polars-df 0.10.0-aarch64-linux → 0.12.0-aarch64-linux
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +27 -0
- data/Cargo.lock +392 -351
- data/LICENSE-THIRD-PARTY.txt +1125 -865
- data/README.md +6 -6
- data/lib/polars/3.1/polars.so +0 -0
- data/lib/polars/3.2/polars.so +0 -0
- data/lib/polars/3.3/polars.so +0 -0
- data/lib/polars/array_expr.rb +4 -4
- data/lib/polars/batched_csv_reader.rb +11 -5
- data/lib/polars/cat_expr.rb +0 -36
- data/lib/polars/cat_name_space.rb +0 -37
- data/lib/polars/convert.rb +6 -1
- data/lib/polars/data_frame.rb +176 -403
- data/lib/polars/data_types.rb +1 -1
- data/lib/polars/date_time_expr.rb +525 -572
- data/lib/polars/date_time_name_space.rb +263 -460
- data/lib/polars/dynamic_group_by.rb +5 -5
- data/lib/polars/exceptions.rb +7 -0
- data/lib/polars/expr.rb +1394 -243
- data/lib/polars/expr_dispatch.rb +1 -1
- data/lib/polars/functions/aggregation/horizontal.rb +8 -8
- data/lib/polars/functions/as_datatype.rb +63 -40
- data/lib/polars/functions/lazy.rb +63 -14
- data/lib/polars/functions/lit.rb +1 -1
- data/lib/polars/functions/range/date_range.rb +90 -57
- data/lib/polars/functions/range/datetime_range.rb +149 -0
- data/lib/polars/functions/range/int_range.rb +2 -2
- data/lib/polars/functions/range/time_range.rb +141 -0
- data/lib/polars/functions/repeat.rb +1 -1
- data/lib/polars/functions/whenthen.rb +1 -1
- data/lib/polars/group_by.rb +88 -23
- data/lib/polars/io/avro.rb +24 -0
- data/lib/polars/{io.rb → io/csv.rb} +299 -493
- data/lib/polars/io/database.rb +73 -0
- data/lib/polars/io/ipc.rb +247 -0
- data/lib/polars/io/json.rb +29 -0
- data/lib/polars/io/ndjson.rb +80 -0
- data/lib/polars/io/parquet.rb +227 -0
- data/lib/polars/lazy_frame.rb +143 -272
- data/lib/polars/lazy_group_by.rb +100 -3
- data/lib/polars/list_expr.rb +11 -11
- data/lib/polars/list_name_space.rb +5 -1
- data/lib/polars/rolling_group_by.rb +7 -9
- data/lib/polars/series.rb +103 -187
- data/lib/polars/string_expr.rb +78 -102
- data/lib/polars/string_name_space.rb +5 -4
- data/lib/polars/testing.rb +2 -2
- data/lib/polars/utils/constants.rb +9 -0
- data/lib/polars/utils/convert.rb +97 -0
- data/lib/polars/utils/parse.rb +89 -0
- data/lib/polars/utils/various.rb +76 -0
- data/lib/polars/utils/wrap.rb +19 -0
- data/lib/polars/utils.rb +8 -300
- data/lib/polars/version.rb +1 -1
- data/lib/polars/whenthen.rb +6 -6
- data/lib/polars.rb +20 -1
- metadata +17 -4
data/lib/polars/expr.rb
CHANGED
@@ -82,8 +82,8 @@ module Polars
|
|
82
82
|
#
|
83
83
|
# @return [Expr]
|
84
84
|
def **(power)
|
85
|
-
exponent = Utils.
|
86
|
-
_from_rbexpr(_rbexpr.pow(exponent
|
85
|
+
exponent = Utils.parse_into_expression(power)
|
86
|
+
_from_rbexpr(_rbexpr.pow(exponent))
|
87
87
|
end
|
88
88
|
|
89
89
|
# Greater than or equal.
|
@@ -811,8 +811,8 @@ module Polars
|
|
811
811
|
# # │ 10 ┆ 4 │
|
812
812
|
# # └─────┴──────┘
|
813
813
|
def append(other, upcast: true)
|
814
|
-
other = Utils.
|
815
|
-
_from_rbexpr(_rbexpr.append(other
|
814
|
+
other = Utils.parse_into_expression(other)
|
815
|
+
_from_rbexpr(_rbexpr.append(other, upcast))
|
816
816
|
end
|
817
817
|
|
818
818
|
# Create a single chunk of memory for this Series.
|
@@ -1165,8 +1165,8 @@ module Polars
|
|
1165
1165
|
# # │ 44 │
|
1166
1166
|
# # └─────┘
|
1167
1167
|
def dot(other)
|
1168
|
-
other = Utils.
|
1169
|
-
_from_rbexpr(_rbexpr.dot(other
|
1168
|
+
other = Utils.parse_into_expression(other, str_as_lit: false)
|
1169
|
+
_from_rbexpr(_rbexpr.dot(other))
|
1170
1170
|
end
|
1171
1171
|
|
1172
1172
|
# Compute the most occurring value(s).
|
@@ -1252,12 +1252,12 @@ module Polars
|
|
1252
1252
|
# df = Polars::DataFrame.new(
|
1253
1253
|
# {
|
1254
1254
|
# "group" => [
|
1255
|
-
#
|
1256
|
-
#
|
1257
|
-
#
|
1258
|
-
#
|
1259
|
-
#
|
1260
|
-
#
|
1255
|
+
# "one",
|
1256
|
+
# "one",
|
1257
|
+
# "one",
|
1258
|
+
# "two",
|
1259
|
+
# "two",
|
1260
|
+
# "two"
|
1261
1261
|
# ],
|
1262
1262
|
# "value" => [1, 98, 2, 3, 99, 4]
|
1263
1263
|
# }
|
@@ -1346,7 +1346,7 @@ module Polars
|
|
1346
1346
|
# # │ 2 ┆ 98 │
|
1347
1347
|
# # └───────┴──────────┘
|
1348
1348
|
def top_k(k: 5)
|
1349
|
-
k = Utils.
|
1349
|
+
k = Utils.parse_into_expression(k)
|
1350
1350
|
_from_rbexpr(_rbexpr.top_k(k))
|
1351
1351
|
end
|
1352
1352
|
|
@@ -1385,7 +1385,7 @@ module Polars
|
|
1385
1385
|
# # │ 2 ┆ 98 │
|
1386
1386
|
# # └───────┴──────────┘
|
1387
1387
|
def bottom_k(k: 5)
|
1388
|
-
k = Utils.
|
1388
|
+
k = Utils.parse_into_expression(k)
|
1389
1389
|
_from_rbexpr(_rbexpr.bottom_k(k))
|
1390
1390
|
end
|
1391
1391
|
|
@@ -1498,8 +1498,8 @@ module Polars
|
|
1498
1498
|
# # │ 0 ┆ 2 ┆ 4 │
|
1499
1499
|
# # └──────┴───────┴─────┘
|
1500
1500
|
def search_sorted(element, side: "any")
|
1501
|
-
element = Utils.
|
1502
|
-
_from_rbexpr(_rbexpr.search_sorted(element
|
1501
|
+
element = Utils.parse_into_expression(element, str_as_lit: false)
|
1502
|
+
_from_rbexpr(_rbexpr.search_sorted(element, side))
|
1503
1503
|
end
|
1504
1504
|
|
1505
1505
|
# Sort this column by the ordering of another column, or multiple other columns.
|
@@ -1545,13 +1545,14 @@ module Polars
|
|
1545
1545
|
# # │ two │
|
1546
1546
|
# # └───────┘
|
1547
1547
|
def sort_by(by, *more_by, reverse: false, nulls_last: false, multithreaded: true, maintain_order: false)
|
1548
|
-
by = Utils.
|
1549
|
-
|
1550
|
-
|
1551
|
-
|
1552
|
-
|
1553
|
-
|
1554
|
-
|
1548
|
+
by = Utils.parse_into_list_of_expressions(by, *more_by)
|
1549
|
+
reverse = Utils.extend_bool(reverse, by.length, "reverse", "by")
|
1550
|
+
nulls_last = Utils.extend_bool(nulls_last, by.length, "nulls_last", "by")
|
1551
|
+
_from_rbexpr(
|
1552
|
+
_rbexpr.sort_by(
|
1553
|
+
by, reverse, nulls_last, multithreaded, maintain_order
|
1554
|
+
)
|
1555
|
+
)
|
1555
1556
|
end
|
1556
1557
|
|
1557
1558
|
# Take values by index.
|
@@ -1588,14 +1589,51 @@ module Polars
|
|
1588
1589
|
# # └───────┴───────────┘
|
1589
1590
|
def gather(indices)
|
1590
1591
|
if indices.is_a?(::Array)
|
1591
|
-
indices_lit = Polars.lit(Series.new("", indices, dtype: :u32))
|
1592
|
+
indices_lit = Polars.lit(Series.new("", indices, dtype: :u32))._rbexpr
|
1592
1593
|
else
|
1593
|
-
indices_lit = Utils.
|
1594
|
+
indices_lit = Utils.parse_into_expression(indices, str_as_lit: false)
|
1594
1595
|
end
|
1595
|
-
_from_rbexpr(_rbexpr.gather(indices_lit
|
1596
|
+
_from_rbexpr(_rbexpr.gather(indices_lit))
|
1596
1597
|
end
|
1597
1598
|
alias_method :take, :gather
|
1598
1599
|
|
1600
|
+
# Return a single value by index.
|
1601
|
+
#
|
1602
|
+
# @param index [Object]
|
1603
|
+
# An expression that leads to a UInt32 index.
|
1604
|
+
#
|
1605
|
+
# @return [Expr]
|
1606
|
+
#
|
1607
|
+
# @example
|
1608
|
+
# df = Polars::DataFrame.new(
|
1609
|
+
# {
|
1610
|
+
# "group" => [
|
1611
|
+
# "one",
|
1612
|
+
# "one",
|
1613
|
+
# "one",
|
1614
|
+
# "two",
|
1615
|
+
# "two",
|
1616
|
+
# "two"
|
1617
|
+
# ],
|
1618
|
+
# "value" => [1, 98, 2, 3, 99, 4]
|
1619
|
+
# }
|
1620
|
+
# )
|
1621
|
+
# df.group_by("group", maintain_order: true).agg(Polars.col("value").get(1))
|
1622
|
+
# # =>
|
1623
|
+
# # shape: (2, 2)
|
1624
|
+
# # ┌───────┬───────┐
|
1625
|
+
# # │ group ┆ value │
|
1626
|
+
# # │ --- ┆ --- │
|
1627
|
+
# # │ str ┆ i64 │
|
1628
|
+
# # ╞═══════╪═══════╡
|
1629
|
+
# # │ one ┆ 98 │
|
1630
|
+
# # │ two ┆ 99 │
|
1631
|
+
# # └───────┴───────┘
|
1632
|
+
def get(index)
|
1633
|
+
index_lit = Utils.parse_into_expression(index)
|
1634
|
+
_from_rbexpr(_rbexpr.get(index_lit))
|
1635
|
+
end
|
1636
|
+
|
1599
1637
|
# Shift the values by a given period.
|
1600
1638
|
#
|
1601
1639
|
# @param n [Integer]
|
@@ -1622,9 +1660,9 @@ module Polars
|
|
1622
1660
|
# # └──────┘
|
1623
1661
|
def shift(n = 1, fill_value: nil)
|
1624
1662
|
if !fill_value.nil?
|
1625
|
-
fill_value = Utils.
|
1663
|
+
fill_value = Utils.parse_into_expression(fill_value, str_as_lit: true)
|
1626
1664
|
end
|
1627
|
-
n = Utils.
|
1665
|
+
n = Utils.parse_into_expression(n)
|
1628
1666
|
_from_rbexpr(_rbexpr.shift(n, fill_value))
|
1629
1667
|
end
|
1630
1668
|
|
@@ -1727,8 +1765,8 @@ module Polars
|
|
1727
1765
|
end
|
1728
1766
|
|
1729
1767
|
if !value.nil?
|
1730
|
-
value = Utils.
|
1731
|
-
_from_rbexpr(_rbexpr.fill_null(value
|
1768
|
+
value = Utils.parse_into_expression(value, str_as_lit: true)
|
1769
|
+
_from_rbexpr(_rbexpr.fill_null(value))
|
1732
1770
|
else
|
1733
1771
|
_from_rbexpr(_rbexpr.fill_null_with_strategy(strategy, limit))
|
1734
1772
|
end
|
@@ -1758,8 +1796,8 @@ module Polars
|
|
1758
1796
|
# # │ zero ┆ 6.0 │
|
1759
1797
|
# # └──────┴──────┘
|
1760
1798
|
def fill_nan(fill_value)
|
1761
|
-
fill_value = Utils.
|
1762
|
-
_from_rbexpr(_rbexpr.fill_nan(fill_value
|
1799
|
+
fill_value = Utils.parse_into_expression(fill_value, str_as_lit: true)
|
1800
|
+
_from_rbexpr(_rbexpr.fill_nan(fill_value))
|
1763
1801
|
end
|
1764
1802
|
|
1765
1803
|
# Fill missing values with the latest seen values.
|
@@ -2275,7 +2313,7 @@ module Polars
|
|
2275
2313
|
# # │ 4 │
|
2276
2314
|
# # └────────┘
|
2277
2315
|
def over(expr)
|
2278
|
-
rbexprs = Utils.
|
2316
|
+
rbexprs = Utils.parse_into_list_of_expressions(expr)
|
2279
2317
|
_from_rbexpr(_rbexpr.over(rbexprs))
|
2280
2318
|
end
|
2281
2319
|
|
@@ -2470,8 +2508,8 @@ module Polars
|
|
2470
2508
|
# # │ 1.5 │
|
2471
2509
|
# # └─────┘
|
2472
2510
|
def quantile(quantile, interpolation: "nearest")
|
2473
|
-
quantile = Utils.
|
2474
|
-
_from_rbexpr(_rbexpr.quantile(quantile
|
2511
|
+
quantile = Utils.parse_into_expression(quantile, str_as_lit: false)
|
2512
|
+
_from_rbexpr(_rbexpr.quantile(quantile, interpolation))
|
2475
2513
|
end
|
2476
2514
|
|
2477
2515
|
# Bin continuous values into discrete categories.
|
@@ -2515,17 +2553,17 @@ module Polars
|
|
2515
2553
|
# ).unnest("cut")
|
2516
2554
|
# # =>
|
2517
2555
|
# # shape: (5, 3)
|
2518
|
-
# #
|
2519
|
-
# # │ foo ┆
|
2520
|
-
# # │ --- ┆ ---
|
2521
|
-
# # │ i64 ┆ f64
|
2522
|
-
# #
|
2523
|
-
# # │ -2 ┆ -1.0
|
2524
|
-
# # │ -1 ┆ -1.0
|
2525
|
-
# # │ 0 ┆ 1.0
|
2526
|
-
# # │ 1 ┆ 1.0
|
2527
|
-
# # │ 2 ┆ inf
|
2528
|
-
# #
|
2556
|
+
# # ┌─────┬────────────┬────────────┐
|
2557
|
+
# # │ foo ┆ breakpoint ┆ category │
|
2558
|
+
# # │ --- ┆ --- ┆ --- │
|
2559
|
+
# # │ i64 ┆ f64 ┆ cat │
|
2560
|
+
# # ╞═════╪════════════╪════════════╡
|
2561
|
+
# # │ -2 ┆ -1.0 ┆ (-inf, -1] │
|
2562
|
+
# # │ -1 ┆ -1.0 ┆ (-inf, -1] │
|
2563
|
+
# # │ 0 ┆ 1.0 ┆ (-1, 1] │
|
2564
|
+
# # │ 1 ┆ 1.0 ┆ (-1, 1] │
|
2565
|
+
# # │ 2 ┆ inf ┆ (1, inf] │
|
2566
|
+
# # └─────┴────────────┴────────────┘
|
2529
2567
|
def cut(breaks, labels: nil, left_closed: false, include_breaks: false)
|
2530
2568
|
_from_rbexpr(_rbexpr.cut(breaks, labels, left_closed, include_breaks))
|
2531
2569
|
end
|
@@ -2596,17 +2634,17 @@ module Polars
|
|
2596
2634
|
# ).unnest("qcut")
|
2597
2635
|
# # =>
|
2598
2636
|
# # shape: (5, 3)
|
2599
|
-
# #
|
2600
|
-
# # │ foo ┆
|
2601
|
-
# # │ --- ┆ ---
|
2602
|
-
# # │ i64 ┆ f64
|
2603
|
-
# #
|
2604
|
-
# # │ -2 ┆ -1.0
|
2605
|
-
# # │ -1 ┆ -1.0
|
2606
|
-
# # │ 0 ┆ 1.0
|
2607
|
-
# # │ 1 ┆ 1.0
|
2608
|
-
# # │ 2 ┆ inf
|
2609
|
-
# #
|
2637
|
+
# # ┌─────┬────────────┬────────────┐
|
2638
|
+
# # │ foo ┆ breakpoint ┆ category │
|
2639
|
+
# # │ --- ┆ --- ┆ --- │
|
2640
|
+
# # │ i64 ┆ f64 ┆ cat │
|
2641
|
+
# # ╞═════╪════════════╪════════════╡
|
2642
|
+
# # │ -2 ┆ -1.0 ┆ (-inf, -1] │
|
2643
|
+
# # │ -1 ┆ -1.0 ┆ (-inf, -1] │
|
2644
|
+
# # │ 0 ┆ 1.0 ┆ (-1, 1] │
|
2645
|
+
# # │ 1 ┆ 1.0 ┆ (-1, 1] │
|
2646
|
+
# # │ 2 ┆ inf ┆ (1, inf] │
|
2647
|
+
# # └─────┴────────────┴────────────┘
|
2610
2648
|
def qcut(quantiles, labels: nil, left_closed: false, allow_duplicates: false, include_breaks: false)
|
2611
2649
|
if quantiles.is_a?(Integer)
|
2612
2650
|
rbexpr = _rbexpr.qcut_uniform(
|
@@ -2630,18 +2668,18 @@ module Polars
|
|
2630
2668
|
# df.select(Polars.col("s").rle).unnest("s")
|
2631
2669
|
# # =>
|
2632
2670
|
# # shape: (6, 2)
|
2633
|
-
# #
|
2634
|
-
# # │
|
2635
|
-
# # │ ---
|
2636
|
-
# # │
|
2637
|
-
# #
|
2638
|
-
# # │ 2
|
2639
|
-
# # │ 1
|
2640
|
-
# # │ 1
|
2641
|
-
# # │ 1
|
2642
|
-
# # │ 1
|
2643
|
-
# # │ 2
|
2644
|
-
# #
|
2671
|
+
# # ┌─────┬───────┐
|
2672
|
+
# # │ len ┆ value │
|
2673
|
+
# # │ --- ┆ --- │
|
2674
|
+
# # │ u32 ┆ i64 │
|
2675
|
+
# # ╞═════╪═══════╡
|
2676
|
+
# # │ 2 ┆ 1 │
|
2677
|
+
# # │ 1 ┆ 2 │
|
2678
|
+
# # │ 1 ┆ 1 │
|
2679
|
+
# # │ 1 ┆ null │
|
2680
|
+
# # │ 1 ┆ 1 │
|
2681
|
+
# # │ 2 ┆ 3 │
|
2682
|
+
# # └─────┴───────┘
|
2645
2683
|
def rle
|
2646
2684
|
_from_rbexpr(_rbexpr.rle)
|
2647
2685
|
end
|
@@ -2764,6 +2802,9 @@ module Polars
|
|
2764
2802
|
# Dtype of the output Series.
|
2765
2803
|
# @param agg_list [Boolean]
|
2766
2804
|
# Aggregate list.
|
2805
|
+
# @param is_elementwise [Boolean]
|
2806
|
+
# If set to true this can run in the streaming engine, but may yield
|
2807
|
+
# incorrect results in group-by. Ensure you know what you are doing!
|
2767
2808
|
#
|
2768
2809
|
# @return [Expr]
|
2769
2810
|
#
|
@@ -2784,12 +2825,21 @@ module Polars
|
|
2784
2825
|
# # ╞══════╪════════╡
|
2785
2826
|
# # │ 1 ┆ 0 │
|
2786
2827
|
# # └──────┴────────┘
|
2787
|
-
# def
|
2828
|
+
# def map_batches(return_dtype: nil, agg_list: false, is_elementwise: false, &f)
|
2788
2829
|
# if !return_dtype.nil?
|
2789
2830
|
# return_dtype = Utils.rb_type_to_dtype(return_dtype)
|
2790
2831
|
# end
|
2791
|
-
# _from_rbexpr(
|
2832
|
+
# _from_rbexpr(
|
2833
|
+
# _rbexpr.map_batches(
|
2834
|
+
# # TODO _map_batches_wrapper
|
2835
|
+
# f,
|
2836
|
+
# return_dtype,
|
2837
|
+
# agg_list,
|
2838
|
+
# is_elementwise
|
2839
|
+
# )
|
2840
|
+
# )
|
2792
2841
|
# end
|
2842
|
+
# alias_method :map, :map_batches
|
2793
2843
|
|
2794
2844
|
# Apply a custom/user-defined function (UDF) in a GroupBy or Projection context.
|
2795
2845
|
#
|
@@ -2831,7 +2881,7 @@ module Polars
|
|
2831
2881
|
#
|
2832
2882
|
# @example In a selection context, the function is applied by row.
|
2833
2883
|
# df.with_column(
|
2834
|
-
# Polars.col("a").
|
2884
|
+
# Polars.col("a").map_elements { |x| x * 2 }.alias("a_times_2")
|
2835
2885
|
# )
|
2836
2886
|
# # =>
|
2837
2887
|
# # shape: (4, 3)
|
@@ -2851,7 +2901,7 @@ module Polars
|
|
2851
2901
|
# .group_by("b", maintain_order: true)
|
2852
2902
|
# .agg(
|
2853
2903
|
# [
|
2854
|
-
# Polars.col("a").
|
2904
|
+
# Polars.col("a").map_elements { |x| x.sum }
|
2855
2905
|
# ]
|
2856
2906
|
# )
|
2857
2907
|
# .collect
|
@@ -2866,12 +2916,23 @@ module Polars
|
|
2866
2916
|
# # │ b ┆ 2 │
|
2867
2917
|
# # │ c ┆ 4 │
|
2868
2918
|
# # └─────┴─────┘
|
2869
|
-
# def
|
2870
|
-
#
|
2871
|
-
#
|
2919
|
+
# def map_elements(
|
2920
|
+
# return_dtype: nil,
|
2921
|
+
# skip_nulls: true,
|
2922
|
+
# pass_name: false,
|
2923
|
+
# strategy: "thread_local",
|
2924
|
+
# &f
|
2925
|
+
# )
|
2926
|
+
# if pass_name
|
2927
|
+
# raise Todo
|
2928
|
+
# else
|
2929
|
+
# wrap_f = lambda do |x|
|
2930
|
+
# x.map_elements(return_dtype: return_dtype, skip_nulls: skip_nulls, &f)
|
2931
|
+
# end
|
2872
2932
|
# end
|
2873
|
-
#
|
2933
|
+
# map_batches(agg_list: true, return_dtype: return_dtype, &wrap_f)
|
2874
2934
|
# end
|
2935
|
+
# alias_method :apply, :map_elements
|
2875
2936
|
|
2876
2937
|
# Explode a list or utf8 Series. This means that every item is expanded to a new
|
2877
2938
|
# row.
|
@@ -3081,7 +3142,7 @@ module Polars
|
|
3081
3142
|
# # │ null ┆ null ┆ null ┆ true │
|
3082
3143
|
# # └──────┴──────┴────────┴────────────────┘
|
3083
3144
|
def eq_missing(other)
|
3084
|
-
other = Utils.
|
3145
|
+
other = Utils.parse_into_expression(other, str_as_lit: true)
|
3085
3146
|
_from_rbexpr(_rbexpr.eq_missing(other))
|
3086
3147
|
end
|
3087
3148
|
|
@@ -3285,7 +3346,7 @@ module Polars
|
|
3285
3346
|
# # │ null ┆ null ┆ null ┆ false │
|
3286
3347
|
# # └──────┴──────┴────────┴────────────────┘
|
3287
3348
|
def ne_missing(other)
|
3288
|
-
other = Utils.
|
3349
|
+
other = Utils.parse_into_expression(other, str_as_lit: true)
|
3289
3350
|
_from_rbexpr(_rbexpr.neq_missing(other))
|
3290
3351
|
end
|
3291
3352
|
|
@@ -3588,14 +3649,14 @@ module Polars
|
|
3588
3649
|
def is_in(other)
|
3589
3650
|
if other.is_a?(::Array)
|
3590
3651
|
if other.length == 0
|
3591
|
-
other = Polars.lit(nil)
|
3652
|
+
other = Polars.lit(nil)._rbexpr
|
3592
3653
|
else
|
3593
|
-
other = Polars.lit(Series.new(other))
|
3654
|
+
other = Polars.lit(Series.new(other))._rbexpr
|
3594
3655
|
end
|
3595
3656
|
else
|
3596
|
-
other = Utils.
|
3657
|
+
other = Utils.parse_into_expression(other, str_as_lit: false)
|
3597
3658
|
end
|
3598
|
-
_from_rbexpr(_rbexpr.is_in(other
|
3659
|
+
_from_rbexpr(_rbexpr.is_in(other))
|
3599
3660
|
end
|
3600
3661
|
alias_method :in?, :is_in
|
3601
3662
|
|
@@ -3630,15 +3691,15 @@ module Polars
|
|
3630
3691
|
# # │ ["z", "z", "z"] │
|
3631
3692
|
# # └─────────────────┘
|
3632
3693
|
def repeat_by(by)
|
3633
|
-
by = Utils.
|
3634
|
-
_from_rbexpr(_rbexpr.repeat_by(by
|
3694
|
+
by = Utils.parse_into_expression(by, str_as_lit: false)
|
3695
|
+
_from_rbexpr(_rbexpr.repeat_by(by))
|
3635
3696
|
end
|
3636
3697
|
|
3637
3698
|
# Check if this expression is between start and end.
|
3638
3699
|
#
|
3639
|
-
# @param
|
3700
|
+
# @param lower_bound [Object]
|
3640
3701
|
# Lower bound as primitive type or datetime.
|
3641
|
-
# @param
|
3702
|
+
# @param upper_bound [Object]
|
3642
3703
|
# Upper bound as primitive type or datetime.
|
3643
3704
|
# @param closed ["both", "left", "right", "none"]
|
3644
3705
|
# Define which sides of the interval are closed (inclusive).
|
@@ -3700,22 +3761,13 @@ module Polars
|
|
3700
3761
|
# # │ d ┆ false │
|
3701
3762
|
# # │ e ┆ false │
|
3702
3763
|
# # └─────┴────────────┘
|
3703
|
-
def is_between(
|
3704
|
-
|
3705
|
-
|
3706
|
-
|
3707
|
-
|
3708
|
-
|
3709
|
-
|
3710
|
-
when "both"
|
3711
|
-
(self >= start) & (self <= _end)
|
3712
|
-
when "right"
|
3713
|
-
(self > start) & (self <= _end)
|
3714
|
-
when "left"
|
3715
|
-
(self >= start) & (self < _end)
|
3716
|
-
else
|
3717
|
-
raise ArgumentError, "closed must be one of 'left', 'right', 'both', or 'none'"
|
3718
|
-
end
|
3764
|
+
def is_between(lower_bound, upper_bound, closed: "both")
|
3765
|
+
lower_bound = Utils.parse_into_expression(lower_bound)
|
3766
|
+
upper_bound = Utils.parse_into_expression(upper_bound)
|
3767
|
+
|
3768
|
+
_from_rbexpr(
|
3769
|
+
_rbexpr.is_between(lower_bound, upper_bound, closed)
|
3770
|
+
)
|
3719
3771
|
end
|
3720
3772
|
|
3721
3773
|
# Hash the elements in the selection.
|
@@ -3857,6 +3909,1002 @@ module Polars
|
|
3857
3909
|
_from_rbexpr(_rbexpr.interpolate(method))
|
3858
3910
|
end
|
3859
3911
|
|
3912
|
+
# Apply a rolling min based on another column.
|
3913
|
+
#
|
3914
|
+
# @param by [String]
|
3915
|
+
# This column must be of dtype Datetime or Date.
|
3916
|
+
# @param window_size [String]
|
3917
|
+
# The length of the window. Can be a dynamic temporal
|
3918
|
+
# size indicated by a timedelta or the following string language:
|
3919
|
+
#
|
3920
|
+
# - 1ns (1 nanosecond)
|
3921
|
+
# - 1us (1 microsecond)
|
3922
|
+
# - 1ms (1 millisecond)
|
3923
|
+
# - 1s (1 second)
|
3924
|
+
# - 1m (1 minute)
|
3925
|
+
# - 1h (1 hour)
|
3926
|
+
# - 1d (1 calendar day)
|
3927
|
+
# - 1w (1 calendar week)
|
3928
|
+
# - 1mo (1 calendar month)
|
3929
|
+
# - 1q (1 calendar quarter)
|
3930
|
+
# - 1y (1 calendar year)
|
3931
|
+
#
|
3932
|
+
# By "calendar day", we mean the corresponding time on the next day
|
3933
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
3934
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
3935
|
+
# "calendar year".
|
3936
|
+
# @param min_periods [Integer]
|
3937
|
+
# The number of values in the window that should be non-null before computing
|
3938
|
+
# a result.
|
3939
|
+
# @param closed ['left', 'right', 'both', 'none']
|
3940
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
3941
|
+
# defaults to `'right'`.
|
3942
|
+
# @param warn_if_unsorted [Boolean]
|
3943
|
+
# Warn if data is not known to be sorted by `by` column.
|
3944
|
+
#
|
3945
|
+
# @return [Expr]
|
3946
|
+
#
|
3947
|
+
# @note
|
3948
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
3949
|
+
# window, consider using `rolling` - this method can cache the window size
|
3950
|
+
# computation.
|
3951
|
+
#
|
3952
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
3953
|
+
# start = DateTime.new(2001, 1, 1)
|
3954
|
+
# stop = DateTime.new(2001, 1, 2)
|
3955
|
+
# df_temporal = Polars::DataFrame.new(
|
3956
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
3957
|
+
# ).with_row_index
|
3958
|
+
# # =>
|
3959
|
+
# # shape: (25, 2)
|
3960
|
+
# # ┌───────┬─────────────────────┐
|
3961
|
+
# # │ index ┆ date │
|
3962
|
+
# # │ --- ┆ --- │
|
3963
|
+
# # │ u32 ┆ datetime[ns] │
|
3964
|
+
# # ╞═══════╪═════════════════════╡
|
3965
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
3966
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
3967
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
3968
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
3969
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
3970
|
+
# # │ … ┆ … │
|
3971
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
3972
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
3973
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
3974
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
3975
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
3976
|
+
# # └───────┴─────────────────────┘
|
3977
|
+
#
|
3978
|
+
# @example Compute the rolling min with the temporal windows closed on the right (default)
|
3979
|
+
# df_temporal.with_columns(
|
3980
|
+
# rolling_row_min: Polars.col("index").rolling_min_by("date", "2h")
|
3981
|
+
# )
|
3982
|
+
# # =>
|
3983
|
+
# # shape: (25, 3)
|
3984
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
3985
|
+
# # │ index ┆ date ┆ rolling_row_min │
|
3986
|
+
# # │ --- ┆ --- ┆ --- │
|
3987
|
+
# # │ u32 ┆ datetime[ns] ┆ u32 │
|
3988
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
3989
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
|
3990
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0 │
|
3991
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1 │
|
3992
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2 │
|
3993
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3 │
|
3994
|
+
# # │ … ┆ … ┆ … │
|
3995
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19 │
|
3996
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20 │
|
3997
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21 │
|
3998
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22 │
|
3999
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23 │
|
4000
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4001
|
+
def rolling_min_by(
|
4002
|
+
by,
|
4003
|
+
window_size,
|
4004
|
+
min_periods: 1,
|
4005
|
+
closed: "right",
|
4006
|
+
warn_if_unsorted: nil
|
4007
|
+
)
|
4008
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4009
|
+
by = Utils.parse_into_expression(by)
|
4010
|
+
_from_rbexpr(
|
4011
|
+
_rbexpr.rolling_min_by(by, window_size, min_periods, closed)
|
4012
|
+
)
|
4013
|
+
end
|
4014
|
+
|
4015
|
+
# Apply a rolling max based on another column.
|
4016
|
+
#
|
4017
|
+
# @param by [String]
|
4018
|
+
# This column must be of dtype Datetime or Date.
|
4019
|
+
# @param window_size [String]
|
4020
|
+
# The length of the window. Can be a dynamic temporal
|
4021
|
+
# size indicated by a timedelta or the following string language:
|
4022
|
+
#
|
4023
|
+
# - 1ns (1 nanosecond)
|
4024
|
+
# - 1us (1 microsecond)
|
4025
|
+
# - 1ms (1 millisecond)
|
4026
|
+
# - 1s (1 second)
|
4027
|
+
# - 1m (1 minute)
|
4028
|
+
# - 1h (1 hour)
|
4029
|
+
# - 1d (1 calendar day)
|
4030
|
+
# - 1w (1 calendar week)
|
4031
|
+
# - 1mo (1 calendar month)
|
4032
|
+
# - 1q (1 calendar quarter)
|
4033
|
+
# - 1y (1 calendar year)
|
4034
|
+
#
|
4035
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4036
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4037
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4038
|
+
# "calendar year".
|
4039
|
+
# @param min_periods [Integer]
|
4040
|
+
# The number of values in the window that should be non-null before computing
|
4041
|
+
# a result.
|
4042
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4043
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4044
|
+
# defaults to `'right'`.
|
4045
|
+
# @param warn_if_unsorted [Boolean]
|
4046
|
+
# Warn if data is not known to be sorted by `by` column.
|
4047
|
+
#
|
4048
|
+
# @return [Expr]
|
4049
|
+
#
|
4050
|
+
# @note
|
4051
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4052
|
+
# window, consider using `rolling` - this method can cache the window size
|
4053
|
+
# computation.
|
4054
|
+
#
|
4055
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4056
|
+
# start = DateTime.new(2001, 1, 1)
|
4057
|
+
# stop = DateTime.new(2001, 1, 2)
|
4058
|
+
# df_temporal = Polars::DataFrame.new(
|
4059
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4060
|
+
# ).with_row_index
|
4061
|
+
# # =>
|
4062
|
+
# # shape: (25, 2)
|
4063
|
+
# # ┌───────┬─────────────────────┐
|
4064
|
+
# # │ index ┆ date │
|
4065
|
+
# # │ --- ┆ --- │
|
4066
|
+
# # │ u32 ┆ datetime[ns] │
|
4067
|
+
# # ╞═══════╪═════════════════════╡
|
4068
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4069
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4070
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4071
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4072
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4073
|
+
# # │ … ┆ … │
|
4074
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4075
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4076
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4077
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4078
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4079
|
+
# # └───────┴─────────────────────┘
|
4080
|
+
#
|
4081
|
+
# @example Compute the rolling max with the temporal windows closed on the right (default)
|
4082
|
+
# df_temporal.with_columns(
|
4083
|
+
# rolling_row_max: Polars.col("index").rolling_max_by("date", "2h")
|
4084
|
+
# )
|
4085
|
+
# # =>
|
4086
|
+
# # shape: (25, 3)
|
4087
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4088
|
+
# # │ index ┆ date ┆ rolling_row_max │
|
4089
|
+
# # │ --- ┆ --- ┆ --- │
|
4090
|
+
# # │ u32 ┆ datetime[ns] ┆ u32 │
|
4091
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4092
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
|
4093
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
|
4094
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 2 │
|
4095
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 3 │
|
4096
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 4 │
|
4097
|
+
# # │ … ┆ … ┆ … │
|
4098
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 20 │
|
4099
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 21 │
|
4100
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 22 │
|
4101
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 23 │
|
4102
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 24 │
|
4103
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4104
|
+
#
|
4105
|
+
# @example Compute the rolling max with the closure of windows on both sides
|
4106
|
+
# df_temporal.with_columns(
|
4107
|
+
# rolling_row_max: Polars.col("index").rolling_max_by(
|
4108
|
+
# "date", "2h", closed: "both"
|
4109
|
+
# )
|
4110
|
+
# )
|
4111
|
+
# # =>
|
4112
|
+
# # shape: (25, 3)
|
4113
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4114
|
+
# # │ index ┆ date ┆ rolling_row_max │
|
4115
|
+
# # │ --- ┆ --- ┆ --- │
|
4116
|
+
# # │ u32 ┆ datetime[ns] ┆ u32 │
|
4117
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4118
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
|
4119
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
|
4120
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 2 │
|
4121
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 3 │
|
4122
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 4 │
|
4123
|
+
# # │ … ┆ … ┆ … │
|
4124
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 20 │
|
4125
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 21 │
|
4126
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 22 │
|
4127
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 23 │
|
4128
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 24 │
|
4129
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4130
|
+
def rolling_max_by(
|
4131
|
+
by,
|
4132
|
+
window_size,
|
4133
|
+
min_periods: 1,
|
4134
|
+
closed: "right",
|
4135
|
+
warn_if_unsorted: nil
|
4136
|
+
)
|
4137
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4138
|
+
by = Utils.parse_into_expression(by)
|
4139
|
+
_from_rbexpr(
|
4140
|
+
_rbexpr.rolling_max_by(by, window_size, min_periods, closed)
|
4141
|
+
)
|
4142
|
+
end
|
4143
|
+
|
4144
|
+
# Apply a rolling mean based on another column.
|
4145
|
+
#
|
4146
|
+
# @param by [String]
|
4147
|
+
# This column must be of dtype Datetime or Date.
|
4148
|
+
# @param window_size [String]
|
4149
|
+
# The length of the window. Can be a dynamic temporal
|
4150
|
+
# size indicated by a timedelta or the following string language:
|
4151
|
+
#
|
4152
|
+
# - 1ns (1 nanosecond)
|
4153
|
+
# - 1us (1 microsecond)
|
4154
|
+
# - 1ms (1 millisecond)
|
4155
|
+
# - 1s (1 second)
|
4156
|
+
# - 1m (1 minute)
|
4157
|
+
# - 1h (1 hour)
|
4158
|
+
# - 1d (1 calendar day)
|
4159
|
+
# - 1w (1 calendar week)
|
4160
|
+
# - 1mo (1 calendar month)
|
4161
|
+
# - 1q (1 calendar quarter)
|
4162
|
+
# - 1y (1 calendar year)
|
4163
|
+
#
|
4164
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4165
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4166
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4167
|
+
# "calendar year".
|
4168
|
+
# @param min_periods [Integer]
|
4169
|
+
# The number of values in the window that should be non-null before computing
|
4170
|
+
# a result.
|
4171
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4172
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4173
|
+
# defaults to `'right'`.
|
4174
|
+
# @param warn_if_unsorted [Boolean]
|
4175
|
+
# Warn if data is not known to be sorted by `by` column.
|
4176
|
+
#
|
4177
|
+
# @return [Expr]
|
4178
|
+
#
|
4179
|
+
# @note
|
4180
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4181
|
+
# window, consider using `rolling` - this method can cache the window size
|
4182
|
+
# computation.
|
4183
|
+
#
|
4184
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4185
|
+
# start = DateTime.new(2001, 1, 1)
|
4186
|
+
# stop = DateTime.new(2001, 1, 2)
|
4187
|
+
# df_temporal = Polars::DataFrame.new(
|
4188
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4189
|
+
# ).with_row_index
|
4190
|
+
# # =>
|
4191
|
+
# # shape: (25, 2)
|
4192
|
+
# # ┌───────┬─────────────────────┐
|
4193
|
+
# # │ index ┆ date │
|
4194
|
+
# # │ --- ┆ --- │
|
4195
|
+
# # │ u32 ┆ datetime[ns] │
|
4196
|
+
# # ╞═══════╪═════════════════════╡
|
4197
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4198
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4199
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4200
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4201
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4202
|
+
# # │ … ┆ … │
|
4203
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4204
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4205
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4206
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4207
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4208
|
+
# # └───────┴─────────────────────┘
|
4209
|
+
#
|
4210
|
+
# @example Compute the rolling mean with the temporal windows closed on the right (default)
|
4211
|
+
# df_temporal.with_columns(
|
4212
|
+
# rolling_row_mean: Polars.col("index").rolling_mean_by(
|
4213
|
+
# "date", "2h"
|
4214
|
+
# )
|
4215
|
+
# )
|
4216
|
+
# # =>
|
4217
|
+
# # shape: (25, 3)
|
4218
|
+
# # ┌───────┬─────────────────────┬──────────────────┐
|
4219
|
+
# # │ index ┆ date ┆ rolling_row_mean │
|
4220
|
+
# # │ --- ┆ --- ┆ --- │
|
4221
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4222
|
+
# # ╞═══════╪═════════════════════╪══════════════════╡
|
4223
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
|
4224
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
|
4225
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.5 │
|
4226
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.5 │
|
4227
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.5 │
|
4228
|
+
# # │ … ┆ … ┆ … │
|
4229
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.5 │
|
4230
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.5 │
|
4231
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.5 │
|
4232
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.5 │
|
4233
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.5 │
|
4234
|
+
# # └───────┴─────────────────────┴──────────────────┘
|
4235
|
+
#
|
4236
|
+
# @example Compute the rolling mean with the closure of windows on both sides
|
4237
|
+
# df_temporal.with_columns(
|
4238
|
+
# rolling_row_mean: Polars.col("index").rolling_mean_by(
|
4239
|
+
# "date", "2h", closed: "both"
|
4240
|
+
# )
|
4241
|
+
# )
|
4242
|
+
# # =>
|
4243
|
+
# # shape: (25, 3)
|
4244
|
+
# # ┌───────┬─────────────────────┬──────────────────┐
|
4245
|
+
# # │ index ┆ date ┆ rolling_row_mean │
|
4246
|
+
# # │ --- ┆ --- ┆ --- │
|
4247
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4248
|
+
# # ╞═══════╪═════════════════════╪══════════════════╡
|
4249
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
|
4250
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
|
4251
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
|
4252
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.0 │
|
4253
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.0 │
|
4254
|
+
# # │ … ┆ … ┆ … │
|
4255
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.0 │
|
4256
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.0 │
|
4257
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.0 │
|
4258
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.0 │
|
4259
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.0 │
|
4260
|
+
# # └───────┴─────────────────────┴──────────────────┘
|
4261
|
+
def rolling_mean_by(
|
4262
|
+
by,
|
4263
|
+
window_size,
|
4264
|
+
min_periods: 1,
|
4265
|
+
closed: "right",
|
4266
|
+
warn_if_unsorted: nil
|
4267
|
+
)
|
4268
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4269
|
+
by = Utils.parse_into_expression(by)
|
4270
|
+
_from_rbexpr(
|
4271
|
+
_rbexpr.rolling_mean_by(
|
4272
|
+
by,
|
4273
|
+
window_size,
|
4274
|
+
min_periods,
|
4275
|
+
closed
|
4276
|
+
)
|
4277
|
+
)
|
4278
|
+
end
|
4279
|
+
|
4280
|
+
# Apply a rolling sum based on another column.
|
4281
|
+
#
|
4282
|
+
# @param by [String]
|
4283
|
+
# This column must of dtype `{Date, Datetime}`
|
4284
|
+
# @param window_size [String]
|
4285
|
+
# The length of the window. Can be a dynamic temporal
|
4286
|
+
# size indicated by a timedelta or the following string language:
|
4287
|
+
#
|
4288
|
+
# - 1ns (1 nanosecond)
|
4289
|
+
# - 1us (1 microsecond)
|
4290
|
+
# - 1ms (1 millisecond)
|
4291
|
+
# - 1s (1 second)
|
4292
|
+
# - 1m (1 minute)
|
4293
|
+
# - 1h (1 hour)
|
4294
|
+
# - 1d (1 calendar day)
|
4295
|
+
# - 1w (1 calendar week)
|
4296
|
+
# - 1mo (1 calendar month)
|
4297
|
+
# - 1q (1 calendar quarter)
|
4298
|
+
# - 1y (1 calendar year)
|
4299
|
+
#
|
4300
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4301
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4302
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4303
|
+
# "calendar year".
|
4304
|
+
# @param min_periods [Integer]
|
4305
|
+
# The number of values in the window that should be non-null before computing
|
4306
|
+
# a result.
|
4307
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4308
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4309
|
+
# defaults to `'right'`.
|
4310
|
+
# @param warn_if_unsorted [Boolean]
|
4311
|
+
# Warn if data is not known to be sorted by `by` column.
|
4312
|
+
#
|
4313
|
+
# @return [Expr]
|
4314
|
+
#
|
4315
|
+
# @note
|
4316
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4317
|
+
# window, consider using `rolling` - this method can cache the window size
|
4318
|
+
# computation.
|
4319
|
+
#
|
4320
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4321
|
+
# start = DateTime.new(2001, 1, 1)
|
4322
|
+
# stop = DateTime.new(2001, 1, 2)
|
4323
|
+
# df_temporal = Polars::DataFrame.new(
|
4324
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4325
|
+
# ).with_row_index
|
4326
|
+
# # =>
|
4327
|
+
# # shape: (25, 2)
|
4328
|
+
# # ┌───────┬─────────────────────┐
|
4329
|
+
# # │ index ┆ date │
|
4330
|
+
# # │ --- ┆ --- │
|
4331
|
+
# # │ u32 ┆ datetime[ns] │
|
4332
|
+
# # ╞═══════╪═════════════════════╡
|
4333
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4334
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4335
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4336
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4337
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4338
|
+
# # │ … ┆ … │
|
4339
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4340
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4341
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4342
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4343
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4344
|
+
# # └───────┴─────────────────────┘
|
4345
|
+
#
|
4346
|
+
# @example Compute the rolling sum with the temporal windows closed on the right (default)
|
4347
|
+
# df_temporal.with_columns(
|
4348
|
+
# rolling_row_sum: Polars.col("index").rolling_sum_by("date", "2h")
|
4349
|
+
# )
|
4350
|
+
# # =>
|
4351
|
+
# # shape: (25, 3)
|
4352
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4353
|
+
# # │ index ┆ date ┆ rolling_row_sum │
|
4354
|
+
# # │ --- ┆ --- ┆ --- │
|
4355
|
+
# # │ u32 ┆ datetime[ns] ┆ u32 │
|
4356
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4357
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
|
4358
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
|
4359
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 3 │
|
4360
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 5 │
|
4361
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 7 │
|
4362
|
+
# # │ … ┆ … ┆ … │
|
4363
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 39 │
|
4364
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 41 │
|
4365
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 43 │
|
4366
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 45 │
|
4367
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 47 │
|
4368
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4369
|
+
#
|
4370
|
+
# @example Compute the rolling sum with the closure of windows on both sides
|
4371
|
+
# df_temporal.with_columns(
|
4372
|
+
# rolling_row_sum: Polars.col("index").rolling_sum_by(
|
4373
|
+
# "date", "2h", closed: "both"
|
4374
|
+
# )
|
4375
|
+
# )
|
4376
|
+
# # =>
|
4377
|
+
# # shape: (25, 3)
|
4378
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4379
|
+
# # │ index ┆ date ┆ rolling_row_sum │
|
4380
|
+
# # │ --- ┆ --- ┆ --- │
|
4381
|
+
# # │ u32 ┆ datetime[ns] ┆ u32 │
|
4382
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4383
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0 │
|
4384
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 1 │
|
4385
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 3 │
|
4386
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 6 │
|
4387
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 9 │
|
4388
|
+
# # │ … ┆ … ┆ … │
|
4389
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 57 │
|
4390
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 60 │
|
4391
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 63 │
|
4392
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 66 │
|
4393
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 69 │
|
4394
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4395
|
+
def rolling_sum_by(
|
4396
|
+
by,
|
4397
|
+
window_size,
|
4398
|
+
min_periods: 1,
|
4399
|
+
closed: "right",
|
4400
|
+
warn_if_unsorted: nil
|
4401
|
+
)
|
4402
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4403
|
+
by = Utils.parse_into_expression(by)
|
4404
|
+
_from_rbexpr(
|
4405
|
+
_rbexpr.rolling_sum_by(by, window_size, min_periods, closed)
|
4406
|
+
)
|
4407
|
+
end
|
4408
|
+
|
4409
|
+
# Compute a rolling standard deviation based on another column.
|
4410
|
+
#
|
4411
|
+
# @param by [String]
|
4412
|
+
# This column must be of dtype Datetime or Date.
|
4413
|
+
# @param window_size [String]
|
4414
|
+
# The length of the window. Can be a dynamic temporal
|
4415
|
+
# size indicated by a timedelta or the following string language:
|
4416
|
+
#
|
4417
|
+
# - 1ns (1 nanosecond)
|
4418
|
+
# - 1us (1 microsecond)
|
4419
|
+
# - 1ms (1 millisecond)
|
4420
|
+
# - 1s (1 second)
|
4421
|
+
# - 1m (1 minute)
|
4422
|
+
# - 1h (1 hour)
|
4423
|
+
# - 1d (1 calendar day)
|
4424
|
+
# - 1w (1 calendar week)
|
4425
|
+
# - 1mo (1 calendar month)
|
4426
|
+
# - 1q (1 calendar quarter)
|
4427
|
+
# - 1y (1 calendar year)
|
4428
|
+
#
|
4429
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4430
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4431
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4432
|
+
# "calendar year".
|
4433
|
+
# @param min_periods [Integer]
|
4434
|
+
# The number of values in the window that should be non-null before computing
|
4435
|
+
# a result.
|
4436
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4437
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4438
|
+
# defaults to `'right'`.
|
4439
|
+
# @param ddof [Integer]
|
4440
|
+
# "Delta Degrees of Freedom": The divisor for a length N window is N - ddof
|
4441
|
+
# @param warn_if_unsorted [Boolean]
|
4442
|
+
# Warn if data is not known to be sorted by `by` column.
|
4443
|
+
#
|
4444
|
+
# @return [Expr]
|
4445
|
+
#
|
4446
|
+
# @note
|
4447
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4448
|
+
# window, consider using `rolling` - this method can cache the window size
|
4449
|
+
# computation.
|
4450
|
+
#
|
4451
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4452
|
+
# start = DateTime.new(2001, 1, 1)
|
4453
|
+
# stop = DateTime.new(2001, 1, 2)
|
4454
|
+
# df_temporal = Polars::DataFrame.new(
|
4455
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4456
|
+
# ).with_row_index
|
4457
|
+
# # =>
|
4458
|
+
# # shape: (25, 2)
|
4459
|
+
# # ┌───────┬─────────────────────┐
|
4460
|
+
# # │ index ┆ date │
|
4461
|
+
# # │ --- ┆ --- │
|
4462
|
+
# # │ u32 ┆ datetime[ns] │
|
4463
|
+
# # ╞═══════╪═════════════════════╡
|
4464
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4465
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4466
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4467
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4468
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4469
|
+
# # │ … ┆ … │
|
4470
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4471
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4472
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4473
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4474
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4475
|
+
# # └───────┴─────────────────────┘
|
4476
|
+
#
|
4477
|
+
# @example Compute the rolling std with the temporal windows closed on the right (default)
|
4478
|
+
# df_temporal.with_columns(
|
4479
|
+
# rolling_row_std: Polars.col("index").rolling_std_by("date", "2h")
|
4480
|
+
# )
|
4481
|
+
# # =>
|
4482
|
+
# # shape: (25, 3)
|
4483
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4484
|
+
# # │ index ┆ date ┆ rolling_row_std │
|
4485
|
+
# # │ --- ┆ --- ┆ --- │
|
4486
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4487
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4488
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
|
4489
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.707107 │
|
4490
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 0.707107 │
|
4491
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 0.707107 │
|
4492
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 0.707107 │
|
4493
|
+
# # │ … ┆ … ┆ … │
|
4494
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 0.707107 │
|
4495
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 0.707107 │
|
4496
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 0.707107 │
|
4497
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 0.707107 │
|
4498
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 0.707107 │
|
4499
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4500
|
+
#
|
4501
|
+
# @example Compute the rolling std with the closure of windows on both sides
|
4502
|
+
# df_temporal.with_columns(
|
4503
|
+
# rolling_row_std: Polars.col("index").rolling_std_by(
|
4504
|
+
# "date", "2h", closed: "both"
|
4505
|
+
# )
|
4506
|
+
# )
|
4507
|
+
# # =>
|
4508
|
+
# # shape: (25, 3)
|
4509
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4510
|
+
# # │ index ┆ date ┆ rolling_row_std │
|
4511
|
+
# # │ --- ┆ --- ┆ --- │
|
4512
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4513
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4514
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
|
4515
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.707107 │
|
4516
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
|
4517
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 1.0 │
|
4518
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 1.0 │
|
4519
|
+
# # │ … ┆ … ┆ … │
|
4520
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 1.0 │
|
4521
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 1.0 │
|
4522
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 1.0 │
|
4523
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 1.0 │
|
4524
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 1.0 │
|
4525
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4526
|
+
def rolling_std_by(
|
4527
|
+
by,
|
4528
|
+
window_size,
|
4529
|
+
min_periods: 1,
|
4530
|
+
closed: "right",
|
4531
|
+
ddof: 1,
|
4532
|
+
warn_if_unsorted: nil
|
4533
|
+
)
|
4534
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4535
|
+
by = Utils.parse_into_expression(by)
|
4536
|
+
_from_rbexpr(
|
4537
|
+
_rbexpr.rolling_std_by(
|
4538
|
+
by,
|
4539
|
+
window_size,
|
4540
|
+
min_periods,
|
4541
|
+
closed,
|
4542
|
+
ddof
|
4543
|
+
)
|
4544
|
+
)
|
4545
|
+
end
|
4546
|
+
|
4547
|
+
# Compute a rolling variance based on another column.
|
4548
|
+
#
|
4549
|
+
# @param by [String]
|
4550
|
+
# This column must be of dtype Datetime or Date.
|
4551
|
+
# @param window_size [String]
|
4552
|
+
# The length of the window. Can be a dynamic temporal
|
4553
|
+
# size indicated by a timedelta or the following string language:
|
4554
|
+
#
|
4555
|
+
# - 1ns (1 nanosecond)
|
4556
|
+
# - 1us (1 microsecond)
|
4557
|
+
# - 1ms (1 millisecond)
|
4558
|
+
# - 1s (1 second)
|
4559
|
+
# - 1m (1 minute)
|
4560
|
+
# - 1h (1 hour)
|
4561
|
+
# - 1d (1 calendar day)
|
4562
|
+
# - 1w (1 calendar week)
|
4563
|
+
# - 1mo (1 calendar month)
|
4564
|
+
# - 1q (1 calendar quarter)
|
4565
|
+
# - 1y (1 calendar year)
|
4566
|
+
#
|
4567
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4568
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4569
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4570
|
+
# "calendar year".
|
4571
|
+
# @param min_periods [Integer]
|
4572
|
+
# The number of values in the window that should be non-null before computing
|
4573
|
+
# a result.
|
4574
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4575
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4576
|
+
# defaults to `'right'`.
|
4577
|
+
# @param ddof [Integer]
|
4578
|
+
# "Delta Degrees of Freedom": The divisor for a length N window is N - ddof
|
4579
|
+
# @param warn_if_unsorted [Boolean]
|
4580
|
+
# Warn if data is not known to be sorted by `by` column.
|
4581
|
+
#
|
4582
|
+
# @return [Expr]
|
4583
|
+
#
|
4584
|
+
# @note
|
4585
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4586
|
+
# window, consider using `rolling` - this method can cache the window size
|
4587
|
+
# computation.
|
4588
|
+
#
|
4589
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4590
|
+
# start = DateTime.new(2001, 1, 1)
|
4591
|
+
# stop = DateTime.new(2001, 1, 2)
|
4592
|
+
# df_temporal = Polars::DataFrame.new(
|
4593
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4594
|
+
# ).with_row_index
|
4595
|
+
# # =>
|
4596
|
+
# # shape: (25, 2)
|
4597
|
+
# # ┌───────┬─────────────────────┐
|
4598
|
+
# # │ index ┆ date │
|
4599
|
+
# # │ --- ┆ --- │
|
4600
|
+
# # │ u32 ┆ datetime[ns] │
|
4601
|
+
# # ╞═══════╪═════════════════════╡
|
4602
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4603
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4604
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4605
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4606
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4607
|
+
# # │ … ┆ … │
|
4608
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4609
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4610
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4611
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4612
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4613
|
+
# # └───────┴─────────────────────┘
|
4614
|
+
#
|
4615
|
+
# @example Compute the rolling var with the temporal windows closed on the right (default)
|
4616
|
+
# df_temporal.with_columns(
|
4617
|
+
# rolling_row_var: Polars.col("index").rolling_var_by("date", "2h")
|
4618
|
+
# )
|
4619
|
+
# # =>
|
4620
|
+
# # shape: (25, 3)
|
4621
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4622
|
+
# # │ index ┆ date ┆ rolling_row_var │
|
4623
|
+
# # │ --- ┆ --- ┆ --- │
|
4624
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4625
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4626
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
|
4627
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
|
4628
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 0.5 │
|
4629
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 0.5 │
|
4630
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 0.5 │
|
4631
|
+
# # │ … ┆ … ┆ … │
|
4632
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 0.5 │
|
4633
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 0.5 │
|
4634
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 0.5 │
|
4635
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 0.5 │
|
4636
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 0.5 │
|
4637
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4638
|
+
#
|
4639
|
+
# @example Compute the rolling var with the closure of windows on both sides
|
4640
|
+
# df_temporal.with_columns(
|
4641
|
+
# rolling_row_var: Polars.col("index").rolling_var_by(
|
4642
|
+
# "date", "2h", closed: "both"
|
4643
|
+
# )
|
4644
|
+
# )
|
4645
|
+
# # =>
|
4646
|
+
# # shape: (25, 3)
|
4647
|
+
# # ┌───────┬─────────────────────┬─────────────────┐
|
4648
|
+
# # │ index ┆ date ┆ rolling_row_var │
|
4649
|
+
# # │ --- ┆ --- ┆ --- │
|
4650
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4651
|
+
# # ╞═══════╪═════════════════════╪═════════════════╡
|
4652
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ null │
|
4653
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
|
4654
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
|
4655
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 1.0 │
|
4656
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 1.0 │
|
4657
|
+
# # │ … ┆ … ┆ … │
|
4658
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 1.0 │
|
4659
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 1.0 │
|
4660
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 1.0 │
|
4661
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 1.0 │
|
4662
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 1.0 │
|
4663
|
+
# # └───────┴─────────────────────┴─────────────────┘
|
4664
|
+
def rolling_var_by(
|
4665
|
+
by,
|
4666
|
+
window_size,
|
4667
|
+
min_periods: 1,
|
4668
|
+
closed: "right",
|
4669
|
+
ddof: 1,
|
4670
|
+
warn_if_unsorted: nil
|
4671
|
+
)
|
4672
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4673
|
+
by = Utils.parse_into_expression(by)
|
4674
|
+
_from_rbexpr(
|
4675
|
+
_rbexpr.rolling_var_by(
|
4676
|
+
by,
|
4677
|
+
window_size,
|
4678
|
+
min_periods,
|
4679
|
+
closed,
|
4680
|
+
ddof
|
4681
|
+
)
|
4682
|
+
)
|
4683
|
+
end
|
4684
|
+
|
4685
|
+
# Compute a rolling median based on another column.
|
4686
|
+
#
|
4687
|
+
# @param by [String]
|
4688
|
+
# This column must be of dtype Datetime or Date.
|
4689
|
+
# @param window_size [String]
|
4690
|
+
# The length of the window. Can be a dynamic temporal
|
4691
|
+
# size indicated by a timedelta or the following string language:
|
4692
|
+
#
|
4693
|
+
# - 1ns (1 nanosecond)
|
4694
|
+
# - 1us (1 microsecond)
|
4695
|
+
# - 1ms (1 millisecond)
|
4696
|
+
# - 1s (1 second)
|
4697
|
+
# - 1m (1 minute)
|
4698
|
+
# - 1h (1 hour)
|
4699
|
+
# - 1d (1 calendar day)
|
4700
|
+
# - 1w (1 calendar week)
|
4701
|
+
# - 1mo (1 calendar month)
|
4702
|
+
# - 1q (1 calendar quarter)
|
4703
|
+
# - 1y (1 calendar year)
|
4704
|
+
#
|
4705
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4706
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4707
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4708
|
+
# "calendar year".
|
4709
|
+
# @param min_periods [Integer]
|
4710
|
+
# The number of values in the window that should be non-null before computing
|
4711
|
+
# a result.
|
4712
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4713
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4714
|
+
# defaults to `'right'`.
|
4715
|
+
# @param warn_if_unsorted [Boolean]
|
4716
|
+
# Warn if data is not known to be sorted by `by` column.
|
4717
|
+
#
|
4718
|
+
# @return [Expr]
|
4719
|
+
#
|
4720
|
+
# @note
|
4721
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4722
|
+
# window, consider using `rolling` - this method can cache the window size
|
4723
|
+
# computation.
|
4724
|
+
#
|
4725
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4726
|
+
# start = DateTime.new(2001, 1, 1)
|
4727
|
+
# stop = DateTime.new(2001, 1, 2)
|
4728
|
+
# df_temporal = Polars::DataFrame.new(
|
4729
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4730
|
+
# ).with_row_index
|
4731
|
+
# # =>
|
4732
|
+
# # shape: (25, 2)
|
4733
|
+
# # ┌───────┬─────────────────────┐
|
4734
|
+
# # │ index ┆ date │
|
4735
|
+
# # │ --- ┆ --- │
|
4736
|
+
# # │ u32 ┆ datetime[ns] │
|
4737
|
+
# # ╞═══════╪═════════════════════╡
|
4738
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4739
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4740
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4741
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4742
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4743
|
+
# # │ … ┆ … │
|
4744
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4745
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4746
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4747
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4748
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4749
|
+
# # └───────┴─────────────────────┘
|
4750
|
+
#
|
4751
|
+
# @example Compute the rolling median with the temporal windows closed on the right:
|
4752
|
+
# df_temporal.with_columns(
|
4753
|
+
# rolling_row_median: Polars.col("index").rolling_median_by(
|
4754
|
+
# "date", "2h"
|
4755
|
+
# )
|
4756
|
+
# )
|
4757
|
+
# # =>
|
4758
|
+
# # shape: (25, 3)
|
4759
|
+
# # ┌───────┬─────────────────────┬────────────────────┐
|
4760
|
+
# # │ index ┆ date ┆ rolling_row_median │
|
4761
|
+
# # │ --- ┆ --- ┆ --- │
|
4762
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4763
|
+
# # ╞═══════╪═════════════════════╪════════════════════╡
|
4764
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
|
4765
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.5 │
|
4766
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.5 │
|
4767
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.5 │
|
4768
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.5 │
|
4769
|
+
# # │ … ┆ … ┆ … │
|
4770
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.5 │
|
4771
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.5 │
|
4772
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.5 │
|
4773
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.5 │
|
4774
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.5 │
|
4775
|
+
# # └───────┴─────────────────────┴────────────────────┘
|
4776
|
+
def rolling_median_by(
|
4777
|
+
by,
|
4778
|
+
window_size,
|
4779
|
+
min_periods: 1,
|
4780
|
+
closed: "right",
|
4781
|
+
warn_if_unsorted: nil
|
4782
|
+
)
|
4783
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4784
|
+
by = Utils.parse_into_expression(by)
|
4785
|
+
_from_rbexpr(
|
4786
|
+
_rbexpr.rolling_median_by(by, window_size, min_periods, closed)
|
4787
|
+
)
|
4788
|
+
end
|
4789
|
+
|
4790
|
+
# Compute a rolling quantile based on another column.
|
4791
|
+
#
|
4792
|
+
# @param by [String]
|
4793
|
+
# This column must be of dtype Datetime or Date.
|
4794
|
+
# @param quantile [Float]
|
4795
|
+
# Quantile between 0.0 and 1.0.
|
4796
|
+
# @param interpolation ['nearest', 'higher', 'lower', 'midpoint', 'linear']
|
4797
|
+
# Interpolation method.
|
4798
|
+
# @param window_size [String]
|
4799
|
+
# The length of the window. Can be a dynamic
|
4800
|
+
# temporal size indicated by a timedelta or the following string language:
|
4801
|
+
#
|
4802
|
+
# - 1ns (1 nanosecond)
|
4803
|
+
# - 1us (1 microsecond)
|
4804
|
+
# - 1ms (1 millisecond)
|
4805
|
+
# - 1s (1 second)
|
4806
|
+
# - 1m (1 minute)
|
4807
|
+
# - 1h (1 hour)
|
4808
|
+
# - 1d (1 calendar day)
|
4809
|
+
# - 1w (1 calendar week)
|
4810
|
+
# - 1mo (1 calendar month)
|
4811
|
+
# - 1q (1 calendar quarter)
|
4812
|
+
# - 1y (1 calendar year)
|
4813
|
+
#
|
4814
|
+
# By "calendar day", we mean the corresponding time on the next day
|
4815
|
+
# (which may not be 24 hours, due to daylight savings). Similarly for
|
4816
|
+
# "calendar week", "calendar month", "calendar quarter", and
|
4817
|
+
# "calendar year".
|
4818
|
+
# @param min_periods [Integer]
|
4819
|
+
# The number of values in the window that should be non-null before computing
|
4820
|
+
# a result.
|
4821
|
+
# @param closed ['left', 'right', 'both', 'none']
|
4822
|
+
# Define which sides of the temporal interval are closed (inclusive),
|
4823
|
+
# defaults to `'right'`.
|
4824
|
+
# @param warn_if_unsorted [Boolean]
|
4825
|
+
# Warn if data is not known to be sorted by `by` column.
|
4826
|
+
#
|
4827
|
+
# @return [Expr]
|
4828
|
+
#
|
4829
|
+
# @note
|
4830
|
+
# If you want to compute multiple aggregation statistics over the same dynamic
|
4831
|
+
# window, consider using `rolling` - this method can cache the window size
|
4832
|
+
# computation.
|
4833
|
+
#
|
4834
|
+
# @example Create a DataFrame with a datetime column and a row number column
|
4835
|
+
# start = DateTime.new(2001, 1, 1)
|
4836
|
+
# stop = DateTime.new(2001, 1, 2)
|
4837
|
+
# df_temporal = Polars::DataFrame.new(
|
4838
|
+
# {"date" => Polars.datetime_range(start, stop, "1h", eager: true)}
|
4839
|
+
# ).with_row_index
|
4840
|
+
# # =>
|
4841
|
+
# # shape: (25, 2)
|
4842
|
+
# # ┌───────┬─────────────────────┐
|
4843
|
+
# # │ index ┆ date │
|
4844
|
+
# # │ --- ┆ --- │
|
4845
|
+
# # │ u32 ┆ datetime[ns] │
|
4846
|
+
# # ╞═══════╪═════════════════════╡
|
4847
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 │
|
4848
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 │
|
4849
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 │
|
4850
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 │
|
4851
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 │
|
4852
|
+
# # │ … ┆ … │
|
4853
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 │
|
4854
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 │
|
4855
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 │
|
4856
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 │
|
4857
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 │
|
4858
|
+
# # └───────┴─────────────────────┘
|
4859
|
+
#
|
4860
|
+
# @example Compute the rolling quantile with the temporal windows closed on the right:
|
4861
|
+
# df_temporal.with_columns(
|
4862
|
+
# rolling_row_quantile: Polars.col("index").rolling_quantile_by(
|
4863
|
+
# "date", "2h", quantile: 0.3
|
4864
|
+
# )
|
4865
|
+
# )
|
4866
|
+
# # =>
|
4867
|
+
# # shape: (25, 3)
|
4868
|
+
# # ┌───────┬─────────────────────┬──────────────────────┐
|
4869
|
+
# # │ index ┆ date ┆ rolling_row_quantile │
|
4870
|
+
# # │ --- ┆ --- ┆ --- │
|
4871
|
+
# # │ u32 ┆ datetime[ns] ┆ f64 │
|
4872
|
+
# # ╞═══════╪═════════════════════╪══════════════════════╡
|
4873
|
+
# # │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │
|
4874
|
+
# # │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.0 │
|
4875
|
+
# # │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │
|
4876
|
+
# # │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.0 │
|
4877
|
+
# # │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.0 │
|
4878
|
+
# # │ … ┆ … ┆ … │
|
4879
|
+
# # │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.0 │
|
4880
|
+
# # │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.0 │
|
4881
|
+
# # │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.0 │
|
4882
|
+
# # │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.0 │
|
4883
|
+
# # │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.0 │
|
4884
|
+
# # └───────┴─────────────────────┴──────────────────────┘
|
4885
|
+
def rolling_quantile_by(
|
4886
|
+
by,
|
4887
|
+
window_size,
|
4888
|
+
quantile:,
|
4889
|
+
interpolation: "nearest",
|
4890
|
+
min_periods: 1,
|
4891
|
+
closed: "right",
|
4892
|
+
warn_if_unsorted: nil
|
4893
|
+
)
|
4894
|
+
window_size = _prepare_rolling_by_window_args(window_size)
|
4895
|
+
by = Utils.parse_into_expression(by)
|
4896
|
+
_from_rbexpr(
|
4897
|
+
_rbexpr.rolling_quantile_by(
|
4898
|
+
by,
|
4899
|
+
quantile,
|
4900
|
+
interpolation,
|
4901
|
+
window_size,
|
4902
|
+
min_periods,
|
4903
|
+
closed,
|
4904
|
+
)
|
4905
|
+
)
|
4906
|
+
end
|
4907
|
+
|
3860
4908
|
# Apply a rolling min (moving min) over the values in this array.
|
3861
4909
|
#
|
3862
4910
|
# A window of length `window_size` will traverse the array. The values that fill
|
@@ -3889,12 +4937,6 @@ module Polars
|
|
3889
4937
|
# a result. If None, it will be set equal to window size.
|
3890
4938
|
# @param center [Boolean]
|
3891
4939
|
# Set the labels at the center of the window
|
3892
|
-
# @param by [String]
|
3893
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
3894
|
-
# set the column that will be used to determine the windows. This column must
|
3895
|
-
# be of dtype `{Date, Datetime}`
|
3896
|
-
# @param closed ["left", "right", "both", "none"]
|
3897
|
-
# Define whether the temporal window interval is closed or not.
|
3898
4940
|
#
|
3899
4941
|
# @note
|
3900
4942
|
# This functionality is experimental and may change without it being considered a
|
@@ -3932,16 +4974,11 @@ module Polars
|
|
3932
4974
|
window_size,
|
3933
4975
|
weights: nil,
|
3934
4976
|
min_periods: nil,
|
3935
|
-
center: false
|
3936
|
-
by: nil,
|
3937
|
-
closed: nil
|
4977
|
+
center: false
|
3938
4978
|
)
|
3939
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
3940
|
-
window_size, min_periods
|
3941
|
-
)
|
3942
4979
|
_from_rbexpr(
|
3943
4980
|
_rbexpr.rolling_min(
|
3944
|
-
window_size, weights, min_periods, center
|
4981
|
+
window_size, weights, min_periods, center
|
3945
4982
|
)
|
3946
4983
|
)
|
3947
4984
|
end
|
@@ -3978,12 +5015,6 @@ module Polars
|
|
3978
5015
|
# a result. If None, it will be set equal to window size.
|
3979
5016
|
# @param center [Boolean]
|
3980
5017
|
# Set the labels at the center of the window
|
3981
|
-
# @param by [String]
|
3982
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
3983
|
-
# set the column that will be used to determine the windows. This column must
|
3984
|
-
# be of dtype `{Date, Datetime}`
|
3985
|
-
# @param closed ["left", "right", "both", "none"]
|
3986
|
-
# Define whether the temporal window interval is closed or not.
|
3987
5018
|
#
|
3988
5019
|
# @note
|
3989
5020
|
# This functionality is experimental and may change without it being considered a
|
@@ -4021,16 +5052,11 @@ module Polars
|
|
4021
5052
|
window_size,
|
4022
5053
|
weights: nil,
|
4023
5054
|
min_periods: nil,
|
4024
|
-
center: false
|
4025
|
-
by: nil,
|
4026
|
-
closed: nil
|
5055
|
+
center: false
|
4027
5056
|
)
|
4028
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4029
|
-
window_size, min_periods
|
4030
|
-
)
|
4031
5057
|
_from_rbexpr(
|
4032
5058
|
_rbexpr.rolling_max(
|
4033
|
-
window_size, weights, min_periods, center
|
5059
|
+
window_size, weights, min_periods, center
|
4034
5060
|
)
|
4035
5061
|
)
|
4036
5062
|
end
|
@@ -4067,12 +5093,6 @@ module Polars
|
|
4067
5093
|
# a result. If None, it will be set equal to window size.
|
4068
5094
|
# @param center [Boolean]
|
4069
5095
|
# Set the labels at the center of the window
|
4070
|
-
# @param by [String]
|
4071
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4072
|
-
# set the column that will be used to determine the windows. This column must
|
4073
|
-
# be of dtype `{Date, Datetime}`
|
4074
|
-
# @param closed ["left", "right", "both", "none"]
|
4075
|
-
# Define whether the temporal window interval is closed or not.
|
4076
5096
|
#
|
4077
5097
|
# @note
|
4078
5098
|
# This functionality is experimental and may change without it being considered a
|
@@ -4110,16 +5130,11 @@ module Polars
|
|
4110
5130
|
window_size,
|
4111
5131
|
weights: nil,
|
4112
5132
|
min_periods: nil,
|
4113
|
-
center: false
|
4114
|
-
by: nil,
|
4115
|
-
closed: nil
|
5133
|
+
center: false
|
4116
5134
|
)
|
4117
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4118
|
-
window_size, min_periods
|
4119
|
-
)
|
4120
5135
|
_from_rbexpr(
|
4121
5136
|
_rbexpr.rolling_mean(
|
4122
|
-
window_size, weights, min_periods, center
|
5137
|
+
window_size, weights, min_periods, center
|
4123
5138
|
)
|
4124
5139
|
)
|
4125
5140
|
end
|
@@ -4156,12 +5171,6 @@ module Polars
|
|
4156
5171
|
# a result. If None, it will be set equal to window size.
|
4157
5172
|
# @param center [Boolean]
|
4158
5173
|
# Set the labels at the center of the window
|
4159
|
-
# @param by [String]
|
4160
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4161
|
-
# set the column that will be used to determine the windows. This column must
|
4162
|
-
# be of dtype `{Date, Datetime}`
|
4163
|
-
# @param closed ["left", "right", "both", "none"]
|
4164
|
-
# Define whether the temporal window interval is closed or not.
|
4165
5174
|
#
|
4166
5175
|
# @note
|
4167
5176
|
# This functionality is experimental and may change without it being considered a
|
@@ -4199,16 +5208,11 @@ module Polars
|
|
4199
5208
|
window_size,
|
4200
5209
|
weights: nil,
|
4201
5210
|
min_periods: nil,
|
4202
|
-
center: false
|
4203
|
-
by: nil,
|
4204
|
-
closed: nil
|
5211
|
+
center: false
|
4205
5212
|
)
|
4206
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4207
|
-
window_size, min_periods
|
4208
|
-
)
|
4209
5213
|
_from_rbexpr(
|
4210
5214
|
_rbexpr.rolling_sum(
|
4211
|
-
window_size, weights, min_periods, center
|
5215
|
+
window_size, weights, min_periods, center
|
4212
5216
|
)
|
4213
5217
|
)
|
4214
5218
|
end
|
@@ -4245,12 +5249,6 @@ module Polars
|
|
4245
5249
|
# a result. If None, it will be set equal to window size.
|
4246
5250
|
# @param center [Boolean]
|
4247
5251
|
# Set the labels at the center of the window
|
4248
|
-
# @param by [String]
|
4249
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4250
|
-
# set the column that will be used to determine the windows. This column must
|
4251
|
-
# be of dtype `{Date, Datetime}`
|
4252
|
-
# @param closed ["left", "right", "both", "none"]
|
4253
|
-
# Define whether the temporal window interval is closed or not.
|
4254
5252
|
#
|
4255
5253
|
# @note
|
4256
5254
|
# This functionality is experimental and may change without it being considered a
|
@@ -4289,17 +5287,11 @@ module Polars
|
|
4289
5287
|
weights: nil,
|
4290
5288
|
min_periods: nil,
|
4291
5289
|
center: false,
|
4292
|
-
|
4293
|
-
closed: nil,
|
4294
|
-
ddof: 1,
|
4295
|
-
warn_if_unsorted: true
|
5290
|
+
ddof: 1
|
4296
5291
|
)
|
4297
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4298
|
-
window_size, min_periods
|
4299
|
-
)
|
4300
5292
|
_from_rbexpr(
|
4301
5293
|
_rbexpr.rolling_std(
|
4302
|
-
window_size, weights, min_periods, center,
|
5294
|
+
window_size, weights, min_periods, center, ddof
|
4303
5295
|
)
|
4304
5296
|
)
|
4305
5297
|
end
|
@@ -4336,12 +5328,6 @@ module Polars
|
|
4336
5328
|
# a result. If None, it will be set equal to window size.
|
4337
5329
|
# @param center [Boolean]
|
4338
5330
|
# Set the labels at the center of the window
|
4339
|
-
# @param by [String]
|
4340
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4341
|
-
# set the column that will be used to determine the windows. This column must
|
4342
|
-
# be of dtype `{Date, Datetime}`
|
4343
|
-
# @param closed ["left", "right", "both", "none"]
|
4344
|
-
# Define whether the temporal window interval is closed or not.
|
4345
5331
|
#
|
4346
5332
|
# @note
|
4347
5333
|
# This functionality is experimental and may change without it being considered a
|
@@ -4380,17 +5366,11 @@ module Polars
|
|
4380
5366
|
weights: nil,
|
4381
5367
|
min_periods: nil,
|
4382
5368
|
center: false,
|
4383
|
-
|
4384
|
-
closed: nil,
|
4385
|
-
ddof: 1,
|
4386
|
-
warn_if_unsorted: true
|
5369
|
+
ddof: 1
|
4387
5370
|
)
|
4388
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4389
|
-
window_size, min_periods
|
4390
|
-
)
|
4391
5371
|
_from_rbexpr(
|
4392
5372
|
_rbexpr.rolling_var(
|
4393
|
-
window_size, weights, min_periods, center,
|
5373
|
+
window_size, weights, min_periods, center, ddof
|
4394
5374
|
)
|
4395
5375
|
)
|
4396
5376
|
end
|
@@ -4423,12 +5403,6 @@ module Polars
|
|
4423
5403
|
# a result. If None, it will be set equal to window size.
|
4424
5404
|
# @param center [Boolean]
|
4425
5405
|
# Set the labels at the center of the window
|
4426
|
-
# @param by [String]
|
4427
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4428
|
-
# set the column that will be used to determine the windows. This column must
|
4429
|
-
# be of dtype `{Date, Datetime}`
|
4430
|
-
# @param closed ["left", "right", "both", "none"]
|
4431
|
-
# Define whether the temporal window interval is closed or not.
|
4432
5406
|
#
|
4433
5407
|
# @note
|
4434
5408
|
# This functionality is experimental and may change without it being considered a
|
@@ -4466,17 +5440,11 @@ module Polars
|
|
4466
5440
|
window_size,
|
4467
5441
|
weights: nil,
|
4468
5442
|
min_periods: nil,
|
4469
|
-
center: false
|
4470
|
-
by: nil,
|
4471
|
-
closed: nil,
|
4472
|
-
warn_if_unsorted: true
|
5443
|
+
center: false
|
4473
5444
|
)
|
4474
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4475
|
-
window_size, min_periods
|
4476
|
-
)
|
4477
5445
|
_from_rbexpr(
|
4478
5446
|
_rbexpr.rolling_median(
|
4479
|
-
window_size, weights, min_periods, center
|
5447
|
+
window_size, weights, min_periods, center
|
4480
5448
|
)
|
4481
5449
|
)
|
4482
5450
|
end
|
@@ -4513,12 +5481,6 @@ module Polars
|
|
4513
5481
|
# a result. If None, it will be set equal to window size.
|
4514
5482
|
# @param center [Boolean]
|
4515
5483
|
# Set the labels at the center of the window
|
4516
|
-
# @param by [String]
|
4517
|
-
# If the `window_size` is temporal for instance `"5h"` or `"3s`, you must
|
4518
|
-
# set the column that will be used to determine the windows. This column must
|
4519
|
-
# be of dtype `{Date, Datetime}`
|
4520
|
-
# @param closed ["left", "right", "both", "none"]
|
4521
|
-
# Define whether the temporal window interval is closed or not.
|
4522
5484
|
#
|
4523
5485
|
# @note
|
4524
5486
|
# This functionality is experimental and may change without it being considered a
|
@@ -4558,17 +5520,11 @@ module Polars
|
|
4558
5520
|
window_size: 2,
|
4559
5521
|
weights: nil,
|
4560
5522
|
min_periods: nil,
|
4561
|
-
center: false
|
4562
|
-
by: nil,
|
4563
|
-
closed: nil,
|
4564
|
-
warn_if_unsorted: true
|
5523
|
+
center: false
|
4565
5524
|
)
|
4566
|
-
window_size, min_periods = _prepare_rolling_window_args(
|
4567
|
-
window_size, min_periods
|
4568
|
-
)
|
4569
5525
|
_from_rbexpr(
|
4570
5526
|
_rbexpr.rolling_quantile(
|
4571
|
-
quantile, interpolation, window_size, weights, min_periods, center
|
5527
|
+
quantile, interpolation, window_size, weights, min_periods, center
|
4572
5528
|
)
|
4573
5529
|
)
|
4574
5530
|
end
|
@@ -4837,7 +5793,7 @@ module Polars
|
|
4837
5793
|
# # │ 12 ┆ 0.0 │
|
4838
5794
|
# # └──────┴────────────┘
|
4839
5795
|
def pct_change(n: 1)
|
4840
|
-
n = Utils.
|
5796
|
+
n = Utils.parse_into_expression(n)
|
4841
5797
|
_from_rbexpr(_rbexpr.pct_change(n))
|
4842
5798
|
end
|
4843
5799
|
|
@@ -4929,12 +5885,12 @@ module Polars
|
|
4929
5885
|
# # │ null ┆ null │
|
4930
5886
|
# # │ 50 ┆ 10 │
|
4931
5887
|
# # └──────┴─────────────┘
|
4932
|
-
def clip(lower_bound, upper_bound)
|
5888
|
+
def clip(lower_bound = nil, upper_bound = nil)
|
4933
5889
|
if !lower_bound.nil?
|
4934
|
-
lower_bound = Utils.
|
5890
|
+
lower_bound = Utils.parse_into_expression(lower_bound)
|
4935
5891
|
end
|
4936
5892
|
if !upper_bound.nil?
|
4937
|
-
upper_bound = Utils.
|
5893
|
+
upper_bound = Utils.parse_into_expression(upper_bound)
|
4938
5894
|
end
|
4939
5895
|
_from_rbexpr(_rbexpr.clip(lower_bound, upper_bound))
|
4940
5896
|
end
|
@@ -5321,18 +6277,38 @@ module Polars
|
|
5321
6277
|
#
|
5322
6278
|
# @example
|
5323
6279
|
# df = Polars::DataFrame.new({"foo" => [1, 2, 3, 4, 5, 6, 7, 8, 9]})
|
5324
|
-
# df.select(Polars.col("foo").reshape([3, 3]))
|
6280
|
+
# square = df.select(Polars.col("foo").reshape([3, 3]))
|
5325
6281
|
# # =>
|
5326
6282
|
# # shape: (3, 1)
|
5327
|
-
# #
|
5328
|
-
# # │ foo
|
5329
|
-
# # │ ---
|
5330
|
-
# # │
|
5331
|
-
# #
|
5332
|
-
# # │ [1, 2, 3]
|
5333
|
-
# # │ [4, 5, 6]
|
5334
|
-
# # │ [7, 8, 9]
|
5335
|
-
# #
|
6283
|
+
# # ┌───────────────┐
|
6284
|
+
# # │ foo │
|
6285
|
+
# # │ --- │
|
6286
|
+
# # │ array[i64, 3] │
|
6287
|
+
# # ╞═══════════════╡
|
6288
|
+
# # │ [1, 2, 3] │
|
6289
|
+
# # │ [4, 5, 6] │
|
6290
|
+
# # │ [7, 8, 9] │
|
6291
|
+
# # └───────────────┘
|
6292
|
+
#
|
6293
|
+
# @example
|
6294
|
+
# square.select(Polars.col("foo").reshape([9]))
|
6295
|
+
# # =>
|
6296
|
+
# # shape: (9, 1)
|
6297
|
+
# # ┌─────┐
|
6298
|
+
# # │ foo │
|
6299
|
+
# # │ --- │
|
6300
|
+
# # │ i64 │
|
6301
|
+
# # ╞═════╡
|
6302
|
+
# # │ 1 │
|
6303
|
+
# # │ 2 │
|
6304
|
+
# # │ 3 │
|
6305
|
+
# # │ 4 │
|
6306
|
+
# # │ 5 │
|
6307
|
+
# # │ 6 │
|
6308
|
+
# # │ 7 │
|
6309
|
+
# # │ 8 │
|
6310
|
+
# # │ 9 │
|
6311
|
+
# # └─────┘
|
5336
6312
|
def reshape(dims)
|
5337
6313
|
_from_rbexpr(_rbexpr.reshape(dims))
|
5338
6314
|
end
|
@@ -5408,14 +6384,14 @@ module Polars
|
|
5408
6384
|
end
|
5409
6385
|
|
5410
6386
|
if !n.nil? && frac.nil?
|
5411
|
-
n = Utils.
|
6387
|
+
n = Utils.parse_into_expression(n)
|
5412
6388
|
return _from_rbexpr(_rbexpr.sample_n(n, with_replacement, shuffle, seed))
|
5413
6389
|
end
|
5414
6390
|
|
5415
6391
|
if frac.nil?
|
5416
6392
|
frac = 1.0
|
5417
6393
|
end
|
5418
|
-
frac = Utils.
|
6394
|
+
frac = Utils.parse_into_expression(frac)
|
5419
6395
|
_from_rbexpr(
|
5420
6396
|
_rbexpr.sample_frac(frac, with_replacement, shuffle, seed)
|
5421
6397
|
)
|
@@ -5548,11 +6524,17 @@ module Polars
|
|
5548
6524
|
|
5549
6525
|
# Count all unique values and create a struct mapping value to count.
|
5550
6526
|
#
|
5551
|
-
# @param multithreaded [Boolean]
|
5552
|
-
# Better to turn this off in the aggregation context, as it can lead to
|
5553
|
-
# contention.
|
5554
6527
|
# @param sort [Boolean]
|
5555
|
-
#
|
6528
|
+
# Sort the output by count in descending order.
|
6529
|
+
# If set to `false` (default), the order of the output is random.
|
6530
|
+
# @param parallel [Boolean]
|
6531
|
+
# Execute the computation in parallel.
|
6532
|
+
# @param name [String]
|
6533
|
+
# Give the resulting count column a specific name;
|
6534
|
+
# if `normalize` is true defaults to "count",
|
6535
|
+
# otherwise defaults to "proportion".
|
6536
|
+
# @param normalize [Boolean]
|
6537
|
+
# If true gives relative frequencies of the unique values
|
5556
6538
|
#
|
5557
6539
|
# @return [Expr]
|
5558
6540
|
#
|
@@ -5578,8 +6560,22 @@ module Polars
|
|
5578
6560
|
# # │ {"b",2} │
|
5579
6561
|
# # │ {"a",1} │
|
5580
6562
|
# # └───────────┘
|
5581
|
-
def value_counts(
|
5582
|
-
|
6563
|
+
def value_counts(
|
6564
|
+
sort: false,
|
6565
|
+
parallel: false,
|
6566
|
+
name: nil,
|
6567
|
+
normalize: false
|
6568
|
+
)
|
6569
|
+
if name.nil?
|
6570
|
+
if normalize
|
6571
|
+
name = "proportion"
|
6572
|
+
else
|
6573
|
+
name = "count"
|
6574
|
+
end
|
6575
|
+
end
|
6576
|
+
_from_rbexpr(
|
6577
|
+
_rbexpr.value_counts(sort, parallel, name, normalize)
|
6578
|
+
)
|
5583
6579
|
end
|
5584
6580
|
|
5585
6581
|
# Return a count of the unique values in the order of appearance.
|
@@ -5954,6 +6950,10 @@ module Polars
|
|
5954
6950
|
# # │ 3 ┆ 1.0 ┆ 10.0 │
|
5955
6951
|
# # └─────┴─────┴──────────┘
|
5956
6952
|
def replace(old, new = NO_DEFAULT, default: NO_DEFAULT, return_dtype: nil)
|
6953
|
+
if !default.eql?(NO_DEFAULT)
|
6954
|
+
return replace_strict(old, new, default: default, return_dtype: return_dtype)
|
6955
|
+
end
|
6956
|
+
|
5957
6957
|
if new.eql?(NO_DEFAULT) && old.is_a?(Hash)
|
5958
6958
|
new = Series.new(old.values)
|
5959
6959
|
old = Series.new(old.keys)
|
@@ -5966,17 +6966,164 @@ module Polars
|
|
5966
6966
|
end
|
5967
6967
|
end
|
5968
6968
|
|
5969
|
-
old = Utils.
|
5970
|
-
new = Utils.
|
6969
|
+
old = Utils.parse_into_expression(old, str_as_lit: true)
|
6970
|
+
new = Utils.parse_into_expression(new, str_as_lit: true)
|
5971
6971
|
|
5972
|
-
|
5973
|
-
|
5974
|
-
|
5975
|
-
|
5976
|
-
|
5977
|
-
end
|
6972
|
+
result = _from_rbexpr(_rbexpr.replace(old, new))
|
6973
|
+
|
6974
|
+
if !return_dtype.nil?
|
6975
|
+
result = result.cast(return_dtype)
|
6976
|
+
end
|
5978
6977
|
|
5979
|
-
|
6978
|
+
result
|
6979
|
+
end
|
6980
|
+
|
6981
|
+
# Replace all values by different values.
|
6982
|
+
#
|
6983
|
+
# @param old [Object]
|
6984
|
+
# Value or sequence of values to replace.
|
6985
|
+
# Accepts expression input. Sequences are parsed as Series,
|
6986
|
+
# other non-expression inputs are parsed as literals.
|
6987
|
+
# Also accepts a mapping of values to their replacement as syntactic sugar for
|
6988
|
+
# `replace_all(old: Series.new(mapping.keys), new: Serie.new(mapping.values))`.
|
6989
|
+
# @param new [Object]
|
6990
|
+
# Value or sequence of values to replace by.
|
6991
|
+
# Accepts expression input. Sequences are parsed as Series,
|
6992
|
+
# other non-expression inputs are parsed as literals.
|
6993
|
+
# Length must match the length of `old` or have length 1.
|
6994
|
+
# @param default [Object]
|
6995
|
+
# Set values that were not replaced to this value. If no default is specified,
|
6996
|
+
# (default), an error is raised if any values were not replaced.
|
6997
|
+
# Accepts expression input. Non-expression inputs are parsed as literals.
|
6998
|
+
# @param return_dtype [Object]
|
6999
|
+
# The data type of the resulting expression. If set to `nil` (default),
|
7000
|
+
# the data type is determined automatically based on the other inputs.
|
7001
|
+
#
|
7002
|
+
# @return [Expr]
|
7003
|
+
#
|
7004
|
+
# @note
|
7005
|
+
# The global string cache must be enabled when replacing categorical values.
|
7006
|
+
#
|
7007
|
+
# @example Replace values by passing sequences to the `old` and `new` parameters.
|
7008
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 2, 3]})
|
7009
|
+
# df.with_columns(
|
7010
|
+
# replaced: Polars.col("a").replace_strict([1, 2, 3], [100, 200, 300])
|
7011
|
+
# )
|
7012
|
+
# # =>
|
7013
|
+
# # shape: (4, 2)
|
7014
|
+
# # ┌─────┬──────────┐
|
7015
|
+
# # │ a ┆ replaced │
|
7016
|
+
# # │ --- ┆ --- │
|
7017
|
+
# # │ i64 ┆ i64 │
|
7018
|
+
# # ╞═════╪══════════╡
|
7019
|
+
# # │ 1 ┆ 100 │
|
7020
|
+
# # │ 2 ┆ 200 │
|
7021
|
+
# # │ 2 ┆ 200 │
|
7022
|
+
# # │ 3 ┆ 300 │
|
7023
|
+
# # └─────┴──────────┘
|
7024
|
+
#
|
7025
|
+
# @example By default, an error is raised if any non-null values were not replaced. Specify a default to set all values that were not matched.
|
7026
|
+
# mapping = {2 => 200, 3 => 300}
|
7027
|
+
# df.with_columns(replaced: Polars.col("a").replace_strict(mapping, default: -1))
|
7028
|
+
# # =>
|
7029
|
+
# # shape: (4, 2)
|
7030
|
+
# # ┌─────┬──────────┐
|
7031
|
+
# # │ a ┆ replaced │
|
7032
|
+
# # │ --- ┆ --- │
|
7033
|
+
# # │ i64 ┆ i64 │
|
7034
|
+
# # ╞═════╪══════════╡
|
7035
|
+
# # │ 1 ┆ -1 │
|
7036
|
+
# # │ 2 ┆ 200 │
|
7037
|
+
# # │ 2 ┆ 200 │
|
7038
|
+
# # │ 3 ┆ 300 │
|
7039
|
+
# # └─────┴──────────┘
|
7040
|
+
#
|
7041
|
+
# @example Replacing by values of a different data type sets the return type based on a combination of the `new` data type and the `default` data type.
|
7042
|
+
# df = Polars::DataFrame.new({"a" => ["x", "y", "z"]})
|
7043
|
+
# mapping = {"x" => 1, "y" => 2, "z" => 3}
|
7044
|
+
# df.with_columns(replaced: Polars.col("a").replace_strict(mapping))
|
7045
|
+
# # =>
|
7046
|
+
# # shape: (3, 2)
|
7047
|
+
# # ┌─────┬──────────┐
|
7048
|
+
# # │ a ┆ replaced │
|
7049
|
+
# # │ --- ┆ --- │
|
7050
|
+
# # │ str ┆ i64 │
|
7051
|
+
# # ╞═════╪══════════╡
|
7052
|
+
# # │ x ┆ 1 │
|
7053
|
+
# # │ y ┆ 2 │
|
7054
|
+
# # │ z ┆ 3 │
|
7055
|
+
# # └─────┴──────────┘
|
7056
|
+
#
|
7057
|
+
# @example
|
7058
|
+
# df.with_columns(replaced: Polars.col("a").replace_strict(mapping, default: "x"))
|
7059
|
+
# # =>
|
7060
|
+
# # shape: (3, 2)
|
7061
|
+
# # ┌─────┬──────────┐
|
7062
|
+
# # │ a ┆ replaced │
|
7063
|
+
# # │ --- ┆ --- │
|
7064
|
+
# # │ str ┆ str │
|
7065
|
+
# # ╞═════╪══════════╡
|
7066
|
+
# # │ x ┆ 1 │
|
7067
|
+
# # │ y ┆ 2 │
|
7068
|
+
# # │ z ┆ 3 │
|
7069
|
+
# # └─────┴──────────┘
|
7070
|
+
#
|
7071
|
+
# @example Set the `return_dtype` parameter to control the resulting data type directly.
|
7072
|
+
# df.with_columns(
|
7073
|
+
# replaced: Polars.col("a").replace_strict(mapping, return_dtype: Polars::UInt8)
|
7074
|
+
# )
|
7075
|
+
# # =>
|
7076
|
+
# # shape: (3, 2)
|
7077
|
+
# # ┌─────┬──────────┐
|
7078
|
+
# # │ a ┆ replaced │
|
7079
|
+
# # │ --- ┆ --- │
|
7080
|
+
# # │ str ┆ u8 │
|
7081
|
+
# # ╞═════╪══════════╡
|
7082
|
+
# # │ x ┆ 1 │
|
7083
|
+
# # │ y ┆ 2 │
|
7084
|
+
# # │ z ┆ 3 │
|
7085
|
+
# # └─────┴──────────┘
|
7086
|
+
#
|
7087
|
+
# @example Expression input is supported for all parameters.
|
7088
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 2, 3], "b" => [1.5, 2.5, 5.0, 1.0]})
|
7089
|
+
# df.with_columns(
|
7090
|
+
# replaced: Polars.col("a").replace_strict(
|
7091
|
+
# Polars.col("a").max,
|
7092
|
+
# Polars.col("b").sum,
|
7093
|
+
# default: Polars.col("b")
|
7094
|
+
# )
|
7095
|
+
# )
|
7096
|
+
# # =>
|
7097
|
+
# # shape: (4, 3)
|
7098
|
+
# # ┌─────┬─────┬──────────┐
|
7099
|
+
# # │ a ┆ b ┆ replaced │
|
7100
|
+
# # │ --- ┆ --- ┆ --- │
|
7101
|
+
# # │ i64 ┆ f64 ┆ f64 │
|
7102
|
+
# # ╞═════╪═════╪══════════╡
|
7103
|
+
# # │ 1 ┆ 1.5 ┆ 1.5 │
|
7104
|
+
# # │ 2 ┆ 2.5 ┆ 2.5 │
|
7105
|
+
# # │ 2 ┆ 5.0 ┆ 5.0 │
|
7106
|
+
# # │ 3 ┆ 1.0 ┆ 10.0 │
|
7107
|
+
# # └─────┴─────┴──────────┘
|
7108
|
+
def replace_strict(
|
7109
|
+
old,
|
7110
|
+
new = NO_DEFAULT,
|
7111
|
+
default: NO_DEFAULT,
|
7112
|
+
return_dtype: nil
|
7113
|
+
)
|
7114
|
+
if new.eql?(NO_DEFAULT) && old.is_a?(Hash)
|
7115
|
+
new = Series.new(old.values)
|
7116
|
+
old = Series.new(old.keys)
|
7117
|
+
end
|
7118
|
+
|
7119
|
+
old = Utils.parse_into_expression(old, str_as_lit: true, list_as_series: true)
|
7120
|
+
new = Utils.parse_into_expression(new, str_as_lit: true, list_as_series: true)
|
7121
|
+
|
7122
|
+
default = default.eql?(NO_DEFAULT) ? nil : Utils.parse_into_expression(default, str_as_lit: true)
|
7123
|
+
|
7124
|
+
_from_rbexpr(
|
7125
|
+
_rbexpr.replace_strict(old, new, default, return_dtype)
|
7126
|
+
)
|
5980
7127
|
end
|
5981
7128
|
|
5982
7129
|
# Create an object namespace of all list related methods.
|
@@ -6053,7 +7200,7 @@ module Polars
|
|
6053
7200
|
end
|
6054
7201
|
|
6055
7202
|
def _to_expr(other)
|
6056
|
-
other.is_a?(Expr) ? other :
|
7203
|
+
other.is_a?(Expr) ? other : F.lit(other)
|
6057
7204
|
end
|
6058
7205
|
|
6059
7206
|
def _prepare_alpha(com, span, half_life, alpha)
|
@@ -6101,5 +7248,9 @@ module Polars
|
|
6101
7248
|
end
|
6102
7249
|
[window_size, min_periods]
|
6103
7250
|
end
|
7251
|
+
|
7252
|
+
def _prepare_rolling_by_window_args(window_size)
|
7253
|
+
window_size
|
7254
|
+
end
|
6104
7255
|
end
|
6105
7256
|
end
|