr(
|
4301
5293
|
_rbexpr.rolling_std(
|
4302
|
-
window_size, weights, min_periods, center,
|
5294
|
+
window_size, weights, min_periods, center, ddof
|
4303
5295
|
)
|
4304
5296
|
)
|
4305
5297
|
end
|
@@ -4336,12 +5328,6 @@ module Polars
|
|
4336
5328
|
# a result. If None, it will be set equal to window size.
|
4337
5329
|
# @param center [Boolean]
|
4338
5330
|
# Set the labels at the center of the window
|
4339
|
-
# @param by [String]
|
4340
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4341
|
-
# set the column that will be used to determine the windows. This column must
|
4342
|
-
# be of dtype `{Date, Datetime}`
|
4343
|
-
# @param closed ["left", "right", "both", "none"]
|
4344
|
-
# Define whether the temporal window interval is closed or not.
|
4345
5331
|
#
|
4346
5332
|
# @note
|
4347
5333
|
# This functionality is experimental and may change without it being considered a
|
@@ -4380,17 +5366,11 @@ module Polars
|
|
4380
5366
|
weights: nil,
|
4381
5367
|
min_periods: nil,
|
4382
5368
|
center: false,
|
4383
|
-
|
4384
|
-
closed: nil,
|
4385
|
-
ddof: 1,
|
4386
|
-
warn_if_unsorted: true
|
5369
|
+
ddof: 1
|
4387
5370
|
)
|
4388
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4389
|
-
window_size, min_periods
|
4390
|
-
)
|
4391
5371
|
_from_rbexpr(
|
4392
5372
|
_rbexpr.rolling_var(
|
4393
|
-
window_size, weights, min_periods, center,
|
5373
|
+
window_size, weights, min_periods, center, ddof
|
4394
5374
|
)
|
4395
5375
|
)
|
4396
5376
|
end
|
@@ -4423,12 +5403,6 @@ module Polars
|
|
4423
5403
|
# a result. If None, it will be set equal to window size.
|
4424
5404
|
# @param center [Boolean]
|
4425
5405
|
# Set the labels at the center of the window
|
4426
|
-
# @param by [String]
|
4427
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4428
|
-
# set the column that will be used to determine the windows. This column must
|
4429
|
-
# be of dtype `{Date, Datetime}`
|
4430
|
-
# @param closed ["left", "right", "both", "none"]
|
4431
|
-
# Define whether the temporal window interval is closed or not.
|
4432
5406
|
#
|
4433
5407
|
# @note
|
4434
5408
|
# This functionality is experimental and may change without it being considered a
|
@@ -4466,17 +5440,11 @@ module Polars
|
|
4466
5440
|
window_size,
|
4467
5441
|
weights: nil,
|
4468
5442
|
min_periods: nil,
|
4469
|
-
center: false
|
4470
|
-
by: nil,
|
4471
|
-
closed: nil,
|
4472
|
-
warn_if_unsorted: true
|
5443
|
+
center: false
|
4473
5444
|
)
|
4474
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4475
|
-
window_size, min_periods
|
4476
|
-
)
|
4477
5445
|
_from_rbexpr(
|
4478
5446
|
_rbexpr.rolling_median(
|
4479
|
-
window_size, weights, min_periods, center
|
5447
|
+
window_size, weights, min_periods, center
|
4480
5448
|
)
|
4481
5449
|
)
|
4482
5450
|
end
|
@@ -4513,12 +5481,6 @@ module Polars
|
|
4513
5481
|
# a result. If None, it will be set equal to window size.
|
4514
5482
|
# @param center [Boolean]
|
4515
5483
|
# Set the labels at the center of the window
|
4516
|
-
# @param by [String]
|
4517
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4518
|
-
# set the column that will be used to determine the windows. This column must
|
4519
|
-
# be of dtype `{Date, Datetime}`
|
4520
|
-
# @param closed ["left", "right", "both", "none"]
|
4521
|
-
# Define whether the temporal window interval is closed or not.
|
4522
5484
|
#
|
4523
5485
|
# @note
|
4524
5486
|
# This functionality is experimental and may change without it being considered a
|
@@ -4558,17 +5520,11 @@ module Polars
|
|
4558
5520
|
window_size: 2,
|
4559
5521
|
weights: nil,
|
4560
5522
|
min_periods: nil,
|
4561
|
-
center: false
|
4562
|
-
by: nil,
|
4563
|
-
closed: nil,
|
4564
|
-
warn_if_unsorted: true
|
5523
|
+
center: false
|
4565
5524
|
)
|
4566
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4567
|
-
window_size, min_periods
|
4568
|
-
)
|
4569
5525
|
_from_rbexpr(
|
4570
5526
|
_rbexpr.rolling_quantile(
|
4571
|
-
quantile, interpolation, window_size, weights, min_periods, center
|
5527
|
+
quantile, interpolation, window_size, weights, min_periods, center
|
4572
5528
|
)
|
4573
5529
|
)
|
4574
5530
|
end
|
@@ -4837,7 +5793,7 @@ module Polars
|
|
4837
5793
|
# # │ 12 ┆ 0.0 │
|
4838
5794
|
# # └──────┴────────────┘
|
4839
5795
|
def pct_change(n: 1)
|
4840
|
-
n = Utils.
|
5796
|
+
n = Utils.parse_into_expression(n)
|
4841
5797
|
_from_rbexpr(_rbexpr.pct_change(n))
|
4842
5798
|
end
|
4843
5799
|
|
@@ -4929,12 +5885,12 @@ module Polars
|
|
4929
5885
|
# # │ null ┆ null │
|
4930
5886
|
# # │ 50 ┆ 10 │
|
4931
5887
|
# # └──────┴─────────────┘
|
4932
|
-
def clip(lower_bound, upper_bound)
|
5888
|
+
def clip(lower_bound = nil, upper_bound = nil)
|
4933
5889
|
if !lower_bound.nil?
|
4934
|
-
lower_bound = Utils.
|
5890
|
+
lower_bound = Utils.parse_into_expression(lower_bound)
|
4935
5891
|
end
|
4936
5892
|
if !upper_bound.nil?
|
4937
|
-
upper_bound = Utils.
|
5893
|
+
upper_bound = Utils.parse_into_expression(upper_bound)
|
4938
5894
|
end
|
4939
5895
|
_from_rbexpr(_rbexpr.clip(lower_bound, upper_bound))
|
4940
5896
|
end
|
@@ -5321,18 +6277,38 @@ module Polars
|
|
5321
6277
|
#
|
5322
6278
|
# @example
|
5323
6279
|
# df = Polars::DataFrame.new({"foo" => [1, 2, 3, 4, 5, 6, 7, 8, 9]})
|
5324
|
-
# df.select(Polars.col("foo").reshape([3, 3]))
|
6280
|
+
# square = df.select(Polars.col("foo").reshape([3, 3]))
|
5325
6281
|
# # =>
|
5326
6282
|
# # shape: (3, 1)
|
5327
|
-
# #
|
5328
|
-
# # │ foo
|
5329
|
-
# # │ ---
|
5330
|
-
# # │
|
5331
|
-
# #
|
5332
|
-
# # │ [1, 2, 3]
|
5333
|
-
# # │ [4, 5, 6]
|
5334
|
-
# # │ [7, 8, 9]
|
5335
|
-
# #
|
6283
|
+
# # ┌───────────────┐
|
6284
|
+
# # │ foo │
|
6285
|
+
# # │ --- │
|
6286
|
+
# # │ array[i64, 3] │
|
6287
|
+
# # ╞═══════════════╡
|
6288
|
+
# # │ [1, 2, 3] │
|
6289
|
+
# # │ [4, 5, 6] │
|
6290
|
+
# # │ [7, 8, 9] │
|
6291
|
+
# # └───────────────┘
|
6292
|
+
#
|
6293
|
+
# @example
|
6294
|
+
# square.select(Polars.col("foo").reshape([9]))
|
6295
|
+
# # =>
|
6296
|
+
# # shape: (9, 1)
|
6297
|
+
# # ┌─────┐
|
6298
|
+
# # │ foo │
|
6299
|
+
# # │ --- │
|
6300
|
+
# # │ i64 │
|
6301
|
+
# # ╞═════╡
|
6302
|
+
# # │ 1 │
|
6303
|
+
# # │ 2 │
|
6304
|
+
# # │ 3 │
|
6305
|
+
# # │ 4 │
|
6306
|
+
# # │ 5 │
|
6307
|
+
# # │ 6 │
|
6308
|
+
# # │ 7 │
|
6309
|
+
# # │ 8 │
|
6310
|
+
# # │ 9 │
|
6311
|
+
# # └─────┘
|
5336
6312
|
def reshape(dims)
|
5337
6313
|
_from_rbexpr(_rbexpr.reshape(dims))
|
5338
6314
|
end
|
@@ -5408,14 +6384,14 @@ module Polars
|
|
5408
6384
|
end
|
5409
6385
|
|
5410
6386
|
if !n.nil? && frac.nil?
|
5411
|
-
n = Utils.
|
6387
|
+
n = Utils.parse_into_expression(n)
|
5412
6388
|
return _from_rbexpr(_rbexpr.sample_n(n, with_replacement, shuffle, seed))
|
5413
6389
|
end
|
5414
6390
|
|
5415
6391
|
if frac.nil?
|
5416
6392
|
frac = 1.0
|
5417
6393
|
end
|
5418
|
-
frac = Utils.
|
6394
|
+
frac = Utils.parse_into_expression(frac)
|
5419
6395
|
_from_rbexpr(
|
5420
6396
|
_rbexpr.sample_frac(frac, with_replacement, shuffle, seed)
|
5421
6397
|
)
|
@@ -5548,11 +6524,17 @@ module Polars
|
|
5548
6524
|
|
5549
6525
|
# Count all unique values and create a struct mapping value to count.
|
5550
6526
|
#
|
5551
|
-
# @param multithreaded [Boolean]
|
5552
|
-
# Better to turn this off in the aggregation context, as it can lead to
|
5553
|
-
# contention.
|
5554
6527
|
# @param sort [Boolean]
|
5555
|
-
#
|
6528
|
+
# Sort the output by count in descending order.
|
6529
|
+
# If set to `false` (default), the order of the output is random.
|
6530
|
+
# @param parallel [Boolean]
|
6531
|
+
# Execute the computation in parallel.
|
6532
|
+
# @param name [String]
|
6533
|
+
# Give the resulting count column a specific name;
|
6534
|
+
# if `normalize` is true defaults to "count",
|
6535
|
+
# otherwise defaults to "proportion".
|
6536
|
+
# @param normalize [Boolean]
|
6537
|
+
# If true gives relative frequencies of the unique values
|
5556
6538
|
#
|
5557
6539
|
# @return [Expr]
|
5558
6540
|
#
|
@@ -5578,8 +6560,22 @@ module Polars
|
|
5578
6560
|
# # │ {"b",2} │
|
5579
6561
|
# # │ {"a",1} │
|
5580
6562
|
# # └───────────┘
|
5581
|
-
def value_counts(
|
5582
|
-
|
6563
|
+
def value_counts(
|
6564
|
+
sort: false,
|
6565
|
+
parallel: false,
|
6566
|
+
name: nil,
|
6567
|
+
normalize: false
|
6568
|
+
)
|
6569
|
+
if name.nil?
|
6570
|
+
if normalize
|
6571
|
+
name = "proportion"
|
6572
|
+
else
|
6573
|
+
name = "count"
|
6574
|
+
end
|
6575
|
+
end
|
6576
|
+
_from_rbexpr(
|
6577
|
+
_rbexpr.value_counts(sort, parallel, name, normalize)
|
6578
|
+
)
|
5583
6579
|
end
|
5584
6580
|
|
5585
6581
|
# Return a count of the unique values in the order of appearance.
|
@@ -5954,6 +6950,10 @@ module Polars
|
|
5954
6950
|
# # │ 3 ┆ 1.0 ┆ 10.0 │
|
5955
6951
|
# # └─────┴─────┴──────────┘
|
5956
6952
|
def replace(old, new = NO_DEFAULT, default: NO_DEFAULT, return_dtype: nil)
|
6953
|
+
if !default.eql?(NO_DEFAULT)
|
6954
|
+
return replace_strict(old, new, default: default, return_dtype: return_dtype)
|
6955
|
+
end
|
6956
|
+
|
5957
6957
|
if new.eql?(NO_DEFAULT) && old.is_a?(Hash)
|
5958
6958
|
new = Series.new(old.values)
|
5959
6959
|
old = Series.new(old.keys)
|
@@ -5966,17 +6966,164 @@ module Polars
|
|
5966
6966
|
end
|
5967
6967
|
end
|
5968
6968
|
|
5969
|
-
old = Utils.
|
5970
|
-
new = Utils.
|
6969
|
+
old = Utils.parse_into_expression(old, str_as_lit: true)
|
6970
|
+
new = Utils.parse_into_expression(new, str_as_lit: true)
|
5971
6971
|
|
5972
|
-
|
5973
|
-
|
5974
|
-
|
5975
|
-
|
5976
|
-
|
5977
|
-
end
|
6972
|
+
result = _from_rbexpr(_rbexpr.replace(old, new))
|
6973
|
+
|
6974
|
+
if !return_dtype.nil?
|
6975
|
+
result = result.cast(return_dtype)
|
6976
|
+
end
|
5978
6977
|
|
5979
|
-
|
6978
|
+
result
|
6979
|
+
end
|
6980
|
+
|
6981
|
+
# Replace all values by different values.
|
6982
|
+
#
|
6983
|
+
# @param old [Object]
|
6984
|
+
# Value or sequence of values to replace.
|
6985
|
+
# Accepts expression input. Sequences are parsed as Series,
|
6986
|
+
# other non-expression inputs are parsed as literals.
|
6987
|
+
# Also accepts a mapping of values to their replacement as syntactic sugar for
|
6988
|
+
# `replace_all(old: Series.new(mapping.keys), new: Serie.new(mapping.values))`.
|
6989
|
+
# @param new [Object]
|
6990
|
+
# Value or sequence of values to replace by.
|
6991
|
+
# Accepts expression input. Sequences are parsed as Series,
|
6992
|
+
# other non-expression inputs are parsed as literals.
|
6993
|
+
# Length must match the length of `old` or have length 1.
|
6994
|
+
# @param default [Object]
|
6995
|
+
# Set values that were not replaced to this value. If no default is specified,
|
6996
|
+
# (default), an error is raised if any values were not replaced.
|
6997
|
+
# Accepts expression input. Non-expression inputs are parsed as literals.
|
6998
|
+
# @param return_dtype [Object]
|
6999
|
+
# The data type of the resulting expression. If set to `nil` (default),
|
7000
|
+
# the data type is determined automatically based on the other inputs.
|
7001
|
+
#
|
7002
|
+
# @return [Expr]
|
7003
|
+
#
|
7004
|
+
# @note
|
7005
|
+
# The global string cache must be enabled when replacing categorical values.
|
7006
|
+
#
|
7007
|
+
# @example Replace values by passing sequences to the `old` and `new` parameters.
|
7008
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 2, 3]})
|
7009
|
+
# df.with_columns(
|
7010
|
+
# replaced: Polars.col("a").replace_strict([1, 2, 3], [100, 200, 300])
|
7011
|
+
# )
|
7012
|
+
# # =>
|
7013
|
+
# # shape: (4, 2)
|
7014
|
+
# # ┌─────┬──────────┐
|
7015
|
+
# # │ a ┆ replaced │
|
7016
|
+
# # │ --- ┆ --- │
|
7017
|
+
# # │ i64 ┆ i64 │
|
7018
|
+
# # ╞═════╪══════════╡
|
7019
|
+
# # │ 1 ┆ 100 │
|
7020
|
+
# # │ 2 ┆ 200 │
|
7021
|
+
# # │ 2 ┆ 200 │
|
7022
|
+
# # │ 3 ┆ 300 │
|
7023
|
+
# # └─────┴──────────┘
|
7024
|
+
#
|
7025
|
+
# @example By default, an error is raised if any non-null values were not replaced. Specify a default to set all values that were not matched.
|
7026
|
+
# mapping = {2 => 200, 3 => 300}
|
7027
|
+
# df.with_columns(replaced: Polars.col("a").replace_strict(mapping, default: -1))
|
7028
|
+
# # =>
|
7029
|
+
# # shape: (4, 2)
|
7030
|
+
# # ┌─────┬──────────┐
|
7031
|
+
# # │ a ┆ replaced │
|
7032
|
+
# # │ --- ┆ --- │
|
7033
|
+
# # │ i64 ┆ i64 │
|
7034
|
+
# # ╞═════╪══════════╡
|
7035
|
+
# # │ 1 ┆ -1 │
|
7036
|
+
# # │ 2 ┆ 200 │
|
7037
|
+
# # │ 2 ┆ 200 │
|
7038
|
+
# # │ 3 ┆ 300 │
|
7039
|
+
# # └─────┴──────────┘
|
7040
|
+
#
|
7041
|
+
# @example Replacing by values of a different data type sets the return type based on a combination of the `new` data type and the `default` data type.
|
7042
|
+
# df = Polars::DataFrame.new({"a" => ["x", "y", "z"]})
|
7043
|
+
# mapping = {"x" => 1, "y" => 2, "z" => 3}
|
7044
|
+
# df.with_columns(replaced: Polars.col("a").replace_strict(mapping))
|
7045
|
+
# # =>
|
7046
|
+
# # shape: (3, 2)
|
7047
|
+
# # ┌─────┬──────────┐
|
7048
|
+
# # │ a ┆ replaced │
|
7049
|
+
# # │ --- ┆ --- │
|
7050
|
+
# # │ str ┆ i64 │
|
7051
|
+
# # ╞═════╪══════════╡
|
7052
|
+
# # │ x ┆ 1 │
|
7053
|
+
# # │ y ┆ 2 │
|
7054
|
+
# # │ z ┆ 3 │
|
7055
|
+
# # └─────┴──────────┘
|
7056
|
+
#
|
7057
|
+
# @example
|
7058
|
+
# df.with_columns(replaced: Polars.col("a").replace_strict(mapping, default: "x"))
|
7059
|
+
# # =>
|
7060
|
+
# # shape: (3, 2)
|
7061
|
+
# # ┌─────┬──────────┐
|
7062
|
+
# # │ a ┆ replaced │
|
7063
|
+
# # │ --- ┆ --- │
|
7064
|
+
# # │ str ┆ str │
|
7065
|
+
# # ╞═════╪══════════╡
|
7066
|
+
# # │ x ┆ 1 │
|
7067
|
+
# # │ y ┆ 2 │
|
7068
|
+
# # │ z ┆ 3 │
|
7069
|
+
# # └─────┴──────────┘
|
7070
|
+
#
|
7071
|
+
# @example Set the `return_dtype` parameter to control the resulting data type directly.
|
7072
|
+
# df.with_columns(
|
7073
|
+
# replaced: Polars.col("a").replace_strict(mapping, return_dtype: Polars::UInt8)
|
7074
|
+
# )
|
7075
|
+
# # =>
|
7076
|
+
# # shape: (3, 2)
|
7077
|
+
# # ┌─────┬──────────┐
|
7078
|
+
# # │ a ┆ replaced │
|
7079
|
+
# # │ --- ┆ --- │
|
7080
|
+
# # │ str ┆ u8 │
|
7081
|
+
# # ╞═════╪══════════╡
|
7082
|
+
# # │ x ┆ 1 │
|
7083
|
+
# # │ y ┆ 2 │
|
7084
|
+
# # │ z ┆ 3 │
|
7085
|
+
# # └─────┴──────────┘
|
7086
|
+
#
|
7087
|
+
# @example Expression input is supported for all parameters.
|
7088
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 2, 3], "b" => [1.5, 2.5, 5.0, 1.0]})
|
7089
|
+
# df.with_columns(
|
7090
|
+
# replaced: Polars.col("a").replace_strict(
|
7091
|
+
# Polars.col("a").max,
|
7092
|
+
# Polars.col("b").sum,
|
7093
|
+
# default: Polars.col("b")
|
7094
|
+
# )
|
7095
|
+
# )
|
7096
|
+
# # =>
|
7097
|
+
# # shape: (4, 3)
|
7098
|
+
# # ┌─────┬─────┬──────────┐
|
7099
|
+
# # │ a ┆ b ┆ replaced │
|
7100
|
+
# # │ --- ┆ --- ┆ --- │
|
7101
|
+
# # │ i64 ┆ f64 ┆ f64 │
|
7102
|
+
# # ╞═════╪═════╪══════════╡
|
7103
|
+
# # │ 1 ┆ 1.5 ┆ 1.5 │
|
7104
|
+
# # │ 2 ┆ 2.5 ┆ 2.5 │
|
7105
|
+
# # │ 2 ┆ 5.0 ┆ 5.0 │
|
7106
|
+
# # │ 3 ┆ 1.0 ┆ 10.0 │
|
7107
|
+
# # └─────┴─────┴──────────┘
|
7108
|
+
def replace_strict(
|
7109
|
+
old,
|
7110
|
+
new = NO_DEFAULT,
|
7111
|
+
default: NO_DEFAULT,
|
7112
|
+
return_dtype: nil
|
7113
|
+
)
|
7114
|
+
if new.eql?(NO_DEFAULT) && old.is_a?(Hash)
|
7115
|
+
new = Series.new(old.values)
|
7116
|
+
old = Series.new(old.keys)
|
7117
|
+
end
|
7118
|
+
|
7119
|
+
old = Utils.parse_into_expression(old, str_as_lit: true, list_as_series: true)
|
7120
|
+
new = Utils.parse_into_expression(new, str_as_lit: true, list_as_series: true)
|
7121
|
+
|
7122
|
+
default = default.eql?(NO_DEFAULT) ? nil : Utils.parse_into_expression(default, str_as_lit: true)
|
7123
|
+
|
7124
|
+
_from_rbexpr(
|
7125
|
+
_rbexpr.replace_strict(old, new, default, return_dtype)
|
7126
|
+
)
|
5980
7127
|
end
|
5981
7128
|
|
5982
7129
|
# Create an object namespace of all list related methods.
|
@@ -6053,7 +7200,7 @@ module Polars
|
|
6053
7200
|
end
|
6054
7201
|
|
6055
7202
|
def _to_expr(other)
|
6056
|
-
other.is_a?(Expr) ? other :
|
7203
|
+
other.is_a?(Expr) ? other : F.lit(other)
|
6057
7204
|
end
|
6058
7205
|
|
6059
7206
|
def _prepare_alpha(com, span, half_life, alpha)
|
@@ -6101,5 +7248,9 @@ module Polars
|
|
6101
7248
|
end
|
6102
7249
|
[window_size, min_periods]
|
6103
7250
|
end
|
7251
|
+
|
7252
|
+
def _prepare_rolling_by_window_args(window_size)
|
7253
|
+
window_size
|
7254
|
+
end
|
6104
7255
|
end
|
6105
7256
|
end
|