plurimath 0.7.2 → 0.8.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (107) hide show
  1. checksums.yaml +4 -4
  2. data/.gitmodules +3 -0
  3. data/Latex-Supported-Data.adoc +1 -0
  4. data/UnicodeMath-Supported-Data.adoc +1342 -0
  5. data/UnitsML-Supported-Data.adoc +444 -0
  6. data/lib/plurimath/asciimath/parse.rb +1 -1
  7. data/lib/plurimath/asciimath/transform.rb +2 -6
  8. data/lib/plurimath/latex/constants.rb +2 -0
  9. data/lib/plurimath/math/core.rb +38 -6
  10. data/lib/plurimath/math/formula.rb +60 -6
  11. data/lib/plurimath/math/function/abs.rb +4 -0
  12. data/lib/plurimath/math/function/arg.rb +22 -0
  13. data/lib/plurimath/math/function/bar.rb +4 -0
  14. data/lib/plurimath/math/function/base.rb +49 -0
  15. data/lib/plurimath/math/function/binary_function.rb +6 -0
  16. data/lib/plurimath/math/function/cancel.rb +5 -0
  17. data/lib/plurimath/math/function/ceil.rb +6 -0
  18. data/lib/plurimath/math/function/color.rb +20 -1
  19. data/lib/plurimath/math/function/ddot.rb +4 -0
  20. data/lib/plurimath/math/function/dot.rb +5 -0
  21. data/lib/plurimath/math/function/fenced.rb +98 -7
  22. data/lib/plurimath/math/function/floor.rb +6 -0
  23. data/lib/plurimath/math/function/font_style/monospace.rb +4 -0
  24. data/lib/plurimath/math/function/font_style.rb +31 -6
  25. data/lib/plurimath/math/function/frac.rb +69 -15
  26. data/lib/plurimath/math/function/hat.rb +4 -0
  27. data/lib/plurimath/math/function/inf.rb +30 -0
  28. data/lib/plurimath/math/function/int.rb +47 -1
  29. data/lib/plurimath/math/function/intent.rb +22 -0
  30. data/lib/plurimath/math/function/left.rb +4 -0
  31. data/lib/plurimath/math/function/lim.rb +6 -0
  32. data/lib/plurimath/math/function/limits.rb +28 -0
  33. data/lib/plurimath/math/function/linebreak.rb +5 -0
  34. data/lib/plurimath/math/function/log.rb +27 -20
  35. data/lib/plurimath/math/function/longdiv.rb +4 -0
  36. data/lib/plurimath/math/function/mbox.rb +4 -0
  37. data/lib/plurimath/math/function/menclose.rb +74 -5
  38. data/lib/plurimath/math/function/merror.rb +2 -0
  39. data/lib/plurimath/math/function/mglyph.rb +64 -0
  40. data/lib/plurimath/math/function/mlabeledtr.rb +29 -0
  41. data/lib/plurimath/math/function/mod.rb +4 -0
  42. data/lib/plurimath/math/function/mpadded.rb +84 -0
  43. data/lib/plurimath/math/function/ms.rb +33 -0
  44. data/lib/plurimath/math/function/msgroup.rb +4 -0
  45. data/lib/plurimath/math/function/msline.rb +2 -4
  46. data/lib/plurimath/math/function/multiscript.rb +70 -6
  47. data/lib/plurimath/math/function/nary.rb +69 -10
  48. data/lib/plurimath/math/function/none.rb +25 -0
  49. data/lib/plurimath/math/function/norm.rb +6 -0
  50. data/lib/plurimath/math/function/obrace.rb +4 -0
  51. data/lib/plurimath/math/function/oint.rb +25 -1
  52. data/lib/plurimath/math/function/over.rb +6 -0
  53. data/lib/plurimath/math/function/overset.rb +46 -1
  54. data/lib/plurimath/math/function/phantom.rb +18 -2
  55. data/lib/plurimath/math/function/power.rb +37 -0
  56. data/lib/plurimath/math/function/power_base.rb +45 -18
  57. data/lib/plurimath/math/function/prod.rb +46 -0
  58. data/lib/plurimath/math/function/right.rb +4 -0
  59. data/lib/plurimath/math/function/root.rb +9 -1
  60. data/lib/plurimath/math/function/rule.rb +4 -0
  61. data/lib/plurimath/math/function/sqrt.rb +7 -1
  62. data/lib/plurimath/math/function/stackrel.rb +6 -0
  63. data/lib/plurimath/math/function/substack.rb +4 -0
  64. data/lib/plurimath/math/function/sum.rb +45 -24
  65. data/lib/plurimath/math/function/table/bmatrix.rb +18 -5
  66. data/lib/plurimath/math/function/table/cases.rb +24 -0
  67. data/lib/plurimath/math/function/table/eqarray.rb +24 -0
  68. data/lib/plurimath/math/function/table/matrix.rb +23 -3
  69. data/lib/plurimath/math/function/table/pmatrix.rb +4 -0
  70. data/lib/plurimath/math/function/table/vmatrix.rb +10 -0
  71. data/lib/plurimath/math/function/table.rb +58 -7
  72. data/lib/plurimath/math/function/td.rb +9 -0
  73. data/lib/plurimath/math/function/ternary_function.rb +14 -1
  74. data/lib/plurimath/math/function/text.rb +6 -0
  75. data/lib/plurimath/math/function/tilde.rb +4 -0
  76. data/lib/plurimath/math/function/tr.rb +9 -0
  77. data/lib/plurimath/math/function/ubrace.rb +5 -0
  78. data/lib/plurimath/math/function/ul.rb +4 -0
  79. data/lib/plurimath/math/function/unary_function.rb +4 -0
  80. data/lib/plurimath/math/function/underover.rb +14 -0
  81. data/lib/plurimath/math/function/underset.rb +49 -1
  82. data/lib/plurimath/math/function/vec.rb +4 -0
  83. data/lib/plurimath/math/number.rb +33 -3
  84. data/lib/plurimath/math/symbol.rb +68 -3
  85. data/lib/plurimath/math.rb +3 -2
  86. data/lib/plurimath/mathml/constants.rb +16 -0
  87. data/lib/plurimath/mathml/parser.rb +42 -2
  88. data/lib/plurimath/mathml/transform.rb +80 -29
  89. data/lib/plurimath/omml/parser.rb +8 -0
  90. data/lib/plurimath/omml/transform.rb +29 -26
  91. data/lib/plurimath/unicode_math/constants.rb +1014 -0
  92. data/lib/plurimath/unicode_math/parse.rb +233 -0
  93. data/lib/plurimath/unicode_math/parser.rb +58 -0
  94. data/lib/plurimath/unicode_math/parsing_rules/absence_rules.rb +138 -0
  95. data/lib/plurimath/unicode_math/parsing_rules/common_rules.rb +114 -0
  96. data/lib/plurimath/unicode_math/parsing_rules/constants_rules.rb +102 -0
  97. data/lib/plurimath/unicode_math/parsing_rules/helper.rb +19 -0
  98. data/lib/plurimath/unicode_math/parsing_rules/masked.rb +62 -0
  99. data/lib/plurimath/unicode_math/parsing_rules/sub_sup.rb +254 -0
  100. data/lib/plurimath/unicode_math/transform.rb +3831 -0
  101. data/lib/plurimath/{unicode.rb → unicode_math.rb} +2 -2
  102. data/lib/plurimath/unitsml.rb +14 -1
  103. data/lib/plurimath/utility.rb +346 -11
  104. data/lib/plurimath/version.rb +1 -1
  105. data/lib/plurimath/xml_engine/oga.rb +5 -0
  106. data/lib/plurimath/xml_engine/ox.rb +5 -0
  107. metadata +25 -3
@@ -0,0 +1,1342 @@
1
+ == UnicodeMath Support
2
+
3
+ === Accents
4
+
5
+ * `underbracket`
6
+ * `overbracket`
7
+ * `undershell`
8
+ * `underparen`
9
+ * `underbrace`
10
+ * `overshell`
11
+ * `overparen`
12
+ * `overbrace`
13
+ * `widetilde`
14
+ * `widehat`
15
+ * `ddddot`
16
+ * `acute`
17
+ * `dddot`
18
+ * `grave`
19
+ * `rhvec`
20
+ * `lhvec`
21
+ * `breve`
22
+ * `tilde`
23
+ * `check`
24
+ * `tvec`
25
+ * `ubar`
26
+ * `hvec`
27
+ * `lvec`
28
+ * `ddot`
29
+ * `bar`
30
+ * `hat`
31
+ * `vec`
32
+ * `Bar`
33
+ * `dot`
34
+ * `\⃝` => `⃝`
35
+ * `\⃚` => `⃚`
36
+ * `\⃡` => `⃡`
37
+ * `\⃙` => `⃙`
38
+ * `\⃗` => `⃗`
39
+ * `\⃘` => `⃘`
40
+ * `\⃯` => `⃯`
41
+ * `\⃓` => `⃓`
42
+ * `\⃮` => `⃮`
43
+ * `\⃒` => `⃒`
44
+ * `\⃭` => `⃭`
45
+ * `\⃛` => `⃛`
46
+ * `\⃬` => `⃬`
47
+ * `\⃑` => `⃑`
48
+ * `\⃨` => `⃨`
49
+ * `\⃐` => `⃐`
50
+ * `\⃑` => `⃑`
51
+ * `\⃖` => `⃖`
52
+ * `\⃨` => `⃨`
53
+ * `\⃬` => `⃬`
54
+ * `\⃭` => `⃭`
55
+ * `\⃮` => `⃮`
56
+ * `\⃯` => `⃯`
57
+ * `\⃫` => `⃫`
58
+ * `\⃪` => `⃪`
59
+ * `\⃦` => `⃦`
60
+ * `\⃥` => `⃥`
61
+ * `\⃤` => `⃤`
62
+ * `\⃣` => `⃣`
63
+ * `\⃢` => `⃢`
64
+ * `\⃠` => `⃠`
65
+ * `\⃟` => `⃟`
66
+ * `\⃞` => `⃞`
67
+ * `\⃘` => `⃘`
68
+ * `\⃕` => `⃕`
69
+ * `\⃖` => `⃖`
70
+ * `\⃔` => `⃔`
71
+ * `\⃙` => `⃙`
72
+ * `\⃚` => `⃚`
73
+ * `\⃝` => `⃝`
74
+ * `\⃞` => `⃞`
75
+ * `\⃟` => `⃟`
76
+ * `\⃠` => `⃠`
77
+ * `\⃢` => `⃢`
78
+ * `\⃣` => `⃣`
79
+ * `\⃤` => `⃤`
80
+ * `\⃥` => `⃥`
81
+ * `\⃦` => `⃦`
82
+ * `\⃪` => `⃪`
83
+ * `\⃫` => `⃫`
84
+ * `\⏞` => `⏞`
85
+ * `\⏜` => `⏜`
86
+ * `\⏠` => `⏠`
87
+ * `\⏟` => `⏟`
88
+ * `\⏝` => `⏝`
89
+ * `\⃒` => `⃒`
90
+ * `\⃓` => `⃓`
91
+ * `\⏡` => `⏡`
92
+ * `\⃜` => `⃜`
93
+ * `\⎴` => `⎴`
94
+ * `\⎵` => `⎵`
95
+ * `\̹` => `̹`
96
+ * `\̳` => `̳`
97
+ * `\̲` => `̲`
98
+ * `\̺` => `̺`
99
+ * `\̻` => `̻`
100
+ * `\̼` => `̼`
101
+ * `\ͅ` => `ͅ`
102
+ * `\̱` => `̱`
103
+ * `\̰` => `̰`
104
+ * `\̯` => `̯`
105
+ * `\̮` => `̮`
106
+ * `\̭` => `̭`
107
+ * `\̬` => `̬`
108
+ * `\̫` => `̫`
109
+ * `\͇` => `͇`
110
+ * `\͈` => `͈`
111
+ * `\͉` => `͉`
112
+ * `\͍` => `͍`
113
+ * `\͎` => `͎`
114
+ * `\̆` => `̆`
115
+ * `\̂` => `̂`
116
+ * `\̃` => `̃`
117
+ * `\͓` => `͓`
118
+ * `\͔` => `͔`
119
+ * `\͕` => `͕`
120
+ * `\͖` => `͖`
121
+ * `\͙` => `͙`
122
+ * `\̃` => `̃`
123
+ * `\̀` => `̀`
124
+ * `\́` => `́`
125
+ * `\̈` => `̈`
126
+ * `\̲` => `̲`
127
+ * `\̇` => `̇`
128
+ * `\̿` => `̿`
129
+ * `\̅` => `̅`
130
+ * `\̂` => `̂`
131
+ * `\̌` => `̌`
132
+ * `\̖` => `̖`
133
+ * `\̗` => `̗`
134
+ * `\̘` => `̘`
135
+ * `\̙` => `̙`
136
+ * `\̜` => `̜`
137
+ * `\̝` => `̝`
138
+ * `\̞` => `̞`
139
+ * `\̟` => `̟`
140
+ * `\̠` => `̠`
141
+ * `\̡` => `̡`
142
+ * `\̢` => `̢`
143
+ * `\̣` => `̣`
144
+ * `\̤` => `̤`
145
+ * `\̥` => `̥`
146
+ * `\̦` => `̦`
147
+ * `\̧` => `̧`
148
+ * `\̨` => `̨`
149
+ * `\̩` => `̩`
150
+ * `\͜` => `͜`
151
+ * `\͚` => `͚`
152
+ * `\͙` => `͙`
153
+ * `\͖` => `͖`
154
+ * `\͕` => `͕`
155
+ * `\͔` => `͔`
156
+ * `\͓` => `͓`
157
+ * `\͎` => `͎`
158
+ * `\͍` => `͍`
159
+ * `\͉` => `͉`
160
+ * `\͈` => `͈`
161
+ * `\͇` => `͇`
162
+ * `\ͅ` => `ͅ`
163
+ * `\̼` => `̼`
164
+ * `\̻` => `̻`
165
+ * `\̺` => `̺`
166
+ * `\̉` => `̉`
167
+ * `\̴` => `̴`
168
+ * `\̵` => `̵`
169
+ * `\̶` => `̶`
170
+ * `\̷` => `̷`
171
+ * `\̸` => `̸`
172
+ * `\̄` => `̄`
173
+ * `\̴` => `̴`
174
+ * `\̵` => `̵`
175
+ * `\̶` => `̶`
176
+ * `\̷` => `̷`
177
+ * `\̸` => `̸`
178
+ * `\̄` => `̄`
179
+ * `\̉` => `̉`
180
+ * `\͢` => `͢`
181
+ * `\͟` => `͟`
182
+ * `\̹` => `̹`
183
+ * `\̥` => `̥`
184
+ * `\̤` => `̤`
185
+ * `\̣` => `̣`
186
+ * `\̢` => `̢`
187
+ * `\̡` => `̡`
188
+ * `\̠` => `̠`
189
+ * `\̟` => `̟`
190
+ * `\̞` => `̞`
191
+ * `\̝` => `̝`
192
+ * `\̜` => `̜`
193
+ * `\̙` => `̙`
194
+ * `\̘` => `̘`
195
+ * `\̗` => `̗`
196
+ * `\̖` => `̖`
197
+ * `\͢` => `͢`
198
+ * `\͟` => `͟`
199
+ * `\͜` => `͜`
200
+ * `\͚` => `͚`
201
+ * `\̳` => `̳`
202
+ * `\̲` => `̲`
203
+ * `\̱` => `̱`
204
+ * `\̰` => `̰`
205
+ * `\̯` => `̯`
206
+ * `\̮` => `̮`
207
+ * `\̭` => `̭`
208
+ * `\̬` => `̬`
209
+ * `\̫` => `̫`
210
+ * `\̪` => `̪`
211
+ * `\̩` => `̩`
212
+ * `\̨` => `̨`
213
+ * `\̪` => `̪`
214
+ * `\̦` => `̦`
215
+ * `\̧` => `̧`
216
+
217
+ == Fonts
218
+
219
+ * `mbfitsans`
220
+ * `mbfsans`
221
+ * `mbffrak`
222
+ * `mitsans`
223
+ * `mbfsans`
224
+ * `fraktur`
225
+ * `mitBbb`
226
+ * `mbfscr`
227
+ * `script`
228
+ * `double`
229
+ * `msans`
230
+ * `mbfit`
231
+ * `msans`
232
+ * `mfrak`
233
+ * `mscr`
234
+ * `Bbb`
235
+ * `mtt`
236
+ * `mbf`
237
+ * `mup`
238
+ * `mtt`
239
+ * `Bbb`
240
+ * `mup`
241
+ * `mbf`
242
+ * `mit`
243
+ * `\ⅉ` => `ⅉ`
244
+ * `\ⅈ` => `ⅈ`
245
+ * `\ⅇ` => `ⅇ`
246
+ * `\ⅆ` => `ⅆ`
247
+ * `\ⅅ` => `ⅅ`
248
+ * `\ℍ` => `ℍ`
249
+ * `\ℌ` => `ℌ`
250
+ * `\ℋ` => `ℋ`
251
+
252
+ == Functions/Classes
253
+
254
+ * `underline`
255
+ * `hphantom`
256
+ * `vphantom`
257
+ * `underbar`
258
+ * `overline`
259
+ * `xcancel`
260
+ * `phantom`
261
+ * `overbar`
262
+ * `ellipse`
263
+ * `longdiv`
264
+ * `bcancel`
265
+ * `cancel`
266
+ * `circle`
267
+ * `obrace`
268
+ * `asmash`
269
+ * `dsmash`
270
+ * `hsmash`
271
+ * `rrect`
272
+ * `smash`
273
+ * `prod`
274
+ * `rect`
275
+ * `oint`
276
+ * `oint`
277
+ * `prod`
278
+ * `cos`
279
+ * `abs`
280
+ * `cot`
281
+ * `csc`
282
+ * `sum`
283
+ * `int`
284
+ * `lim`
285
+ * `inf`
286
+ * `sum`
287
+ * `int`
288
+ * `erf`
289
+ * `def`
290
+ * `arg`
291
+ * `sup`
292
+ * `mod`
293
+ * `min`
294
+ * `max`
295
+ * `log`
296
+ * `lim`
297
+ * `ker`
298
+ * `inf`
299
+ * `hom`
300
+ * `gcd`
301
+ * `exp`
302
+ * `erf`
303
+ * `dim`
304
+ * `det`
305
+ * `deg`
306
+ * `def`
307
+ * `arg`
308
+ * `tan`
309
+ * `log`
310
+ * `sin`
311
+ * `sec`
312
+ * `tg`
313
+ * `Re`
314
+ * `Pr`
315
+ * `Im`
316
+ * `tg`
317
+ * `ln`
318
+ * `Re`
319
+ * `Pr`
320
+ * `Im`
321
+ * `\∏` => `∏`
322
+ * `\▁` => `▁`
323
+ * `\⬄` => `⬄`
324
+ * `\⇳` => `⇳`
325
+ * `\▁` => `▁`
326
+ * `\∮` => `∮`
327
+ * `\⟡` => `⟡`
328
+ * `\⟌` => `⟌`
329
+ * `\∫` => `∫`
330
+ * `\○` => `○`
331
+ * `\∑` => `∑`
332
+ * `\⒜` => `⒜`
333
+ * `\▭` => `▭`
334
+ * `\▢` => `▢`
335
+ * `\╱` => `╱`
336
+ * `\⬭` => `⬭`
337
+ * `\╳` => `╳`
338
+ * `\⬍` => `⬍`
339
+ * `\⬌` => `⬌`
340
+ * `\╲` => `╲`
341
+ * `\⬇` => `⬇`
342
+ * `\⬆` => `⬆`
343
+ * `\¯` => `¯`
344
+ * `\¯` => `¯`
345
+
346
+ == Symbols
347
+
348
+ * `leftrightwavearrow`
349
+ * `Longleftrightarrow`
350
+ * `leftrightharpoons`
351
+ * `twoheadrightarrow`
352
+ * `rightleftharpoons`
353
+ * `rightharpoondown`
354
+ * `circlearrowright`
355
+ * `vartriangleright`
356
+ * `rightrightarrows`
357
+ * `twoheadleftarrow`
358
+ * `downharpoonright`
359
+ * `ntrianglerighteq`
360
+ * `leftharpoondown`
361
+ * `rightsquigarrow`
362
+ * `rightthreetimes`
363
+ * `circlearrowleft`
364
+ * `rightleftarrows`
365
+ * `vartriangleleft`
366
+ * `trianglerighteq`
367
+ * `leftrightarrows`
368
+ * `nleftrightarrow`
369
+ * `nLeftrightarrow`
370
+ * `downharpoonleft`
371
+ * `rightwavearrow`
372
+ * `dasharrowright`
373
+ * `leftthreetimes`
374
+ * `curvearrowleft`
375
+ * `upharpoonright`
376
+ * `leftleftarrows`
377
+ * `trianglelefteq`
378
+ * `Longrightarrow`
379
+ * `Leftrightarrow`
380
+ * `longrightarrow`
381
+ * `rightharpoonup`
382
+ * `leftrightarrow`
383
+ * `leftsquigarrow`
384
+ * `hookrightarrow`
385
+ * `ntriangleright`
386
+ * `rightarrowtail`
387
+ * `hookleftarrow`
388
+ * `ntriangleleft`
389
+ * `divideontimes`
390
+ * `leftarrowtail`
391
+ * `fallingdotseq`
392
+ * `looparrowleft`
393
+ * `leftwavearrow`
394
+ * `upharpoonleft`
395
+ * `leftharpoonup`
396
+ * `nsqsuperseteq`
397
+ * `longleftarrow`
398
+ * `Longleftarrow`
399
+ * `updownarrows`
400
+ * `risingdotseq`
401
+ * `npreccurlyeq`
402
+ * `nsucccurlyeq`
403
+ * `preccurlyeq`
404
+ * `nsqsubseteq`
405
+ * `nrightarrow`
406
+ * `nRightarrow`
407
+ * `succcurlyeq`
408
+ * `diamondsuit`
409
+ * `curlyeqsucc`
410
+ * `curlyeqprec`
411
+ * `Updownarrow`
412
+ * `updownarrow`
413
+ * `sqsupseteq`
414
+ * `sqsubseteq`
415
+ * `sqsubseteq`
416
+ * `sqsupseteq`
417
+ * `upuparrows`
418
+ * `mapstoleft`
419
+ * `rightarrow`
420
+ * `Rightarrow`
421
+ * `downarrows`
422
+ * `nLeftarrow`
423
+ * `complement`
424
+ * `nleftarrow`
425
+ * `rightangle`
426
+ * `varepsilon`
427
+ * `curlywedge`
428
+ * `spadesuit`
429
+ * `funcapply`
430
+ * `pitchfork`
431
+ * `supsetneq`
432
+ * `therefore`
433
+ * `nsupseteq`
434
+ * `leftarrow`
435
+ * `gtreqless`
436
+ * `Leftarrow`
437
+ * `nparallel`
438
+ * `subsetneq`
439
+ * `Downarrow`
440
+ * `lesseqgtr`
441
+ * `downarrow`
442
+ * `backsimeq`
443
+ * `supseteq`
444
+ * `subseteq`
445
+ * `emptyset`
446
+ * `clubsuit`
447
+ * `hearsuit`
448
+ * `varkappa`
449
+ * `varsigma`
450
+ * `vartheta`
451
+ * `emptyset`
452
+ * `pppprime`
453
+ * `approxeq`
454
+ * `sqsubset`
455
+ * `sqsupset`
456
+ * `succnsim`
457
+ * `curlyvee`
458
+ * `supseteq`
459
+ * `dotminus`
460
+ * `vthicksp`
461
+ * `boxtimes`
462
+ * `boxminus`
463
+ * `triangle`
464
+ * `setminus`
465
+ * `multimap`
466
+ * `parallel`
467
+ * `intercal`
468
+ * `precnsim`
469
+ * `subseteq`
470
+ * `gtrless`
471
+ * `angrtvb`
472
+ * `gtrless`
473
+ * `nwarrow`
474
+ * `lesssim`
475
+ * `precsim`
476
+ * `lessgtr`
477
+ * `ppprime`
478
+ * `lessdot`
479
+ * `boxplus`
480
+ * `swarrow`
481
+ * `diamond`
482
+ * `nexists`
483
+ * `succsim`
484
+ * `dotplus`
485
+ * `thicksp`
486
+ * `lessgtr`
487
+ * `Deltaeq`
488
+ * `epsilon`
489
+ * `nearrow`
490
+ * `Upsilon`
491
+ * `uparrow`
492
+ * `upsilon`
493
+ * `Uparrow`
494
+ * `between`
495
+ * `nexists`
496
+ * `searrow`
497
+ * `partial`
498
+ * `because`
499
+ * `backsim`
500
+ * `napprox`
501
+ * `boxdot`
502
+ * `rtimes`
503
+ * `varrho`
504
+ * `daleth`
505
+ * `forall`
506
+ * `Lambda`
507
+ * `otimes`
508
+ * `ominus`
509
+ * `ltimes`
510
+ * `lambda`
511
+ * `varphi`
512
+ * `exists`
513
+ * `bullet`
514
+ * `subset`
515
+ * `supset`
516
+ * `exists`
517
+ * `approx`
518
+ * `nsimeq`
519
+ * `nVdash`
520
+ * `nvdash`
521
+ * `preceq`
522
+ * `propto`
523
+ * `rddots`
524
+ * `rmoust`
525
+ * `Subset`
526
+ * `subset`
527
+ * `subsub`
528
+ * `gtrdot`
529
+ * `gtrsim`
530
+ * `lmoust`
531
+ * `eqcirc`
532
+ * `circeq`
533
+ * `bumpeq`
534
+ * `bowtie`
535
+ * `approx`
536
+ * `angsph`
537
+ * `angmsd`
538
+ * `pprime`
539
+ * `mapsto`
540
+ * `models`
541
+ * `nasymp`
542
+ * `nequiv`
543
+ * `succeq`
544
+ * `preceq`
545
+ * `forall`
546
+ * `hairsp`
547
+ * `thinsp`
548
+ * `Vvdash`
549
+ * `degree`
550
+ * `supsup`
551
+ * `supsub`
552
+ * `supset`
553
+ * `succeq`
554
+ * `Supset`
555
+ * `alpha`
556
+ * `prime`
557
+ * `Theta`
558
+ * `sqcup`
559
+ * `lrhar`
560
+ * `sqcap`
561
+ * `cdots`
562
+ * `vdots`
563
+ * `Gamma`
564
+ * `ncong`
565
+ * `vdash`
566
+ * `nless`
567
+ * `oplus`
568
+ * `notin`
569
+ * `asymp`
570
+ * `angle`
571
+ * `nabla`
572
+ * `frown`
573
+ * `equiv`
574
+ * `gneqq`
575
+ * `wedge`
576
+ * `uplus`
577
+ * `times`
578
+ * `equiv`
579
+ * `eqgtr`
580
+ * `doteq`
581
+ * `Doteq`
582
+ * `ddots`
583
+ * `dashv`
584
+ * `colon`
585
+ * `Colon`
586
+ * `Delta`
587
+ * `delta`
588
+ * `numsp`
589
+ * `sigma`
590
+ * `lnsim`
591
+ * `asymp`
592
+ * `simeq`
593
+ * `omega`
594
+ * `angle`
595
+ * `rlhar`
596
+ * `nabla`
597
+ * `frown`
598
+ * `Omega`
599
+ * `ratio`
600
+ * `varpi`
601
+ * `medsp`
602
+ * `ldots`
603
+ * `prcue`
604
+ * `kappa`
605
+ * `nsucc`
606
+ * `ocirc`
607
+ * `odash`
608
+ * `Vdash`
609
+ * `imath`
610
+ * `theta`
611
+ * `infty`
612
+ * `gimel`
613
+ * `VDash`
614
+ * `notni`
615
+ * `Sigma`
616
+ * `jmath`
617
+ * `gamma`
618
+ * `nprec`
619
+ * `simeq`
620
+ * `aleph`
621
+ * `leqq`
622
+ * `emsp`
623
+ * `lneq`
624
+ * `rdsh`
625
+ * `nbsp`
626
+ * `ensp`
627
+ * `nmid`
628
+ * `nleq`
629
+ * `star`
630
+ * `prec`
631
+ * `ngeq`
632
+ * `perp`
633
+ * `quad`
634
+ * `circ`
635
+ * `nsup`
636
+ * `oast`
637
+ * `succ`
638
+ * `nsub`
639
+ * `cdot`
640
+ * `odot`
641
+ * `nsim`
642
+ * `beth`
643
+ * `ddag`
644
+ * `beta`
645
+ * `succ`
646
+ * `prec`
647
+ * `cong`
648
+ * `degc`
649
+ * `degf`
650
+ * `dots`
651
+ * `epar`
652
+ * `gets`
653
+ * `eqno`
654
+ * `cong`
655
+ * `hbar`
656
+ * `vert`
657
+ * `geqq`
658
+ * `iota`
659
+ * `ldsh`
660
+ * `vbar`
661
+ * `zwsp`
662
+ * `norm`
663
+ * `zwnj`
664
+ * `zeta`
665
+ * `Vert`
666
+ * `Phi`
667
+ * `inc`
668
+ * `tau`
669
+ * `eta`
670
+ * `rho`
671
+ * `qed`
672
+ * `psi`
673
+ * `div`
674
+ * `Psi`
675
+ * `lor`
676
+ * `ell`
677
+ * `dag`
678
+ * `phi`
679
+ * `chi`
680
+ * `sim`
681
+ * `box`
682
+ * `ast`
683
+ * `iff`
684
+ * `neq`
685
+ * `ggg`
686
+ * `leq`
687
+ * `geq`
688
+ * `bot`
689
+ * `Cap`
690
+ * `cap`
691
+ * `top`
692
+ * `sim`
693
+ * `ngt`
694
+ * `inc`
695
+ * `neg`
696
+ * `Cup`
697
+ * `neg`
698
+ * `oeq`
699
+ * `cup`
700
+ * `to`
701
+ * `dd`
702
+ * `ne`
703
+ * `wr`
704
+ * `in`
705
+ * `le`
706
+ * `gg`
707
+ * `ll`
708
+ * `ge`
709
+ * `in`
710
+ * `ni`
711
+ * `le`
712
+ * `ge`
713
+ * `mp`
714
+ * `xi`
715
+ * `wp`
716
+ * `Re`
717
+ * `pi`
718
+ * `Pi`
719
+ * `oo`
720
+ * `nu`
721
+ * `mu`
722
+ * `jj`
723
+ * `Im`
724
+ * `ii`
725
+ * `ee`
726
+ * `pm`
727
+ * `ni`
728
+ * `\∋` => `∋`
729
+ * `\∼` => `∼`
730
+ * `\⊒` => `⊒`
731
+ * `\≃` => `≃`
732
+ * `\⊑` => `⊑`
733
+ * `\≅` => `≅`
734
+ * `\≈` => `≈`
735
+ * `\≍` => `≍`
736
+ * `\⊇` => `⊇`
737
+ * `\≡` => `≡`
738
+ * `\≤` => `≤`
739
+ * `\≥` => `≥`
740
+ * `\≶` => `≶`
741
+ * `\≷` => `≷`
742
+ * `\⊆` => `⊆`
743
+ * `\⊃` => `⊃`
744
+ * `\≽` => `≽`
745
+ * `\⊂` => `⊂`
746
+ * `\≺` => `≺`
747
+ * `\≻` => `≻`
748
+ * `\≼` => `≼`
749
+ * `\∈` => `∈`
750
+ * `\∃` => `∃`
751
+ * `\≲` => `≲`
752
+ * `\≶` => `≶`
753
+ * `\⋚` => `⋚`
754
+ * `\↪` => `↪`
755
+ * `\⇃` => `⇃`
756
+ * `\↭` => `↭`
757
+ * `\⋝` => `⋝`
758
+ * `\⇜` => `⇜`
759
+ * `\↜` => `↜`
760
+ * `\⊎` => `⊎`
761
+ * `\≤` => `≤`
762
+ * `\≖` => `≖`
763
+ * `\△` => `△`
764
+ * `\≀` => `≀`
765
+ * `\⟿` => `⟿`
766
+ * `\≦` => `≦`
767
+ * `\⇂` => `⇂`
768
+ * `\∈` => `∈`
769
+ * `\⋖` => `⋖`
770
+ * `\≠` => `≠`
771
+ * `\⋙` => `⋙`
772
+ * `\‼` => `‼`
773
+ * `\≩` => `≩`
774
+ * `\∓` => `∓`
775
+ * `\⇐` => `⇐`
776
+ * `\≫` => `≫`
777
+ * `\≧` => `≧`
778
+ * `\ⅆ` => `ⅆ`
779
+ * `\≥` => `≥`
780
+ * `\⋗` => `⋗`
781
+ * `\←` => `←`
782
+ * `\⋛` => `⋛`
783
+ * `\↢` => `↢`
784
+ * `\≥` => `≥`
785
+ * `\≤` => `≤`
786
+ * `\≷` => `≷`
787
+ * `\↽` => `↽`
788
+ * `\↼` => `↼`
789
+ * `\≠` => `≠`
790
+ * `\⇇` => `⇇`
791
+ * `\≳` => `≳`
792
+ * `\⇔` => `⇔`
793
+ * `\↔` => `↔`
794
+ * `\≒` => `≒`
795
+ * `\⇆` => `⇆`
796
+ * `\∧` => `∧`
797
+ * `\↩` => `↩`
798
+ * `\⇋` => `⇋`
799
+ * `\≡` => `≡`
800
+ * `\∠` => `∠`
801
+ * `\∇` => `∇`
802
+ * `\⌢` => `⌢`
803
+ * `\ℓ` => `ℓ`
804
+ * `\†` => `†`
805
+ * `\□` => `□`
806
+ * `\∃` => `∃`
807
+ * `\∓` => `∓`
808
+ * `\∀` => `∀`
809
+ * `\℘` => `℘`
810
+ * `\ℜ` => `ℜ`
811
+ * `\≜` => `≜`
812
+ * `\ⅉ` => `ⅉ`
813
+ * `\ℑ` => `ℑ`
814
+ * `\ⅈ` => `ⅈ`
815
+ * `\ⅇ` => `ⅇ`
816
+ * `\∄` => `∄`
817
+ * `\∂` => `∂`
818
+ * `\♣` => `♣`
819
+ * `\♡` => `♡`
820
+ * `\‖` => `‖`
821
+ * `\​` => `​`
822
+ * `\‖` => `‖`
823
+ * `\‌` => `‌`
824
+ * `\…` => `…`
825
+ * `\ℵ` => `ℵ`
826
+ * `\│` => `│`
827
+ * `\↲` => `↲`
828
+ * `\⏯` => `⏯`
829
+ * `\ℏ` => `ℏ`
830
+ * `\←` => `←`
831
+ * `\ℷ` => `ℷ`
832
+ * `\∞` => `∞`
833
+ * `\⋥` => `⋥`
834
+ * `\…` => `…`
835
+ * `\℉` => `℉`
836
+ * `\…` => `…`
837
+ * `\℃` => `℃`
838
+ * `\ ` => ` `
839
+ * `\‡` => `‡`
840
+ * `\ℶ` => `ℶ`
841
+ * `\∆` => `∆`
842
+ * `\∎` => `∎`
843
+ * `\ℸ` => `ℸ`
844
+ * `\≍` => `≍`
845
+ * `\∽` => `∽`
846
+ * `\⋍` => `⋍`
847
+ * `\∵` => `∵`
848
+ * `\≬` => `≬`
849
+ * `\⊥` => `⊥`
850
+ * `\⋈` => `⋈`
851
+ * `\≏` => `≏`
852
+ * `\≗` => `≗`
853
+ * `\↺` => `↺`
854
+ * `\↻` => `↻`
855
+ * `\∷` => `∷`
856
+ * `\∶` => `∶`
857
+ * `\≅` => `≅`
858
+ * `\⋞` => `⋞`
859
+ * `\⋟` => `⋟`
860
+ * `\⇠` => `⇠`
861
+ * `\⇫` => `⇫`
862
+ * `\⊣` => `⊣`
863
+ * `\⋱` => `⋱`
864
+ * `\≑` => `≑`
865
+ * `\≐` => `≐`
866
+ * `\⇓` => `⇓`
867
+ * `\↓` => `↓`
868
+ * `\∅` => `∅`
869
+ * `\♠` => `♠`
870
+ * `\∁` => `∁`
871
+ * `\∠` => `∠`
872
+ * `\♤` => `♤`
873
+ * `\⁗` => `⁗`
874
+ * `\‴` => `‴`
875
+ * `\″` => `″`
876
+ * `\′` => `′`
877
+ * `\∡` => `∡`
878
+ * `\⊾` => `⊾`
879
+ * `\∢` => `∢`
880
+ * `\≈` => `≈`
881
+ * `\≊` => `≊`
882
+ * `\⇊` => `⇊`
883
+ * `\≃` => `≃`
884
+ * `\⊏` => `⊏`
885
+ * `\⊑` => `⊑`
886
+ * `\⊐` => `⊐`
887
+ * `\⊒` => `⊒`
888
+ * `\⋐` => `⋐`
889
+ * `\⋄` => `⋄`
890
+ * `\⊂` => `⊂`
891
+ * `\⊊` => `⊊`
892
+ * `\⫓` => `⫓`
893
+ * `\⋏` => `⋏`
894
+ * `\≻` => `≻`
895
+ * `\≽` => `≽`
896
+ * `\⪰` => `⪰`
897
+ * `\⋩` => `⋩`
898
+ * `\≿` => `≿`
899
+ * `\⋎` => `⋎`
900
+ * `\⋑` => `⋑`
901
+ * `\⊃` => `⊃`
902
+ * `\⊇` => `⊇`
903
+ * `\⋨` => `⋨`
904
+ * `\≾` => `≾`
905
+ * `\⁡` => `⁡`
906
+ * `\∝` => `∝`
907
+ * `\∝` => `∝`
908
+ * `\∔` => `∔`
909
+ * `\⋰` => `⋰`
910
+ * `\↳` => `↳`
911
+ * `\⇒` => `⇒`
912
+ * `\→` => `→`
913
+ * `\↣` => `↣`
914
+ * `\⇁` => `⇁`
915
+ * `\⇀` => `⇀`
916
+ * `\⇄` => `⇄`
917
+ * `\⇌` => `⇌`
918
+ * `\⇉` => `⇉`
919
+ * `\⇝` => `⇝`
920
+ * `\↝` => `↝`
921
+ * `\≓` => `≓`
922
+ * `\∸` => `∸`
923
+ * `\⇌` => `⇌`
924
+ * `\⎱` => `⎱`
925
+ * `\↘` => `↘`
926
+ * `\⊳` => `⊳`
927
+ * `\∩` => `∩`
928
+ * `\⊫` => `⊫`
929
+ * `\⋒` => `⋒`
930
+ * `\⊩` => `⊩`
931
+ * `\∙` => `∙`
932
+ * `\⊢` => `⊢`
933
+ * `\⋮` => `⋮`
934
+ * `\⊠` => `⊠`
935
+ * `\⊪` => `⊪`
936
+ * `\ ` => ` `
937
+ * `\ ` => ` `
938
+ * `\ ` => ` `
939
+ * `\⊞` => `⊞`
940
+ * `\ ` => ` `
941
+ * `\ ` => ` `
942
+ * `\⊟` => `⊟`
943
+ * `\ ` => ` `
944
+ * `\ ` => ` `
945
+ * `\⊡` => `⊡`
946
+ * `\ ` => ` `
947
+ * `\∗` => `∗`
948
+ * `\∼` => `∼`
949
+ * `\⊋` => `⊋`
950
+ * `\∪` => `∪`
951
+ * `\⫔` => `⫔`
952
+ * `\⋓` => `⋓`
953
+ * `\⫖` => `⫖`
954
+ * `\↙` => `↙`
955
+ * `\∴` => `∴`
956
+ * `\∘` => `∘`
957
+ * `\→` => `→`
958
+ * `\⋅` => `⋅`
959
+ * `\⊤` => `⊤`
960
+ * `\⊴` => `⊴`
961
+ * `\⊵` => `⊵`
962
+ * `\↞` => `↞`
963
+ * `\↠` => `↠`
964
+ * `\⇑` => `⇑`
965
+ * `\↑` => `↑`
966
+ * `\⇕` => `⇕`
967
+ * `\↕` => `↕`
968
+ * `\⇅` => `⇅`
969
+ * `\↿` => `↿`
970
+ * `\↾` => `↾`
971
+ * `\⇈` => `⇈`
972
+ * `\≇` => `≇`
973
+ * `\↗` => `↗`
974
+ * `\⋌` => `⋌`
975
+ * `\≢` => `≢`
976
+ * `\≱` => `≱`
977
+ * `\⋔` => `⋔`
978
+ * `\≯` => `≯`
979
+ * `\∋` => `∋`
980
+ * `\⇍` => `⇍`
981
+ * `\↚` => `↚`
982
+ * `\⇎` => `⇎`
983
+ * `\↮` => `↮`
984
+ * `\⊗` => `⊗`
985
+ * `\≰` => `≰`
986
+ * `\≮` => `≮`
987
+ * `\⊕` => `⊕`
988
+ * `\∤` => `∤`
989
+ * `\⊖` => `⊖`
990
+ * `\∉` => `∉`
991
+ * `\∌` => `∌`
992
+ * `\∦` => `∦`
993
+ * `\⊜` => `⊜`
994
+ * `\⊀` => `⊀`
995
+ * `\⋠` => `⋠`
996
+ * `\⇏` => `⇏`
997
+ * `\≪` => `≪`
998
+ * `\⊰` => `⊰`
999
+ * `\⋆` => `⋆`
1000
+ * `\≨` => `≨`
1001
+ * `\⊔` => `⊔`
1002
+ * `\⋦` => `⋦`
1003
+ * `\⟸` => `⟸`
1004
+ * `\⟵` => `⟵`
1005
+ * `\⟺` => `⟺`
1006
+ * `\⟹` => `⟹`
1007
+ * `\⟶` => `⟶`
1008
+ * `\↬` => `↬`
1009
+ * `\⊓` => `⊓`
1010
+ * `\⇋` => `⇋`
1011
+ * `\∖` => `∖`
1012
+ * `\↦` => `↦`
1013
+ * `\↤` => `↤`
1014
+ * `\⊨` => `⊨`
1015
+ * `\⊸` => `⊸`
1016
+ * `\≉` => `≉`
1017
+ * `\⋊` => `⋊`
1018
+ * `\≭` => `≭`
1019
+ * `\⊛` => `⊛`
1020
+ * `\⊁` => `⊁`
1021
+ * `\⋡` => `⋡`
1022
+ * `\⋉` => `⋉`
1023
+ * `\⊅` => `⊅`
1024
+ * `\⊈` => `⊈`
1025
+ * `\⋪` => `⋪`
1026
+ * `\⋫` => `⋫`
1027
+ * `\⋭` => `⋭`
1028
+ * `\⊭` => `⊭`
1029
+ * `\∨` => `∨`
1030
+ * `\⊬` => `⊬`
1031
+ * `\↖` => `↖`
1032
+ * `\↖` => `↖`
1033
+ * `\⋋` => `⋋`
1034
+ * `\⊥` => `⊥`
1035
+ * `\≼` => `≼`
1036
+ * `\⊺` => `⊺`
1037
+ * `\≺` => `≺`
1038
+ * `\≼` => `≼`
1039
+ * `\⪯` => `⪯`
1040
+ * `\⊲` => `⊲`
1041
+ * `\↛` => `↛`
1042
+ * `\⊙` => `⊙`
1043
+ * `\≁` => `≁`
1044
+ * `\⊝` => `⊝`
1045
+ * `\≄` => `≄`
1046
+ * `\⋢` => `⋢`
1047
+ * `\⋣` => `⋣`
1048
+ * `\⊚` => `⊚`
1049
+ * `\⊄` => `⊄`
1050
+ * `\⊈` => `⊈`
1051
+ * `\Δ` => `Δ`
1052
+ * `\ε` => `ε`
1053
+ * `\δ` => `δ`
1054
+ * `\Ω` => `Ω`
1055
+ * `\ω` => `ω`
1056
+ * `\ʲ` => `ʲ`
1057
+ * `\Σ` => `Σ`
1058
+ * `\σ` => `σ`
1059
+ * `\τ` => `τ`
1060
+ * `\Θ` => `Θ`
1061
+ * `\ρ` => `ρ`
1062
+ * `\θ` => `θ`
1063
+ * `\ϖ` => `ϖ`
1064
+ * `\ψ` => `ψ`
1065
+ * `\Ψ` => `Ψ`
1066
+ * `\ϕ` => `ϕ`
1067
+ * `\Φ` => `Φ`
1068
+ * `\ζ` => `ζ`
1069
+ * `\α` => `α`
1070
+ * `\ι` => `ι`
1071
+ * `\Γ` => `Γ`
1072
+ * `\γ` => `γ`
1073
+ * `\ı` => `ı`
1074
+ * `\ȷ` => `ȷ`
1075
+ * `\κ` => `κ`
1076
+ * `\ϱ` => `ϱ`
1077
+ * `\π` => `π`
1078
+ * `\Π` => `Π`
1079
+ * `\ω` => `ω`
1080
+ * `\ϵ` => `ϵ`
1081
+ * `\ν` => `ν`
1082
+ * `\μ` => `μ`
1083
+ * `\Υ` => `Υ`
1084
+ * `\υ` => `υ`
1085
+ * `\ς` => `ς`
1086
+ * `\η` => `η`
1087
+ * `\Λ` => `Λ`
1088
+ * `\ϰ` => `ϰ`
1089
+ * `\χ` => `χ`
1090
+ * `\λ` => `λ`
1091
+ * `\φ` => `φ`
1092
+ * `\ϑ` => `ϑ`
1093
+ * `\ξ` => `ξ`
1094
+ * `\¬` => `¬`
1095
+ * `\<` => `<`
1096
+ * `\>` => `>`
1097
+ * `\÷` => `÷`
1098
+ * `\×` => `×`
1099
+ * `\±` => `±`
1100
+ * `\Ç` => `Ç`
1101
+ * `\±` => `±`
1102
+ * `\¬` => `¬`
1103
+ * `\#` => `#`
1104
+ * `\|` => `|`
1105
+ * `\ ` => ` `
1106
+ * `\°` => `°`
1107
+ * `...`
1108
+ * `!!`
1109
+ * `-+`
1110
+ * `+-`
1111
+ * `~`
1112
+ * `=`
1113
+ * `+`
1114
+ * `-`
1115
+
1116
+ == Parens
1117
+
1118
+ * `lbbrack`
1119
+ * `rbbrack`
1120
+ * `Rbrack`
1121
+ * `rbrack`
1122
+ * `rangle`
1123
+ * `Rangle`
1124
+ * `rfloor`
1125
+ * `Langle`
1126
+ * `langle`
1127
+ * `lbrace`
1128
+ * `Lbrack`
1129
+ * `lbrack`
1130
+ * `lfloor`
1131
+ * `rceil`
1132
+ * `begin`
1133
+ * `rbace`
1134
+ * `lceil`
1135
+ * `ket`
1136
+ * `end`
1137
+ * `bra`
1138
+ * `}`
1139
+ * `)`
1140
+ * `]`
1141
+ * `[`
1142
+ * `(`
1143
+ * `{`
1144
+ * `\⌋` => `⌋`
1145
+ * `\⟩` => `⟩`
1146
+ * `\⌉` => `⌉`
1147
+ * `\〗` => `〗`
1148
+ * `\〖` => `〖`
1149
+ * `\⟨` => `⟨`
1150
+ * `\⟧` => `⟧`
1151
+ * `\⟪` => `⟪`
1152
+ * `\⟨` => `⟨`
1153
+ * `\⟦` => `⟦`
1154
+ * `\⟧` => `⟧`
1155
+ * `\⟦` => `⟦`
1156
+ * `\⟩` => `⟩`
1157
+ * `\⟫` => `⟫`
1158
+ * `\⌈` => `⌈`
1159
+ * `\⌊` => `⌊`
1160
+ * `\}` => `}`
1161
+ * `\]` => `]`
1162
+ * `\{` => `{`
1163
+ * `\[` => `[`
1164
+
1165
+ == Matrixs/Tables
1166
+
1167
+ * `eqarray`
1168
+ * `Bmatrix`
1169
+ * `bmatrix`
1170
+ * `Vmatrix`
1171
+ * `vmatrix`
1172
+ * `pmatrix`
1173
+ * `matrix`
1174
+ * `cases`
1175
+ * `\Ⓒ` => `Ⓒ`
1176
+ * `\■` => `■`
1177
+ * `\█` => `█`
1178
+ * `\Ⓢ` => `Ⓢ`
1179
+ * `\ⓢ` => `ⓢ`
1180
+ * `\⒩` => `⒩`
1181
+ * `\⒱` => `⒱`
1182
+ * `\⒨` => `⒨`
1183
+
1184
+ == Nary Symbols/Classes
1185
+
1186
+ * `bigotimes`
1187
+ * `bigwedge`
1188
+ * `biguplus`
1189
+ * `bigsqcup`
1190
+ * `bigsqcap`
1191
+ * `bigoplus`
1192
+ * `bigudot`
1193
+ * `bigodot`
1194
+ * `bigvee`
1195
+ * `iiiint`
1196
+ * `oiiint`
1197
+ * `bigcap`
1198
+ * `coprod`
1199
+ * `bigcup`
1200
+ * `amalg`
1201
+ * `aoint`
1202
+ * `cwint`
1203
+ * `coint`
1204
+ * `oiint`
1205
+ * `iiint`
1206
+ * `prod`
1207
+ * `oint`
1208
+ * `iint`
1209
+ * `sum`
1210
+ * `int`
1211
+ * `\∐` => `∐`
1212
+ * `\∲` => `∲`
1213
+ * `\⋀` => `⋀`
1214
+ * `\⋁` => `⋁`
1215
+ * `\⨄` => `⨄`
1216
+ * `\⨀` => `⨀`
1217
+ * `\⨆` => `⨆`
1218
+ * `\⨅` => `⨅`
1219
+ * `\⨂` => `⨂`
1220
+ * `\⨁` => `⨁`
1221
+ * `\⨀` => `⨀`
1222
+ * `\⋃` => `⋃`
1223
+ * `\⋂` => `⋂`
1224
+ * `\∳` => `∳`
1225
+ * `\∑` => `∑`
1226
+ * `\∏` => `∏`
1227
+ * `\∮` => `∮`
1228
+ * `\∯` => `∯`
1229
+ * `\∰` => `∰`
1230
+ * `\∫` => `∫`
1231
+ * `\∬` => `∬`
1232
+ * `\∭` => `∭`
1233
+ * `\∐` => `∐`
1234
+ * `\⨌` => `⨌`
1235
+ * `\∱` => `∱`
1236
+
1237
+ == Size Overrides for Power, Base, and PowerBase
1238
+
1239
+ * `D`
1240
+ * `C`
1241
+ * `B`
1242
+ * `A`
1243
+
1244
+ == Sub Symbols
1245
+
1246
+ * `\₎` => `₎`
1247
+ * `\₍` => `₍`
1248
+ * `\ₔ` => `ₔ`
1249
+ * `\₌` => `₌`
1250
+ * `\₋` => `₋`
1251
+ * `\₊` => `₊`
1252
+ * `\₉` => `₉`
1253
+ * `\₈` => `₈`
1254
+ * `\₇` => `₇`
1255
+ * `\₆` => `₆`
1256
+ * `\₅` => `₅`
1257
+ * `\₄` => `₄`
1258
+ * `\₃` => `₃`
1259
+ * `\₂` => `₂`
1260
+ * `\₁` => `₁`
1261
+ * `\₀` => `₀`
1262
+ * `\ₓ` => `ₓ`
1263
+ * `\ᵥ` => `ᵥ`
1264
+ * `\ᵤ` => `ᵤ`
1265
+ * `\ₜ` => `ₜ`
1266
+ * `\ₛ` => `ₛ`
1267
+ * `\ᵣ` => `ᵣ`
1268
+ * `\ₚ` => `ₚ`
1269
+ * `\ₒ` => `ₒ`
1270
+ * `\ₙ` => `ₙ`
1271
+ * `\ₘ` => `ₘ`
1272
+ * `\ₗ` => `ₗ`
1273
+ * `\ₖ` => `ₖ`
1274
+ * `\ⱼ` => `ⱼ`
1275
+ * `\ᵢ` => `ᵢ`
1276
+ * `\ₕ` => `ₕ`
1277
+ * `\ₑ` => `ₑ`
1278
+ * `\ₐ` => `ₐ`
1279
+
1280
+ == Sup Symbols
1281
+
1282
+ * `\ᵃ` => `ᵃ`
1283
+ * `\ᵇ` => `ᵇ`
1284
+ * `\ᶜ` => `ᶜ`
1285
+ * `\ᵈ` => `ᵈ`
1286
+ * `\ᵉ` => `ᵉ`
1287
+ * `\ᶠ` => `ᶠ`
1288
+ * `\ᵍ` => `ᵍ`
1289
+ * `\ⁱ` => `ⁱ`
1290
+ * `\ᵏ` => `ᵏ`
1291
+ * `\ᵐ` => `ᵐ`
1292
+ * `\ⁿ` => `ⁿ`
1293
+ * `\ᵒ` => `ᵒ`
1294
+ * `\ᵖ` => `ᵖ`
1295
+ * `\ᵗ` => `ᵗ`
1296
+ * `\ᵘ` => `ᵘ`
1297
+ * `\ᵛ` => `ᵛ`
1298
+ * `\⁾` => `⁾`
1299
+ * `\⁽` => `⁽`
1300
+ * `\⁼` => `⁼`
1301
+ * `\⁻` => `⁻`
1302
+ * `\⁺` => `⁺`
1303
+ * `\⁹` => `⁹`
1304
+ * `\⁸` => `⁸`
1305
+ * `\⁷` => `⁷`
1306
+ * `\⁶` => `⁶`
1307
+ * `\⁵` => `⁵`
1308
+ * `\⁴` => `⁴`
1309
+ * `\⁰` => `⁰`
1310
+ * `\ᶻ` => `ᶻ`
1311
+ * `\ˡ` => `ˡ`
1312
+ * `\ʲ` => `ʲ`
1313
+ * `\ʳ` => `ʳ`
1314
+ * `\ʰ` => `ʰ`
1315
+ * `\ˢ` => `ˢ`
1316
+ * `\ʷ` => `ʷ`
1317
+ * `\ˣ` => `ˣ`
1318
+ * `\ʸ` => `ʸ`
1319
+ * `\³` => `³`
1320
+ * `\²` => `²`
1321
+ * `\¹` => `¹`
1322
+
1323
+ == Fraction
1324
+
1325
+ * `\⅓` => `⅓`
1326
+ * `\⅔` => `⅔`
1327
+ * `\⅕` => `⅕`
1328
+ * `\⅖` => `⅖`
1329
+ * `\⅗` => `⅗`
1330
+ * `\⅘` => `⅘`
1331
+ * `\⅙` => `⅙`
1332
+ * `\⅚` => `⅚`
1333
+ * `\⅐` => `⅐`
1334
+ * `\⅛` => `⅛`
1335
+ * `\⅜` => `⅜`
1336
+ * `\⅝` => `⅝`
1337
+ * `\⅞` => `⅞`
1338
+ * `\⅑` => `⅑`
1339
+ * `\↉` => `↉`
1340
+ * `\½` => `½`
1341
+ * `\¼` => `¼`
1342
+ * `\¾` => `¾`