polars-df 0.1.2 → 0.1.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.yardopts +3 -0
- data/CHANGELOG.md +4 -0
- data/Cargo.lock +2 -1
- data/README.md +1 -1
- data/ext/polars/Cargo.toml +7 -1
- data/ext/polars/src/conversion.rs +35 -2
- data/ext/polars/src/dataframe.rs +228 -11
- data/ext/polars/src/lazy/dataframe.rs +3 -3
- data/ext/polars/src/lazy/dsl.rs +59 -2
- data/ext/polars/src/lib.rs +151 -10
- data/ext/polars/src/series.rs +182 -29
- data/ext/polars/src/set.rs +91 -0
- data/ext/polars/src/utils.rs +19 -0
- data/lib/polars/batched_csv_reader.rb +1 -0
- data/lib/polars/cat_expr.rb +39 -0
- data/lib/polars/data_frame.rb +2284 -137
- data/lib/polars/date_time_expr.rb +1282 -7
- data/lib/polars/exceptions.rb +20 -0
- data/lib/polars/expr.rb +612 -7
- data/lib/polars/expr_dispatch.rb +14 -0
- data/lib/polars/functions.rb +219 -0
- data/lib/polars/group_by.rb +517 -0
- data/lib/polars/io.rb +421 -2
- data/lib/polars/lazy_frame.rb +1261 -67
- data/lib/polars/lazy_functions.rb +288 -10
- data/lib/polars/lazy_group_by.rb +79 -0
- data/lib/polars/list_expr.rb +5 -0
- data/lib/polars/meta_expr.rb +21 -0
- data/lib/polars/series.rb +1476 -212
- data/lib/polars/slice.rb +104 -0
- data/lib/polars/string_expr.rb +663 -2
- data/lib/polars/struct_expr.rb +73 -0
- data/lib/polars/utils.rb +43 -3
- data/lib/polars/version.rb +2 -1
- data/lib/polars/when.rb +1 -0
- data/lib/polars/when_then.rb +1 -0
- data/lib/polars.rb +7 -10
- metadata +9 -2
data/lib/polars/lazy_frame.rb
CHANGED
@@ -152,29 +152,98 @@ module Polars
|
|
152
152
|
# def self.read_json
|
153
153
|
# end
|
154
154
|
|
155
|
-
#
|
156
|
-
#
|
155
|
+
# Get or set column names.
|
156
|
+
#
|
157
|
+
# @return [Array]
|
158
|
+
#
|
159
|
+
# @example
|
160
|
+
# df = (
|
161
|
+
# Polars::DataFrame.new(
|
162
|
+
# {
|
163
|
+
# "foo" => [1, 2, 3],
|
164
|
+
# "bar" => [6, 7, 8],
|
165
|
+
# "ham" => ["a", "b", "c"]
|
166
|
+
# }
|
167
|
+
# )
|
168
|
+
# .lazy
|
169
|
+
# .select(["foo", "bar"])
|
170
|
+
# )
|
171
|
+
# df.columns
|
172
|
+
# # => ["foo", "bar"]
|
173
|
+
def columns
|
174
|
+
_ldf.columns
|
175
|
+
end
|
157
176
|
|
158
|
-
#
|
159
|
-
#
|
177
|
+
# Get dtypes of columns in LazyFrame.
|
178
|
+
#
|
179
|
+
# @return [Array]
|
180
|
+
#
|
181
|
+
# @example
|
182
|
+
# lf = Polars::DataFrame.new(
|
183
|
+
# {
|
184
|
+
# "foo" => [1, 2, 3],
|
185
|
+
# "bar" => [6.0, 7.0, 8.0],
|
186
|
+
# "ham" => ["a", "b", "c"]
|
187
|
+
# }
|
188
|
+
# ).lazy
|
189
|
+
# lf.dtypes
|
190
|
+
# # => [:i64, :f64, :str]
|
191
|
+
def dtypes
|
192
|
+
_ldf.dtypes
|
193
|
+
end
|
160
194
|
|
161
|
-
#
|
162
|
-
#
|
195
|
+
# Get the schema.
|
196
|
+
#
|
197
|
+
# @return [Hash]
|
198
|
+
#
|
199
|
+
# @example
|
200
|
+
# lf = Polars::DataFrame.new(
|
201
|
+
# {
|
202
|
+
# "foo" => [1, 2, 3],
|
203
|
+
# "bar" => [6.0, 7.0, 8.0],
|
204
|
+
# "ham" => ["a", "b", "c"]
|
205
|
+
# }
|
206
|
+
# ).lazy
|
207
|
+
# lf.schema
|
208
|
+
# # => {"foo"=>:i64, "bar"=>:f64, "ham"=>:str}
|
209
|
+
def schema
|
210
|
+
_ldf.schema
|
211
|
+
end
|
163
212
|
|
164
|
-
#
|
165
|
-
#
|
213
|
+
# Get the width of the LazyFrame.
|
214
|
+
#
|
215
|
+
# @return [Integer]
|
216
|
+
#
|
217
|
+
# @example
|
218
|
+
# lf = Polars::DataFrame.new({"foo" => [1, 2, 3], "bar" => [4, 5, 6]}).lazy
|
219
|
+
# lf.width
|
220
|
+
# # => 2
|
221
|
+
def width
|
222
|
+
_ldf.width
|
223
|
+
end
|
166
224
|
|
167
|
-
#
|
168
|
-
#
|
225
|
+
# Check if LazyFrame includes key.
|
226
|
+
#
|
227
|
+
# @return [Boolean]
|
228
|
+
def include?(key)
|
229
|
+
columns.include?(key)
|
230
|
+
end
|
169
231
|
|
170
232
|
# clone handled by initialize_copy
|
171
233
|
|
172
234
|
# def [](item)
|
173
235
|
# end
|
174
236
|
|
175
|
-
#
|
176
|
-
#
|
177
|
-
#
|
237
|
+
# Returns a string representing the LazyFrame.
|
238
|
+
#
|
239
|
+
# @return [String]
|
240
|
+
def to_s
|
241
|
+
<<~EOS
|
242
|
+
naive plan: (run LazyFrame#describe_optimized_plan to see the optimized plan)
|
243
|
+
|
244
|
+
#{describe_plan}
|
245
|
+
EOS
|
246
|
+
end
|
178
247
|
|
179
248
|
# def write_json
|
180
249
|
# end
|
@@ -182,22 +251,125 @@ module Polars
|
|
182
251
|
# def pipe
|
183
252
|
# end
|
184
253
|
|
185
|
-
#
|
186
|
-
#
|
254
|
+
# Create a string representation of the unoptimized query plan.
|
255
|
+
#
|
256
|
+
# @return [String]
|
257
|
+
def describe_plan
|
258
|
+
_ldf.describe_plan
|
259
|
+
end
|
187
260
|
|
261
|
+
# Create a string representation of the optimized query plan.
|
262
|
+
#
|
263
|
+
# @return [String]
|
188
264
|
# def describe_optimized_plan
|
189
265
|
# end
|
190
266
|
|
191
267
|
# def show_graph
|
192
268
|
# end
|
193
269
|
|
194
|
-
#
|
195
|
-
#
|
270
|
+
# Sort the DataFrame.
|
271
|
+
#
|
272
|
+
# Sorting can be done by:
|
273
|
+
#
|
274
|
+
# - A single column name
|
275
|
+
# - An expression
|
276
|
+
# - Multiple expressions
|
277
|
+
#
|
278
|
+
# @param by [Object]
|
279
|
+
# Column (expressions) to sort by.
|
280
|
+
# @param reverse [Boolean]
|
281
|
+
# Sort in descending order.
|
282
|
+
# @param nulls_last [Boolean]
|
283
|
+
# Place null values last. Can only be used if sorted by a single column.
|
284
|
+
#
|
285
|
+
# @return [LazyFrame]
|
286
|
+
#
|
287
|
+
# @example
|
288
|
+
# df = Polars::DataFrame.new(
|
289
|
+
# {
|
290
|
+
# "foo" => [1, 2, 3],
|
291
|
+
# "bar" => [6.0, 7.0, 8.0],
|
292
|
+
# "ham" => ["a", "b", "c"]
|
293
|
+
# }
|
294
|
+
# ).lazy
|
295
|
+
# df.sort("foo", reverse: true).collect
|
296
|
+
# # =>
|
297
|
+
# # shape: (3, 3)
|
298
|
+
# # ┌─────┬─────┬─────┐
|
299
|
+
# # │ foo ┆ bar ┆ ham │
|
300
|
+
# # │ --- ┆ --- ┆ --- │
|
301
|
+
# # │ i64 ┆ f64 ┆ str │
|
302
|
+
# # ╞═════╪═════╪═════╡
|
303
|
+
# # │ 3 ┆ 8.0 ┆ c │
|
304
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
305
|
+
# # │ 2 ┆ 7.0 ┆ b │
|
306
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
307
|
+
# # │ 1 ┆ 6.0 ┆ a │
|
308
|
+
# # └─────┴─────┴─────┘
|
309
|
+
def sort(by, reverse: false, nulls_last: false)
|
310
|
+
if by.is_a?(String)
|
311
|
+
_from_rbldf(_ldf.sort(by, reverse, nulls_last))
|
312
|
+
end
|
313
|
+
if Utils.bool?(reverse)
|
314
|
+
reverse = [reverse]
|
315
|
+
end
|
316
|
+
|
317
|
+
by = Utils.selection_to_rbexpr_list(by)
|
318
|
+
_from_rbldf(_ldf.sort_by_exprs(by, reverse, nulls_last))
|
319
|
+
end
|
196
320
|
|
197
321
|
# def profile
|
198
322
|
# end
|
199
323
|
|
324
|
+
# Collect into a DataFrame.
|
325
|
+
#
|
326
|
+
# Note: use {#fetch} if you want to run your query on the first `n` rows
|
327
|
+
# only. This can be a huge time saver in debugging queries.
|
328
|
+
#
|
329
|
+
# @param type_coercion [Boolean]
|
330
|
+
# Do type coercion optimization.
|
331
|
+
# @param predicate_pushdown [Boolean]
|
332
|
+
# Do predicate pushdown optimization.
|
333
|
+
# @param projection_pushdown [Boolean]
|
334
|
+
# Do projection pushdown optimization.
|
335
|
+
# @param simplify_expression [Boolean]
|
336
|
+
# Run simplify expressions optimization.
|
337
|
+
# @param string_cache [Boolean]
|
338
|
+
# This argument is deprecated. Please set the string cache globally.
|
339
|
+
# The argument will be ignored
|
340
|
+
# @param no_optimization [Boolean]
|
341
|
+
# Turn off (certain) optimizations.
|
342
|
+
# @param slice_pushdown [Boolean]
|
343
|
+
# Slice pushdown optimization.
|
344
|
+
# @param common_subplan_elimination [Boolean]
|
345
|
+
# Will try to cache branching subplans that occur on self-joins or unions.
|
346
|
+
# @param allow_streaming [Boolean]
|
347
|
+
# Run parts of the query in a streaming fashion (this is in an alpha state)
|
200
348
|
#
|
349
|
+
# @return [DataFrame]
|
350
|
+
#
|
351
|
+
# @example
|
352
|
+
# df = Polars::DataFrame.new(
|
353
|
+
# {
|
354
|
+
# "a" => ["a", "b", "a", "b", "b", "c"],
|
355
|
+
# "b" => [1, 2, 3, 4, 5, 6],
|
356
|
+
# "c" => [6, 5, 4, 3, 2, 1]
|
357
|
+
# }
|
358
|
+
# ).lazy
|
359
|
+
# df.groupby("a", maintain_order: true).agg(Polars.all.sum).collect
|
360
|
+
# # =>
|
361
|
+
# # shape: (3, 3)
|
362
|
+
# # ┌─────┬─────┬─────┐
|
363
|
+
# # │ a ┆ b ┆ c │
|
364
|
+
# # │ --- ┆ --- ┆ --- │
|
365
|
+
# # │ str ┆ i64 ┆ i64 │
|
366
|
+
# # ╞═════╪═════╪═════╡
|
367
|
+
# # │ a ┆ 4 ┆ 10 │
|
368
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
369
|
+
# # │ b ┆ 11 ┆ 10 │
|
370
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
371
|
+
# # │ c ┆ 6 ┆ 1 │
|
372
|
+
# # └─────┴─────┴─────┘
|
201
373
|
def collect(
|
202
374
|
type_coercion: true,
|
203
375
|
predicate_pushdown: true,
|
@@ -232,21 +404,184 @@ module Polars
|
|
232
404
|
Utils.wrap_df(ldf.collect)
|
233
405
|
end
|
234
406
|
|
235
|
-
#
|
236
|
-
#
|
407
|
+
# Collect a small number of rows for debugging purposes.
|
408
|
+
#
|
409
|
+
# Fetch is like a {#collect} operation, but it overwrites the number of rows
|
410
|
+
# read by every scan operation. This is a utility that helps debug a query on a
|
411
|
+
# smaller number of rows.
|
412
|
+
#
|
413
|
+
# Note that the fetch does not guarantee the final number of rows in the
|
414
|
+
# DataFrame. Filter, join operations and a lower number of rows available in the
|
415
|
+
# scanned file influence the final number of rows.
|
416
|
+
#
|
417
|
+
# @param n_rows [Integer]
|
418
|
+
# Collect n_rows from the data sources.
|
419
|
+
# @param type_coercion [Boolean]
|
420
|
+
# Run type coercion optimization.
|
421
|
+
# @param predicate_pushdown [Boolean]
|
422
|
+
# Run predicate pushdown optimization.
|
423
|
+
# @param projection_pushdown [Boolean]
|
424
|
+
# Run projection pushdown optimization.
|
425
|
+
# @param simplify_expression [Boolean]
|
426
|
+
# Run simplify expressions optimization.
|
427
|
+
# @param string_cache [Boolean]
|
428
|
+
# This argument is deprecated. Please set the string cache globally.
|
429
|
+
# The argument will be ignored
|
430
|
+
# @param no_optimization [Boolean]
|
431
|
+
# Turn off optimizations.
|
432
|
+
# @param slice_pushdown [Boolean]
|
433
|
+
# Slice pushdown optimization
|
434
|
+
# @param common_subplan_elimination [Boolean]
|
435
|
+
# Will try to cache branching subplans that occur on self-joins or unions.
|
436
|
+
# @param allow_streaming [Boolean]
|
437
|
+
# Run parts of the query in a streaming fashion (this is in an alpha state)
|
438
|
+
#
|
439
|
+
# @return [DataFrame]
|
440
|
+
#
|
441
|
+
# @example
|
442
|
+
# df = Polars::DataFrame.new(
|
443
|
+
# {
|
444
|
+
# "a" => ["a", "b", "a", "b", "b", "c"],
|
445
|
+
# "b" => [1, 2, 3, 4, 5, 6],
|
446
|
+
# "c" => [6, 5, 4, 3, 2, 1]
|
447
|
+
# }
|
448
|
+
# ).lazy
|
449
|
+
# df.groupby("a", maintain_order: true).agg(Polars.all.sum).fetch(2)
|
450
|
+
# # =>
|
451
|
+
# # shape: (2, 3)
|
452
|
+
# # ┌─────┬─────┬─────┐
|
453
|
+
# # │ a ┆ b ┆ c │
|
454
|
+
# # │ --- ┆ --- ┆ --- │
|
455
|
+
# # │ str ┆ i64 ┆ i64 │
|
456
|
+
# # ╞═════╪═════╪═════╡
|
457
|
+
# # │ a ┆ 1 ┆ 6 │
|
458
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
459
|
+
# # │ b ┆ 2 ┆ 5 │
|
460
|
+
# # └─────┴─────┴─────┘
|
461
|
+
def fetch(
|
462
|
+
n_rows = 500,
|
463
|
+
type_coercion: true,
|
464
|
+
predicate_pushdown: true,
|
465
|
+
projection_pushdown: true,
|
466
|
+
simplify_expression: true,
|
467
|
+
string_cache: false,
|
468
|
+
no_optimization: false,
|
469
|
+
slice_pushdown: true,
|
470
|
+
common_subplan_elimination: true,
|
471
|
+
allow_streaming: false
|
472
|
+
)
|
473
|
+
if no_optimization
|
474
|
+
predicate_pushdown = false
|
475
|
+
projection_pushdown = false
|
476
|
+
slice_pushdown = false
|
477
|
+
common_subplan_elimination = false
|
478
|
+
end
|
479
|
+
|
480
|
+
ldf = _ldf.optimization_toggle(
|
481
|
+
type_coercion,
|
482
|
+
predicate_pushdown,
|
483
|
+
projection_pushdown,
|
484
|
+
simplify_expression,
|
485
|
+
slice_pushdown,
|
486
|
+
common_subplan_elimination,
|
487
|
+
allow_streaming
|
488
|
+
)
|
489
|
+
Utils.wrap_df(ldf.fetch(n_rows))
|
490
|
+
end
|
237
491
|
|
492
|
+
# Return lazy representation, i.e. itself.
|
238
493
|
#
|
494
|
+
# Useful for writing code that expects either a `DataFrame` or
|
495
|
+
# `LazyFrame`.
|
496
|
+
#
|
497
|
+
# @return [LazyFrame]
|
498
|
+
#
|
499
|
+
# @example
|
500
|
+
# df = Polars::DataFrame.new(
|
501
|
+
# {
|
502
|
+
# "a" => [nil, 2, 3, 4],
|
503
|
+
# "b" => [0.5, nil, 2.5, 13],
|
504
|
+
# "c" => [true, true, false, nil]
|
505
|
+
# }
|
506
|
+
# )
|
507
|
+
# df.lazy
|
239
508
|
def lazy
|
240
509
|
self
|
241
510
|
end
|
242
511
|
|
243
|
-
#
|
244
|
-
#
|
512
|
+
# Cache the result once the execution of the physical plan hits this node.
|
513
|
+
#
|
514
|
+
# @return [LazyFrame]
|
515
|
+
def cache
|
516
|
+
_from_rbldf(_ldf.cache)
|
517
|
+
end
|
245
518
|
|
246
|
-
#
|
247
|
-
#
|
519
|
+
# Create an empty copy of the current LazyFrame.
|
520
|
+
#
|
521
|
+
# The copy has an identical schema but no data.
|
522
|
+
#
|
523
|
+
# @return [LazyFrame]
|
524
|
+
#
|
525
|
+
# @example
|
526
|
+
# df = Polars::DataFrame.new(
|
527
|
+
# {
|
528
|
+
# "a" => [nil, 2, 3, 4],
|
529
|
+
# "b" => [0.5, nil, 2.5, 13],
|
530
|
+
# "c" => [true, true, false, nil],
|
531
|
+
# }
|
532
|
+
# ).lazy
|
533
|
+
# df.cleared.fetch
|
534
|
+
# # =>
|
535
|
+
# # shape: (0, 3)
|
536
|
+
# # ┌─────┬─────┬──────┐
|
537
|
+
# # │ a ┆ b ┆ c │
|
538
|
+
# # │ --- ┆ --- ┆ --- │
|
539
|
+
# # │ i64 ┆ f64 ┆ bool │
|
540
|
+
# # ╞═════╪═════╪══════╡
|
541
|
+
# # └─────┴─────┴──────┘
|
542
|
+
def cleared
|
543
|
+
DataFrame.new(columns: schema).lazy
|
544
|
+
end
|
248
545
|
|
546
|
+
# Filter the rows in the DataFrame based on a predicate expression.
|
249
547
|
#
|
548
|
+
# @param predicate [Object]
|
549
|
+
# Expression that evaluates to a boolean Series.
|
550
|
+
#
|
551
|
+
# @return [LazyFrame]
|
552
|
+
#
|
553
|
+
# @example Filter on one condition:
|
554
|
+
# lf = Polars::DataFrame.new(
|
555
|
+
# {
|
556
|
+
# "foo" => [1, 2, 3],
|
557
|
+
# "bar" => [6, 7, 8],
|
558
|
+
# "ham" => ["a", "b", "c"]
|
559
|
+
# }
|
560
|
+
# ).lazy
|
561
|
+
# lf.filter(Polars.col("foo") < 3).collect()
|
562
|
+
# # =>
|
563
|
+
# # shape: (2, 3)
|
564
|
+
# # ┌─────┬─────┬─────┐
|
565
|
+
# # │ foo ┆ bar ┆ ham │
|
566
|
+
# # │ --- ┆ --- ┆ --- │
|
567
|
+
# # │ i64 ┆ i64 ┆ str │
|
568
|
+
# # ╞═════╪═════╪═════╡
|
569
|
+
# # │ 1 ┆ 6 ┆ a │
|
570
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
571
|
+
# # │ 2 ┆ 7 ┆ b │
|
572
|
+
# # └─────┴─────┴─────┘
|
573
|
+
#
|
574
|
+
# @example Filter on multiple conditions:
|
575
|
+
# lf.filter((Polars.col("foo") < 3) & (Polars.col("ham") == "a")).collect
|
576
|
+
# # =>
|
577
|
+
# # shape: (1, 3)
|
578
|
+
# # ┌─────┬─────┬─────┐
|
579
|
+
# # │ foo ┆ bar ┆ ham │
|
580
|
+
# # │ --- ┆ --- ┆ --- │
|
581
|
+
# # │ i64 ┆ i64 ┆ str │
|
582
|
+
# # ╞═════╪═════╪═════╡
|
583
|
+
# # │ 1 ┆ 6 ┆ a │
|
584
|
+
# # └─────┴─────┴─────┘
|
250
585
|
def filter(predicate)
|
251
586
|
_from_rbldf(
|
252
587
|
_ldf.filter(
|
@@ -255,11 +590,136 @@ module Polars
|
|
255
590
|
)
|
256
591
|
end
|
257
592
|
|
593
|
+
# Select columns from this DataFrame.
|
594
|
+
#
|
595
|
+
# @param exprs [Object]
|
596
|
+
# Column or columns to select.
|
597
|
+
#
|
598
|
+
# @return [LazyFrame]
|
599
|
+
#
|
600
|
+
# @example
|
601
|
+
# df = Polars::DataFrame.new(
|
602
|
+
# {
|
603
|
+
# "foo" => [1, 2, 3],
|
604
|
+
# "bar" => [6, 7, 8],
|
605
|
+
# "ham" => ["a", "b", "c"],
|
606
|
+
# }
|
607
|
+
# ).lazy
|
608
|
+
# df.select("foo").collect
|
609
|
+
# # =>
|
610
|
+
# # shape: (3, 1)
|
611
|
+
# # ┌─────┐
|
612
|
+
# # │ foo │
|
613
|
+
# # │ --- │
|
614
|
+
# # │ i64 │
|
615
|
+
# # ╞═════╡
|
616
|
+
# # │ 1 │
|
617
|
+
# # ├╌╌╌╌╌┤
|
618
|
+
# # │ 2 │
|
619
|
+
# # ├╌╌╌╌╌┤
|
620
|
+
# # │ 3 │
|
621
|
+
# # └─────┘
|
622
|
+
#
|
623
|
+
# @example
|
624
|
+
# df.select(["foo", "bar"]).collect
|
625
|
+
# # =>
|
626
|
+
# # shape: (3, 2)
|
627
|
+
# # ┌─────┬─────┐
|
628
|
+
# # │ foo ┆ bar │
|
629
|
+
# # │ --- ┆ --- │
|
630
|
+
# # │ i64 ┆ i64 │
|
631
|
+
# # ╞═════╪═════╡
|
632
|
+
# # │ 1 ┆ 6 │
|
633
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
634
|
+
# # │ 2 ┆ 7 │
|
635
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
636
|
+
# # │ 3 ┆ 8 │
|
637
|
+
# # └─────┴─────┘
|
638
|
+
#
|
639
|
+
# @example
|
640
|
+
# df.select(Polars.col("foo") + 1).collect
|
641
|
+
# # =>
|
642
|
+
# # shape: (3, 1)
|
643
|
+
# # ┌─────┐
|
644
|
+
# # │ foo │
|
645
|
+
# # │ --- │
|
646
|
+
# # │ i64 │
|
647
|
+
# # ╞═════╡
|
648
|
+
# # │ 2 │
|
649
|
+
# # ├╌╌╌╌╌┤
|
650
|
+
# # │ 3 │
|
651
|
+
# # ├╌╌╌╌╌┤
|
652
|
+
# # │ 4 │
|
653
|
+
# # └─────┘
|
654
|
+
#
|
655
|
+
# @example
|
656
|
+
# df.select([Polars.col("foo") + 1, Polars.col("bar") + 1]).collect
|
657
|
+
# # =>
|
658
|
+
# # shape: (3, 2)
|
659
|
+
# # ┌─────┬─────┐
|
660
|
+
# # │ foo ┆ bar │
|
661
|
+
# # │ --- ┆ --- │
|
662
|
+
# # │ i64 ┆ i64 │
|
663
|
+
# # ╞═════╪═════╡
|
664
|
+
# # │ 2 ┆ 7 │
|
665
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
666
|
+
# # │ 3 ┆ 8 │
|
667
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
668
|
+
# # │ 4 ┆ 9 │
|
669
|
+
# # └─────┴─────┘
|
670
|
+
#
|
671
|
+
# @example
|
672
|
+
# df.select(Polars.when(Polars.col("foo") > 2).then(10).otherwise(0)).collect
|
673
|
+
# # =>
|
674
|
+
# # shape: (3, 1)
|
675
|
+
# # ┌─────────┐
|
676
|
+
# # │ literal │
|
677
|
+
# # │ --- │
|
678
|
+
# # │ i64 │
|
679
|
+
# # ╞═════════╡
|
680
|
+
# # │ 0 │
|
681
|
+
# # ├╌╌╌╌╌╌╌╌╌┤
|
682
|
+
# # │ 0 │
|
683
|
+
# # ├╌╌╌╌╌╌╌╌╌┤
|
684
|
+
# # │ 10 │
|
685
|
+
# # └─────────┘
|
258
686
|
def select(exprs)
|
259
687
|
exprs = Utils.selection_to_rbexpr_list(exprs)
|
260
688
|
_from_rbldf(_ldf.select(exprs))
|
261
689
|
end
|
262
690
|
|
691
|
+
# Start a groupby operation.
|
692
|
+
#
|
693
|
+
# @param by [Object]
|
694
|
+
# Column(s) to group by.
|
695
|
+
# @param maintain_order [Boolean]
|
696
|
+
# Make sure that the order of the groups remain consistent. This is more
|
697
|
+
# expensive than a default groupby.
|
698
|
+
#
|
699
|
+
# @return [LazyGroupBy]
|
700
|
+
#
|
701
|
+
# @example
|
702
|
+
# df = Polars::DataFrame.new(
|
703
|
+
# {
|
704
|
+
# "a" => ["a", "b", "a", "b", "b", "c"],
|
705
|
+
# "b" => [1, 2, 3, 4, 5, 6],
|
706
|
+
# "c" => [6, 5, 4, 3, 2, 1]
|
707
|
+
# }
|
708
|
+
# ).lazy
|
709
|
+
# df.groupby("a", maintain_order: true).agg(Polars.col("b").sum).collect
|
710
|
+
# # =>
|
711
|
+
# # shape: (3, 2)
|
712
|
+
# # ┌─────┬─────┐
|
713
|
+
# # │ a ┆ b │
|
714
|
+
# # │ --- ┆ --- │
|
715
|
+
# # │ str ┆ i64 │
|
716
|
+
# # ╞═════╪═════╡
|
717
|
+
# # │ a ┆ 4 │
|
718
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
719
|
+
# # │ b ┆ 11 │
|
720
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
721
|
+
# # │ c ┆ 6 │
|
722
|
+
# # └─────┴─────┘
|
263
723
|
def groupby(by, maintain_order: false)
|
264
724
|
rbexprs_by = Utils.selection_to_rbexpr_list(by)
|
265
725
|
lgb = _ldf.groupby(rbexprs_by, maintain_order)
|
@@ -275,7 +735,116 @@ module Polars
|
|
275
735
|
# def join_asof
|
276
736
|
# end
|
277
737
|
|
738
|
+
# Add a join operation to the Logical Plan.
|
739
|
+
#
|
740
|
+
# @param other [LazyFrame]
|
741
|
+
# Lazy DataFrame to join with.
|
742
|
+
# @param left_on [Object]
|
743
|
+
# Join column of the left DataFrame.
|
744
|
+
# @param right_on [Object]
|
745
|
+
# Join column of the right DataFrame.
|
746
|
+
# @param on Object
|
747
|
+
# Join column of both DataFrames. If set, `left_on` and `right_on` should be
|
748
|
+
# None.
|
749
|
+
# @param how ["inner", "left", "outer", "semi", "anti", "cross"]
|
750
|
+
# Join strategy.
|
751
|
+
# @param suffix [String]
|
752
|
+
# Suffix to append to columns with a duplicate name.
|
753
|
+
# @param allow_parallel [Boolean]
|
754
|
+
# Allow the physical plan to optionally evaluate the computation of both
|
755
|
+
# DataFrames up to the join in parallel.
|
756
|
+
# @param force_parallel [Boolean]
|
757
|
+
# Force the physical plan to evaluate the computation of both DataFrames up to
|
758
|
+
# the join in parallel.
|
278
759
|
#
|
760
|
+
# @return [LazyFrame]
|
761
|
+
#
|
762
|
+
# @example
|
763
|
+
# df = Polars::DataFrame.new(
|
764
|
+
# {
|
765
|
+
# "foo" => [1, 2, 3],
|
766
|
+
# "bar" => [6.0, 7.0, 8.0],
|
767
|
+
# "ham" => ["a", "b", "c"]
|
768
|
+
# }
|
769
|
+
# ).lazy
|
770
|
+
# other_df = Polars::DataFrame.new(
|
771
|
+
# {
|
772
|
+
# "apple" => ["x", "y", "z"],
|
773
|
+
# "ham" => ["a", "b", "d"]
|
774
|
+
# }
|
775
|
+
# ).lazy
|
776
|
+
# df.join(other_df, on: "ham").collect
|
777
|
+
# # =>
|
778
|
+
# # shape: (2, 4)
|
779
|
+
# # ┌─────┬─────┬─────┬───────┐
|
780
|
+
# # │ foo ┆ bar ┆ ham ┆ apple │
|
781
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
782
|
+
# # │ i64 ┆ f64 ┆ str ┆ str │
|
783
|
+
# # ╞═════╪═════╪═════╪═══════╡
|
784
|
+
# # │ 1 ┆ 6.0 ┆ a ┆ x │
|
785
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
786
|
+
# # │ 2 ┆ 7.0 ┆ b ┆ y │
|
787
|
+
# # └─────┴─────┴─────┴───────┘
|
788
|
+
#
|
789
|
+
# @example
|
790
|
+
# df.join(other_df, on: "ham", how: "outer").collect
|
791
|
+
# # =>
|
792
|
+
# # shape: (4, 4)
|
793
|
+
# # ┌──────┬──────┬─────┬───────┐
|
794
|
+
# # │ foo ┆ bar ┆ ham ┆ apple │
|
795
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
796
|
+
# # │ i64 ┆ f64 ┆ str ┆ str │
|
797
|
+
# # ╞══════╪══════╪═════╪═══════╡
|
798
|
+
# # │ 1 ┆ 6.0 ┆ a ┆ x │
|
799
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
800
|
+
# # │ 2 ┆ 7.0 ┆ b ┆ y │
|
801
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
802
|
+
# # │ null ┆ null ┆ d ┆ z │
|
803
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
804
|
+
# # │ 3 ┆ 8.0 ┆ c ┆ null │
|
805
|
+
# # └──────┴──────┴─────┴───────┘
|
806
|
+
#
|
807
|
+
# @example
|
808
|
+
# df.join(other_df, on: "ham", how: "left").collect
|
809
|
+
# # =>
|
810
|
+
# # shape: (3, 4)
|
811
|
+
# # ┌─────┬─────┬─────┬───────┐
|
812
|
+
# # │ foo ┆ bar ┆ ham ┆ apple │
|
813
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
814
|
+
# # │ i64 ┆ f64 ┆ str ┆ str │
|
815
|
+
# # ╞═════╪═════╪═════╪═══════╡
|
816
|
+
# # │ 1 ┆ 6.0 ┆ a ┆ x │
|
817
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
818
|
+
# # │ 2 ┆ 7.0 ┆ b ┆ y │
|
819
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
820
|
+
# # │ 3 ┆ 8.0 ┆ c ┆ null │
|
821
|
+
# # └─────┴─────┴─────┴───────┘
|
822
|
+
#
|
823
|
+
# @example
|
824
|
+
# df.join(other_df, on: "ham", how: "semi").collect
|
825
|
+
# # =>
|
826
|
+
# # shape: (2, 3)
|
827
|
+
# # ┌─────┬─────┬─────┐
|
828
|
+
# # │ foo ┆ bar ┆ ham │
|
829
|
+
# # │ --- ┆ --- ┆ --- │
|
830
|
+
# # │ i64 ┆ f64 ┆ str │
|
831
|
+
# # ╞═════╪═════╪═════╡
|
832
|
+
# # │ 1 ┆ 6.0 ┆ a │
|
833
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
834
|
+
# # │ 2 ┆ 7.0 ┆ b │
|
835
|
+
# # └─────┴─────┴─────┘
|
836
|
+
#
|
837
|
+
# @example
|
838
|
+
# df.join(other_df, on: "ham", how: "anti").collect
|
839
|
+
# # =>
|
840
|
+
# # shape: (1, 3)
|
841
|
+
# # ┌─────┬─────┬─────┐
|
842
|
+
# # │ foo ┆ bar ┆ ham │
|
843
|
+
# # │ --- ┆ --- ┆ --- │
|
844
|
+
# # │ i64 ┆ f64 ┆ str │
|
845
|
+
# # ╞═════╪═════╪═════╡
|
846
|
+
# # │ 3 ┆ 8.0 ┆ c │
|
847
|
+
# # └─────┴─────┴─────┘
|
279
848
|
def join(
|
280
849
|
other,
|
281
850
|
left_on: nil,
|
@@ -322,6 +891,43 @@ module Polars
|
|
322
891
|
)
|
323
892
|
end
|
324
893
|
|
894
|
+
# Add or overwrite multiple columns in a DataFrame.
|
895
|
+
#
|
896
|
+
# @param exprs [Object]
|
897
|
+
# List of Expressions that evaluate to columns.
|
898
|
+
#
|
899
|
+
# @return [LazyFrame]
|
900
|
+
#
|
901
|
+
# @example
|
902
|
+
# ldf = Polars::DataFrame.new(
|
903
|
+
# {
|
904
|
+
# "a" => [1, 2, 3, 4],
|
905
|
+
# "b" => [0.5, 4, 10, 13],
|
906
|
+
# "c" => [true, true, false, true]
|
907
|
+
# }
|
908
|
+
# ).lazy
|
909
|
+
# ldf.with_columns(
|
910
|
+
# [
|
911
|
+
# (Polars.col("a") ** 2).alias("a^2"),
|
912
|
+
# (Polars.col("b") / 2).alias("b/2"),
|
913
|
+
# (Polars.col("c").is_not()).alias("not c")
|
914
|
+
# ]
|
915
|
+
# ).collect
|
916
|
+
# # =>
|
917
|
+
# # shape: (4, 6)
|
918
|
+
# # ┌─────┬──────┬───────┬──────┬──────┬───────┐
|
919
|
+
# # │ a ┆ b ┆ c ┆ a^2 ┆ b/2 ┆ not c │
|
920
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
921
|
+
# # │ i64 ┆ f64 ┆ bool ┆ f64 ┆ f64 ┆ bool │
|
922
|
+
# # ╞═════╪══════╪═══════╪══════╪══════╪═══════╡
|
923
|
+
# # │ 1 ┆ 0.5 ┆ true ┆ 1.0 ┆ 0.25 ┆ false │
|
924
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
925
|
+
# # │ 2 ┆ 4.0 ┆ true ┆ 4.0 ┆ 2.0 ┆ false │
|
926
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
927
|
+
# # │ 3 ┆ 10.0 ┆ false ┆ 9.0 ┆ 5.0 ┆ true │
|
928
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
929
|
+
# # │ 4 ┆ 13.0 ┆ true ┆ 16.0 ┆ 6.5 ┆ false │
|
930
|
+
# # └─────┴──────┴───────┴──────┴──────┴───────┘
|
325
931
|
def with_columns(exprs)
|
326
932
|
exprs =
|
327
933
|
if exprs.nil?
|
@@ -350,58 +956,343 @@ module Polars
|
|
350
956
|
# def with_context
|
351
957
|
# end
|
352
958
|
|
959
|
+
# Add or overwrite column in a DataFrame.
|
960
|
+
#
|
961
|
+
# @param column [Object]
|
962
|
+
# Expression that evaluates to column or a Series to use.
|
963
|
+
#
|
964
|
+
# @return [LazyFrame]
|
353
965
|
#
|
966
|
+
# @example
|
967
|
+
# df = Polars::DataFrame.new(
|
968
|
+
# {
|
969
|
+
# "a" => [1, 3, 5],
|
970
|
+
# "b" => [2, 4, 6]
|
971
|
+
# }
|
972
|
+
# ).lazy
|
973
|
+
# df.with_column((Polars.col("b") ** 2).alias("b_squared")).collect
|
974
|
+
# # =>
|
975
|
+
# # shape: (3, 3)
|
976
|
+
# # ┌─────┬─────┬───────────┐
|
977
|
+
# # │ a ┆ b ┆ b_squared │
|
978
|
+
# # │ --- ┆ --- ┆ --- │
|
979
|
+
# # │ i64 ┆ i64 ┆ f64 │
|
980
|
+
# # ╞═════╪═════╪═══════════╡
|
981
|
+
# # │ 1 ┆ 2 ┆ 4.0 │
|
982
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
|
983
|
+
# # │ 3 ┆ 4 ┆ 16.0 │
|
984
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
|
985
|
+
# # │ 5 ┆ 6 ┆ 36.0 │
|
986
|
+
# # └─────┴─────┴───────────┘
|
987
|
+
#
|
988
|
+
# @example
|
989
|
+
# df.with_column(Polars.col("a") ** 2).collect
|
990
|
+
# # =>
|
991
|
+
# # shape: (3, 2)
|
992
|
+
# # ┌──────┬─────┐
|
993
|
+
# # │ a ┆ b │
|
994
|
+
# # │ --- ┆ --- │
|
995
|
+
# # │ f64 ┆ i64 │
|
996
|
+
# # ╞══════╪═════╡
|
997
|
+
# # │ 1.0 ┆ 2 │
|
998
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌┤
|
999
|
+
# # │ 9.0 ┆ 4 │
|
1000
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1001
|
+
# # │ 25.0 ┆ 6 │
|
1002
|
+
# # └──────┴─────┘
|
354
1003
|
def with_column(column)
|
355
1004
|
with_columns([column])
|
356
1005
|
end
|
357
1006
|
|
358
|
-
#
|
359
|
-
#
|
1007
|
+
# Remove one or multiple columns from a DataFrame.
|
1008
|
+
#
|
1009
|
+
# @param columns [Object]
|
1010
|
+
# - Name of the column that should be removed.
|
1011
|
+
# - List of column names.
|
1012
|
+
#
|
1013
|
+
# @return [LazyFrame]
|
1014
|
+
def drop(columns)
|
1015
|
+
if columns.is_a?(String)
|
1016
|
+
columns = [columns]
|
1017
|
+
end
|
1018
|
+
_from_rbldf(_ldf.drop_columns(columns))
|
1019
|
+
end
|
360
1020
|
|
1021
|
+
# Rename column names.
|
1022
|
+
#
|
1023
|
+
# @param mapping [Hash]
|
1024
|
+
# Key value pairs that map from old name to new name.
|
361
1025
|
#
|
1026
|
+
# @return [LazyFrame]
|
362
1027
|
def rename(mapping)
|
363
1028
|
existing = mapping.keys
|
364
1029
|
_new = mapping.values
|
365
1030
|
_from_rbldf(_ldf.rename(existing, _new))
|
366
1031
|
end
|
367
1032
|
|
368
|
-
#
|
369
|
-
#
|
1033
|
+
# Reverse the DataFrame.
|
1034
|
+
#
|
1035
|
+
# @return [LazyFrame]
|
1036
|
+
def reverse
|
1037
|
+
_from_rbldf(_ldf.reverse)
|
1038
|
+
end
|
370
1039
|
|
371
|
-
#
|
372
|
-
#
|
1040
|
+
# Shift the values by a given period.
|
1041
|
+
#
|
1042
|
+
# @param periods [Integer]
|
1043
|
+
# Number of places to shift (may be negative).
|
1044
|
+
#
|
1045
|
+
# @return [LazyFrame]
|
1046
|
+
#
|
1047
|
+
# @example
|
1048
|
+
# df = Polars::DataFrame.new(
|
1049
|
+
# {
|
1050
|
+
# "a" => [1, 3, 5],
|
1051
|
+
# "b" => [2, 4, 6]
|
1052
|
+
# }
|
1053
|
+
# ).lazy
|
1054
|
+
# df.shift(1).collect
|
1055
|
+
# # =>
|
1056
|
+
# # shape: (3, 2)
|
1057
|
+
# # ┌──────┬──────┐
|
1058
|
+
# # │ a ┆ b │
|
1059
|
+
# # │ --- ┆ --- │
|
1060
|
+
# # │ i64 ┆ i64 │
|
1061
|
+
# # ╞══════╪══════╡
|
1062
|
+
# # │ null ┆ null │
|
1063
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1064
|
+
# # │ 1 ┆ 2 │
|
1065
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1066
|
+
# # │ 3 ┆ 4 │
|
1067
|
+
# # └──────┴──────┘
|
1068
|
+
#
|
1069
|
+
# @example
|
1070
|
+
# df.shift(-1).collect
|
1071
|
+
# # =>
|
1072
|
+
# # shape: (3, 2)
|
1073
|
+
# # ┌──────┬──────┐
|
1074
|
+
# # │ a ┆ b │
|
1075
|
+
# # │ --- ┆ --- │
|
1076
|
+
# # │ i64 ┆ i64 │
|
1077
|
+
# # ╞══════╪══════╡
|
1078
|
+
# # │ 3 ┆ 4 │
|
1079
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1080
|
+
# # │ 5 ┆ 6 │
|
1081
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1082
|
+
# # │ null ┆ null │
|
1083
|
+
# # └──────┴──────┘
|
1084
|
+
def shift(periods)
|
1085
|
+
_from_rbldf(_ldf.shift(periods))
|
1086
|
+
end
|
373
1087
|
|
374
|
-
#
|
375
|
-
#
|
1088
|
+
# Shift the values by a given period and fill the resulting null values.
|
1089
|
+
#
|
1090
|
+
# @param periods [Integer]
|
1091
|
+
# Number of places to shift (may be negative).
|
1092
|
+
# @param fill_value [Object]
|
1093
|
+
# Fill `nil` values with the result of this expression.
|
1094
|
+
#
|
1095
|
+
# @return [LazyFrame]
|
1096
|
+
#
|
1097
|
+
# @example
|
1098
|
+
# df = Polars::DataFrame.new(
|
1099
|
+
# {
|
1100
|
+
# "a" => [1, 3, 5],
|
1101
|
+
# "b" => [2, 4, 6]
|
1102
|
+
# }
|
1103
|
+
# ).lazy
|
1104
|
+
# df.shift_and_fill(1, 0).collect
|
1105
|
+
# # =>
|
1106
|
+
# # shape: (3, 2)
|
1107
|
+
# # ┌─────┬─────┐
|
1108
|
+
# # │ a ┆ b │
|
1109
|
+
# # │ --- ┆ --- │
|
1110
|
+
# # │ i64 ┆ i64 │
|
1111
|
+
# # ╞═════╪═════╡
|
1112
|
+
# # │ 0 ┆ 0 │
|
1113
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1114
|
+
# # │ 1 ┆ 2 │
|
1115
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1116
|
+
# # │ 3 ┆ 4 │
|
1117
|
+
# # └─────┴─────┘
|
1118
|
+
#
|
1119
|
+
# @example
|
1120
|
+
# df.shift_and_fill(-1, 0).collect
|
1121
|
+
# # =>
|
1122
|
+
# # shape: (3, 2)
|
1123
|
+
# # ┌─────┬─────┐
|
1124
|
+
# # │ a ┆ b │
|
1125
|
+
# # │ --- ┆ --- │
|
1126
|
+
# # │ i64 ┆ i64 │
|
1127
|
+
# # ╞═════╪═════╡
|
1128
|
+
# # │ 3 ┆ 4 │
|
1129
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1130
|
+
# # │ 5 ┆ 6 │
|
1131
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1132
|
+
# # │ 0 ┆ 0 │
|
1133
|
+
# # └─────┴─────┘
|
1134
|
+
def shift_and_fill(periods, fill_value)
|
1135
|
+
if !fill_value.is_a?(Expr)
|
1136
|
+
fill_value = Polars.lit(fill_value)
|
1137
|
+
end
|
1138
|
+
_from_rbldf(_ldf.shift_and_fill(periods, fill_value._rbexpr))
|
1139
|
+
end
|
376
1140
|
|
377
|
-
#
|
378
|
-
#
|
1141
|
+
# Get a slice of this DataFrame.
|
1142
|
+
#
|
1143
|
+
# @param offset [Integer]
|
1144
|
+
# Start index. Negative indexing is supported.
|
1145
|
+
# @param length [Integer]
|
1146
|
+
# Length of the slice. If set to `nil`, all rows starting at the offset
|
1147
|
+
# will be selected.
|
1148
|
+
#
|
1149
|
+
# @return [LazyFrame]
|
1150
|
+
#
|
1151
|
+
# @example
|
1152
|
+
# df = Polars::DataFrame.new(
|
1153
|
+
# {
|
1154
|
+
# "a" => ["x", "y", "z"],
|
1155
|
+
# "b" => [1, 3, 5],
|
1156
|
+
# "c" => [2, 4, 6]
|
1157
|
+
# }
|
1158
|
+
# ).lazy
|
1159
|
+
# df.slice(1, 2).collect
|
1160
|
+
# # =>
|
1161
|
+
# # shape: (2, 3)
|
1162
|
+
# # ┌─────┬─────┬─────┐
|
1163
|
+
# # │ a ┆ b ┆ c │
|
1164
|
+
# # │ --- ┆ --- ┆ --- │
|
1165
|
+
# # │ str ┆ i64 ┆ i64 │
|
1166
|
+
# # ╞═════╪═════╪═════╡
|
1167
|
+
# # │ y ┆ 3 ┆ 4 │
|
1168
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1169
|
+
# # │ z ┆ 5 ┆ 6 │
|
1170
|
+
# # └─────┴─────┴─────┘
|
1171
|
+
def slice(offset, length = nil)
|
1172
|
+
if length && length < 0
|
1173
|
+
raise ArgumentError, "Negative slice lengths (#{length}) are invalid for LazyFrame"
|
1174
|
+
end
|
1175
|
+
_from_rbldf(_ldf.slice(offset, length))
|
1176
|
+
end
|
379
1177
|
|
380
|
-
#
|
381
|
-
#
|
1178
|
+
# Get the first `n` rows.
|
1179
|
+
#
|
1180
|
+
# Alias for {#head}.
|
1181
|
+
#
|
1182
|
+
# @param n [Integer]
|
1183
|
+
# Number of rows to return.
|
1184
|
+
#
|
1185
|
+
# @return [LazyFrame]
|
1186
|
+
#
|
1187
|
+
# @note
|
1188
|
+
# Consider using the {#fetch} operation if you only want to test your
|
1189
|
+
# query. The {#fetch} operation will load the first `n` rows at the scan
|
1190
|
+
# level, whereas the {#head}/{#limit} are applied at the end.
|
1191
|
+
def limit(n = 5)
|
1192
|
+
head(5)
|
1193
|
+
end
|
382
1194
|
|
383
|
-
#
|
384
|
-
#
|
1195
|
+
# Get the first `n` rows.
|
1196
|
+
#
|
1197
|
+
# @param n [Integer]
|
1198
|
+
# Number of rows to return.
|
1199
|
+
#
|
1200
|
+
# @return [LazyFrame]
|
1201
|
+
#
|
1202
|
+
# @note
|
1203
|
+
# Consider using the {#fetch} operation if you only want to test your
|
1204
|
+
# query. The {#fetch} operation will load the first `n` rows at the scan
|
1205
|
+
# level, whereas the {#head}/{#limit} are applied at the end.
|
1206
|
+
def head(n = 5)
|
1207
|
+
slice(0, n)
|
1208
|
+
end
|
385
1209
|
|
386
|
-
#
|
387
|
-
#
|
1210
|
+
# Get the last `n` rows.
|
1211
|
+
#
|
1212
|
+
# @param n [Integer]
|
1213
|
+
# Number of rows.
|
1214
|
+
#
|
1215
|
+
# @return [LazyFrame]
|
1216
|
+
def tail(n = 5)
|
1217
|
+
_from_rbldf(_ldf.tail(n))
|
1218
|
+
end
|
388
1219
|
|
389
|
-
#
|
390
|
-
#
|
1220
|
+
# Get the last row of the DataFrame.
|
1221
|
+
#
|
1222
|
+
# @return [LazyFrame]
|
1223
|
+
def last
|
1224
|
+
tail(1)
|
1225
|
+
end
|
391
1226
|
|
392
|
-
#
|
393
|
-
#
|
1227
|
+
# Get the first row of the DataFrame.
|
1228
|
+
#
|
1229
|
+
# @return [LazyFrame]
|
1230
|
+
def first
|
1231
|
+
slice(0, 1)
|
1232
|
+
end
|
394
1233
|
|
395
1234
|
# def with_row_count
|
396
1235
|
# end
|
397
1236
|
|
398
|
-
#
|
399
|
-
#
|
1237
|
+
# Take every nth row in the LazyFrame and return as a new LazyFrame.
|
1238
|
+
#
|
1239
|
+
# @return [LazyFrame]
|
1240
|
+
#
|
1241
|
+
# @example
|
1242
|
+
# s = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [5, 6, 7, 8]}).lazy
|
1243
|
+
# s.take_every(2).collect
|
1244
|
+
# # =>
|
1245
|
+
# # shape: (2, 2)
|
1246
|
+
# # ┌─────┬─────┐
|
1247
|
+
# # │ a ┆ b │
|
1248
|
+
# # │ --- ┆ --- │
|
1249
|
+
# # │ i64 ┆ i64 │
|
1250
|
+
# # ╞═════╪═════╡
|
1251
|
+
# # │ 1 ┆ 5 │
|
1252
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1253
|
+
# # │ 3 ┆ 7 │
|
1254
|
+
# # └─────┴─────┘
|
1255
|
+
def take_every(n)
|
1256
|
+
select(Utils.col("*").take_every(n))
|
1257
|
+
end
|
400
1258
|
|
401
1259
|
# def fill_null
|
402
1260
|
# end
|
403
1261
|
|
1262
|
+
# Fill floating point NaN values.
|
1263
|
+
#
|
1264
|
+
# @param fill_value [Object]
|
1265
|
+
# Value to fill the NaN values with.
|
1266
|
+
#
|
1267
|
+
# @return [LazyFrame]
|
1268
|
+
#
|
1269
|
+
# @note
|
1270
|
+
# Note that floating point NaN (Not a Number) are not missing values!
|
1271
|
+
# To replace missing values, use `fill_null` instead.
|
404
1272
|
#
|
1273
|
+
# @example
|
1274
|
+
# df = Polars::DataFrame.new(
|
1275
|
+
# {
|
1276
|
+
# "a" => [1.5, 2, Float::NAN, 4],
|
1277
|
+
# "b" => [0.5, 4, Float::NAN, 13],
|
1278
|
+
# }
|
1279
|
+
# ).lazy
|
1280
|
+
# df.fill_nan(99).collect
|
1281
|
+
# # =>
|
1282
|
+
# # shape: (4, 2)
|
1283
|
+
# # ┌──────┬──────┐
|
1284
|
+
# # │ a ┆ b │
|
1285
|
+
# # │ --- ┆ --- │
|
1286
|
+
# # │ f64 ┆ f64 │
|
1287
|
+
# # ╞══════╪══════╡
|
1288
|
+
# # │ 1.5 ┆ 0.5 │
|
1289
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1290
|
+
# # │ 2.0 ┆ 4.0 │
|
1291
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1292
|
+
# # │ 99.0 ┆ 99.0 │
|
1293
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1294
|
+
# # │ 4.0 ┆ 13.0 │
|
1295
|
+
# # └──────┴──────┘
|
405
1296
|
def fill_nan(fill_value)
|
406
1297
|
if !fill_value.is_a?(Expr)
|
407
1298
|
fill_value = Utils.lit(fill_value)
|
@@ -409,38 +1300,255 @@ module Polars
|
|
409
1300
|
_from_rbldf(_ldf.fill_nan(fill_value._rbexpr))
|
410
1301
|
end
|
411
1302
|
|
412
|
-
#
|
413
|
-
#
|
1303
|
+
# Aggregate the columns in the DataFrame to their standard deviation value.
|
1304
|
+
#
|
1305
|
+
# @return [LazyFrame]
|
1306
|
+
#
|
1307
|
+
# @example
|
1308
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
1309
|
+
# df.std.collect
|
1310
|
+
# # =>
|
1311
|
+
# # shape: (1, 2)
|
1312
|
+
# # ┌──────────┬─────┐
|
1313
|
+
# # │ a ┆ b │
|
1314
|
+
# # │ --- ┆ --- │
|
1315
|
+
# # │ f64 ┆ f64 │
|
1316
|
+
# # ╞══════════╪═════╡
|
1317
|
+
# # │ 1.290994 ┆ 0.5 │
|
1318
|
+
# # └──────────┴─────┘
|
1319
|
+
#
|
1320
|
+
# @example
|
1321
|
+
# df.std(ddof: 0).collect
|
1322
|
+
# # =>
|
1323
|
+
# # shape: (1, 2)
|
1324
|
+
# # ┌──────────┬──────────┐
|
1325
|
+
# # │ a ┆ b │
|
1326
|
+
# # │ --- ┆ --- │
|
1327
|
+
# # │ f64 ┆ f64 │
|
1328
|
+
# # ╞══════════╪══════════╡
|
1329
|
+
# # │ 1.118034 ┆ 0.433013 │
|
1330
|
+
# # └──────────┴──────────┘
|
1331
|
+
def std(ddof: 1)
|
1332
|
+
_from_rbldf(_ldf.std(ddof))
|
1333
|
+
end
|
414
1334
|
|
415
|
-
#
|
416
|
-
#
|
1335
|
+
# Aggregate the columns in the DataFrame to their variance value.
|
1336
|
+
#
|
1337
|
+
# @return [LazyFrame]
|
1338
|
+
#
|
1339
|
+
# @example
|
1340
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
1341
|
+
# df.var.collect
|
1342
|
+
# # =>
|
1343
|
+
# # shape: (1, 2)
|
1344
|
+
# # ┌──────────┬──────┐
|
1345
|
+
# # │ a ┆ b │
|
1346
|
+
# # │ --- ┆ --- │
|
1347
|
+
# # │ f64 ┆ f64 │
|
1348
|
+
# # ╞══════════╪══════╡
|
1349
|
+
# # │ 1.666667 ┆ 0.25 │
|
1350
|
+
# # └──────────┴──────┘
|
1351
|
+
#
|
1352
|
+
# @example
|
1353
|
+
# df.var(ddof: 0).collect
|
1354
|
+
# # =>
|
1355
|
+
# # shape: (1, 2)
|
1356
|
+
# # ┌──────┬────────┐
|
1357
|
+
# # │ a ┆ b │
|
1358
|
+
# # │ --- ┆ --- │
|
1359
|
+
# # │ f64 ┆ f64 │
|
1360
|
+
# # ╞══════╪════════╡
|
1361
|
+
# # │ 1.25 ┆ 0.1875 │
|
1362
|
+
# # └──────┴────────┘
|
1363
|
+
def var(ddof: 1)
|
1364
|
+
_from_rbldf(_ldf.var(ddof))
|
1365
|
+
end
|
417
1366
|
|
418
|
-
#
|
419
|
-
#
|
1367
|
+
# Aggregate the columns in the DataFrame to their maximum value.
|
1368
|
+
#
|
1369
|
+
# @return [LazyFrame]
|
1370
|
+
#
|
1371
|
+
# @example
|
1372
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
1373
|
+
# df.max.collect
|
1374
|
+
# # =>
|
1375
|
+
# # shape: (1, 2)
|
1376
|
+
# # ┌─────┬─────┐
|
1377
|
+
# # │ a ┆ b │
|
1378
|
+
# # │ --- ┆ --- │
|
1379
|
+
# # │ i64 ┆ i64 │
|
1380
|
+
# # ╞═════╪═════╡
|
1381
|
+
# # │ 4 ┆ 2 │
|
1382
|
+
# # └─────┴─────┘
|
1383
|
+
def max
|
1384
|
+
_from_rbldf(_ldf.max)
|
1385
|
+
end
|
420
1386
|
|
421
|
-
#
|
422
|
-
#
|
1387
|
+
# Aggregate the columns in the DataFrame to their minimum value.
|
1388
|
+
#
|
1389
|
+
# @return [LazyFrame]
|
1390
|
+
#
|
1391
|
+
# @example
|
1392
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
1393
|
+
# df.min.collect
|
1394
|
+
# # =>
|
1395
|
+
# # shape: (1, 2)
|
1396
|
+
# # ┌─────┬─────┐
|
1397
|
+
# # │ a ┆ b │
|
1398
|
+
# # │ --- ┆ --- │
|
1399
|
+
# # │ i64 ┆ i64 │
|
1400
|
+
# # ╞═════╪═════╡
|
1401
|
+
# # │ 1 ┆ 1 │
|
1402
|
+
# # └─────┴─────┘
|
1403
|
+
def min
|
1404
|
+
_from_rbldf(_ldf.min)
|
1405
|
+
end
|
423
1406
|
|
424
|
-
#
|
425
|
-
#
|
1407
|
+
# Aggregate the columns in the DataFrame to their sum value.
|
1408
|
+
#
|
1409
|
+
# @return [LazyFrame]
|
1410
|
+
#
|
1411
|
+
# @example
|
1412
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
1413
|
+
# df.sum.collect
|
1414
|
+
# # =>
|
1415
|
+
# # shape: (1, 2)
|
1416
|
+
# # ┌─────┬─────┐
|
1417
|
+
# # │ a ┆ b │
|
1418
|
+
# # │ --- ┆ --- │
|
1419
|
+
# # │ i64 ┆ i64 │
|
1420
|
+
# # ╞═════╪═════╡
|
1421
|
+
# # │ 10 ┆ 5 │
|
1422
|
+
# # └─────┴─────┘
|
1423
|
+
def sum
|
1424
|
+
_from_rbldf(_ldf.sum)
|
1425
|
+
end
|
426
1426
|
|
427
|
-
#
|
428
|
-
#
|
1427
|
+
# Aggregate the columns in the DataFrame to their mean value.
|
1428
|
+
#
|
1429
|
+
# @return [LazyFrame]
|
1430
|
+
#
|
1431
|
+
# @example
|
1432
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
1433
|
+
# df.mean.collect
|
1434
|
+
# # =>
|
1435
|
+
# # shape: (1, 2)
|
1436
|
+
# # ┌─────┬──────┐
|
1437
|
+
# # │ a ┆ b │
|
1438
|
+
# # │ --- ┆ --- │
|
1439
|
+
# # │ f64 ┆ f64 │
|
1440
|
+
# # ╞═════╪══════╡
|
1441
|
+
# # │ 2.5 ┆ 1.25 │
|
1442
|
+
# # └─────┴──────┘
|
1443
|
+
def mean
|
1444
|
+
_from_rbldf(_ldf.mean)
|
1445
|
+
end
|
429
1446
|
|
430
|
-
#
|
431
|
-
#
|
1447
|
+
# Aggregate the columns in the DataFrame to their median value.
|
1448
|
+
#
|
1449
|
+
# @return [LazyFrame]
|
1450
|
+
#
|
1451
|
+
# @example
|
1452
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
1453
|
+
# df.median.collect
|
1454
|
+
# # =>
|
1455
|
+
# # shape: (1, 2)
|
1456
|
+
# # ┌─────┬─────┐
|
1457
|
+
# # │ a ┆ b │
|
1458
|
+
# # │ --- ┆ --- │
|
1459
|
+
# # │ f64 ┆ f64 │
|
1460
|
+
# # ╞═════╪═════╡
|
1461
|
+
# # │ 2.5 ┆ 1.0 │
|
1462
|
+
# # └─────┴─────┘
|
1463
|
+
def median
|
1464
|
+
_from_rbldf(_ldf.median)
|
1465
|
+
end
|
432
1466
|
|
433
|
-
#
|
434
|
-
#
|
1467
|
+
# Aggregate the columns in the DataFrame to their quantile value.
|
1468
|
+
#
|
1469
|
+
# @param quantile [Float]
|
1470
|
+
# Quantile between 0.0 and 1.0.
|
1471
|
+
# @param interpolation ["nearest", "higher", "lower", "midpoint", "linear"]
|
1472
|
+
# Interpolation method.
|
1473
|
+
#
|
1474
|
+
# @return [LazyFrame]
|
1475
|
+
#
|
1476
|
+
# @example
|
1477
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
1478
|
+
# df.quantile(0.7).collect
|
1479
|
+
# # =>
|
1480
|
+
# # shape: (1, 2)
|
1481
|
+
# # ┌─────┬─────┐
|
1482
|
+
# # │ a ┆ b │
|
1483
|
+
# # │ --- ┆ --- │
|
1484
|
+
# # │ f64 ┆ f64 │
|
1485
|
+
# # ╞═════╪═════╡
|
1486
|
+
# # │ 3.0 ┆ 1.0 │
|
1487
|
+
# # └─────┴─────┘
|
1488
|
+
def quantile(quantile, interpolation: "nearest")
|
1489
|
+
_from_rbldf(_ldf.quantile(quantile, interpolation))
|
1490
|
+
end
|
435
1491
|
|
1492
|
+
# Explode lists to long format.
|
1493
|
+
#
|
1494
|
+
# @return [LazyFrame]
|
436
1495
|
#
|
1496
|
+
# @example
|
1497
|
+
# df = Polars::DataFrame.new(
|
1498
|
+
# {
|
1499
|
+
# "letters" => ["a", "a", "b", "c"],
|
1500
|
+
# "numbers" => [[1], [2, 3], [4, 5], [6, 7, 8]],
|
1501
|
+
# }
|
1502
|
+
# ).lazy
|
1503
|
+
# df.explode("numbers").collect
|
1504
|
+
# # =>
|
1505
|
+
# # shape: (8, 2)
|
1506
|
+
# # ┌─────────┬─────────┐
|
1507
|
+
# # │ letters ┆ numbers │
|
1508
|
+
# # │ --- ┆ --- │
|
1509
|
+
# # │ str ┆ i64 │
|
1510
|
+
# # ╞═════════╪═════════╡
|
1511
|
+
# # │ a ┆ 1 │
|
1512
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
1513
|
+
# # │ a ┆ 2 │
|
1514
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
1515
|
+
# # │ a ┆ 3 │
|
1516
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
1517
|
+
# # │ b ┆ 4 │
|
1518
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
1519
|
+
# # │ b ┆ 5 │
|
1520
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
1521
|
+
# # │ c ┆ 6 │
|
1522
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
1523
|
+
# # │ c ┆ 7 │
|
1524
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
1525
|
+
# # │ c ┆ 8 │
|
1526
|
+
# # └─────────┴─────────┘
|
437
1527
|
def explode(columns)
|
438
1528
|
columns = Utils.selection_to_rbexpr_list(columns)
|
439
1529
|
_from_rbldf(_ldf.explode(columns))
|
440
1530
|
end
|
441
1531
|
|
442
|
-
#
|
443
|
-
#
|
1532
|
+
# Drop duplicate rows from this DataFrame.
|
1533
|
+
#
|
1534
|
+
# Note that this fails if there is a column of type `List` in the DataFrame or
|
1535
|
+
# subset.
|
1536
|
+
#
|
1537
|
+
# @param maintain_order [Boolean]
|
1538
|
+
# Keep the same order as the original DataFrame. This requires more work to
|
1539
|
+
# compute.
|
1540
|
+
# @param subset [Object]
|
1541
|
+
# Subset to use to compare rows.
|
1542
|
+
# @param keep ["first", "last"]
|
1543
|
+
# Which of the duplicate rows to keep.
|
1544
|
+
#
|
1545
|
+
# @return [LazyFrame]
|
1546
|
+
def unique(maintain_order: true, subset: nil, keep: "first")
|
1547
|
+
if !subset.nil? && !subset.is_a?(Array)
|
1548
|
+
subset = [subset]
|
1549
|
+
end
|
1550
|
+
_from_rbldf(_ldf.unique(maintain_order, subset, keep))
|
1551
|
+
end
|
444
1552
|
|
445
1553
|
# def drop_nulls
|
446
1554
|
# end
|
@@ -451,11 +1559,97 @@ module Polars
|
|
451
1559
|
# def map
|
452
1560
|
# end
|
453
1561
|
|
454
|
-
#
|
455
|
-
#
|
1562
|
+
# Interpolate intermediate values. The interpolation method is linear.
|
1563
|
+
#
|
1564
|
+
# @return [LazyFrame]
|
1565
|
+
#
|
1566
|
+
# @example
|
1567
|
+
# df = Polars::DataFrame.new(
|
1568
|
+
# {
|
1569
|
+
# "foo" => [1, nil, 9, 10],
|
1570
|
+
# "bar" => [6, 7, 9, nil],
|
1571
|
+
# "baz" => [1, nil, nil, 9]
|
1572
|
+
# }
|
1573
|
+
# ).lazy
|
1574
|
+
# df.interpolate.collect
|
1575
|
+
# # =>
|
1576
|
+
# # shape: (4, 3)
|
1577
|
+
# # ┌─────┬──────┬─────┐
|
1578
|
+
# # │ foo ┆ bar ┆ baz │
|
1579
|
+
# # │ --- ┆ --- ┆ --- │
|
1580
|
+
# # │ i64 ┆ i64 ┆ i64 │
|
1581
|
+
# # ╞═════╪══════╪═════╡
|
1582
|
+
# # │ 1 ┆ 6 ┆ 1 │
|
1583
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1584
|
+
# # │ 5 ┆ 7 ┆ 3 │
|
1585
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1586
|
+
# # │ 9 ┆ 9 ┆ 6 │
|
1587
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1588
|
+
# # │ 10 ┆ null ┆ 9 │
|
1589
|
+
# # └─────┴──────┴─────┘
|
1590
|
+
def interpolate
|
1591
|
+
select(Utils.col("*").interpolate)
|
1592
|
+
end
|
456
1593
|
|
457
|
-
#
|
458
|
-
#
|
1594
|
+
# Decompose a struct into its fields.
|
1595
|
+
#
|
1596
|
+
# The fields will be inserted into the `DataFrame` on the location of the
|
1597
|
+
# `struct` type.
|
1598
|
+
#
|
1599
|
+
# @param names [Object]
|
1600
|
+
# Names of the struct columns that will be decomposed by its fields
|
1601
|
+
#
|
1602
|
+
# @return [LazyFrame]
|
1603
|
+
#
|
1604
|
+
# @example
|
1605
|
+
# df = (
|
1606
|
+
# Polars::DataFrame.new(
|
1607
|
+
# {
|
1608
|
+
# "before" => ["foo", "bar"],
|
1609
|
+
# "t_a" => [1, 2],
|
1610
|
+
# "t_b" => ["a", "b"],
|
1611
|
+
# "t_c" => [true, nil],
|
1612
|
+
# "t_d" => [[1, 2], [3]],
|
1613
|
+
# "after" => ["baz", "womp"]
|
1614
|
+
# }
|
1615
|
+
# )
|
1616
|
+
# .lazy
|
1617
|
+
# .select(
|
1618
|
+
# ["before", Polars.struct(Polars.col("^t_.$")).alias("t_struct"), "after"]
|
1619
|
+
# )
|
1620
|
+
# )
|
1621
|
+
# df.fetch
|
1622
|
+
# # =>
|
1623
|
+
# # shape: (2, 3)
|
1624
|
+
# # ┌────────┬─────────────────────┬───────┐
|
1625
|
+
# # │ before ┆ t_struct ┆ after │
|
1626
|
+
# # │ --- ┆ --- ┆ --- │
|
1627
|
+
# # │ str ┆ struct[4] ┆ str │
|
1628
|
+
# # ╞════════╪═════════════════════╪═══════╡
|
1629
|
+
# # │ foo ┆ {1,"a",true,[1, 2]} ┆ baz │
|
1630
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1631
|
+
# # │ bar ┆ {2,"b",null,[3]} ┆ womp │
|
1632
|
+
# # └────────┴─────────────────────┴───────┘
|
1633
|
+
#
|
1634
|
+
# @example
|
1635
|
+
# df.unnest("t_struct").fetch
|
1636
|
+
# # =>
|
1637
|
+
# # shape: (2, 6)
|
1638
|
+
# # ┌────────┬─────┬─────┬──────┬───────────┬───────┐
|
1639
|
+
# # │ before ┆ t_a ┆ t_b ┆ t_c ┆ t_d ┆ after │
|
1640
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
1641
|
+
# # │ str ┆ i64 ┆ str ┆ bool ┆ list[i64] ┆ str │
|
1642
|
+
# # ╞════════╪═════╪═════╪══════╪═══════════╪═══════╡
|
1643
|
+
# # │ foo ┆ 1 ┆ a ┆ true ┆ [1, 2] ┆ baz │
|
1644
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1645
|
+
# # │ bar ┆ 2 ┆ b ┆ null ┆ [3] ┆ womp │
|
1646
|
+
# # └────────┴─────┴─────┴──────┴───────────┴───────┘
|
1647
|
+
def unnest(names)
|
1648
|
+
if names.is_a?(String)
|
1649
|
+
names = [names]
|
1650
|
+
end
|
1651
|
+
_from_rbldf(_ldf.unnest(names))
|
1652
|
+
end
|
459
1653
|
|
460
1654
|
private
|
461
1655
|
|