plurimath 0.2.1 → 0.2.3

Sign up to get free protection for your applications and to get access to all the features.
Files changed (110) hide show
  1. checksums.yaml +4 -4
  2. data/.github/workflows/rake.yml +13 -0
  3. data/.github/workflows/release.yml +22 -0
  4. data/.hound.yml +5 -0
  5. data/.rubocop.yml +8 -0
  6. data/AsciiMath-Supported-Data.adoc +1994 -274
  7. data/Gemfile +2 -0
  8. data/Latex-Supported-Data.adoc +1875 -1868
  9. data/MathML-Supported-Data.adoc +280 -263
  10. data/README.adoc +22 -20
  11. data/lib/plurimath/asciimath/constants.rb +187 -141
  12. data/lib/plurimath/asciimath/parse.rb +104 -39
  13. data/lib/plurimath/asciimath/parser.rb +3 -1
  14. data/lib/plurimath/asciimath/transform.rb +1074 -238
  15. data/lib/plurimath/html/parse.rb +1 -1
  16. data/lib/plurimath/latex/constants.rb +3229 -1432
  17. data/lib/plurimath/latex/parse.rb +108 -85
  18. data/lib/plurimath/latex/parser.rb +11 -4
  19. data/lib/plurimath/latex/transform.rb +354 -99
  20. data/lib/plurimath/math/base.rb +15 -0
  21. data/lib/plurimath/math/formula.rb +90 -13
  22. data/lib/plurimath/math/function/bar.rb +35 -1
  23. data/lib/plurimath/math/function/base.rb +25 -4
  24. data/lib/plurimath/math/function/binary_function.rb +101 -19
  25. data/lib/plurimath/math/function/cancel.rb +8 -0
  26. data/lib/plurimath/math/function/ceil.rb +3 -0
  27. data/lib/plurimath/math/function/color.rb +15 -5
  28. data/lib/plurimath/math/function/f.rb +8 -0
  29. data/lib/plurimath/math/function/fenced.rb +95 -8
  30. data/lib/plurimath/math/function/floor.rb +15 -0
  31. data/lib/plurimath/math/function/font_style/bold.rb +19 -0
  32. data/lib/plurimath/math/function/font_style/double_struck.rb +19 -0
  33. data/lib/plurimath/math/function/font_style/fraktur.rb +19 -0
  34. data/lib/plurimath/math/function/font_style/italic.rb +37 -0
  35. data/lib/plurimath/math/function/font_style/monospace.rb +19 -0
  36. data/lib/plurimath/math/function/font_style/normal.rb +37 -0
  37. data/lib/plurimath/math/function/font_style/sans-serif.rb +19 -0
  38. data/lib/plurimath/math/function/font_style/script.rb +19 -0
  39. data/lib/plurimath/math/function/font_style.rb +18 -5
  40. data/lib/plurimath/math/function/frac.rb +33 -3
  41. data/lib/plurimath/math/function/g.rb +7 -0
  42. data/lib/plurimath/math/function/hat.rb +12 -0
  43. data/lib/plurimath/math/function/inf.rb +21 -0
  44. data/lib/plurimath/math/function/int.rb +23 -2
  45. data/lib/plurimath/math/function/left.rb +25 -1
  46. data/lib/plurimath/math/function/lim.rb +40 -2
  47. data/lib/plurimath/math/function/limits.rb +9 -0
  48. data/lib/plurimath/math/function/log.rb +55 -4
  49. data/lib/plurimath/math/function/longdiv.rb +12 -0
  50. data/lib/plurimath/math/function/mbox.rb +31 -0
  51. data/lib/plurimath/math/function/menclose.rb +46 -0
  52. data/lib/plurimath/math/function/merror.rb +12 -0
  53. data/lib/plurimath/math/function/mod.rb +19 -4
  54. data/lib/plurimath/math/function/msgroup.rb +37 -0
  55. data/lib/plurimath/math/function/msline.rb +12 -0
  56. data/lib/plurimath/math/function/multiscript.rb +19 -0
  57. data/lib/plurimath/math/function/norm.rb +17 -1
  58. data/lib/plurimath/math/function/obrace.rb +17 -0
  59. data/lib/plurimath/math/function/oint.rb +2 -2
  60. data/lib/plurimath/math/function/over.rb +12 -5
  61. data/lib/plurimath/math/function/overset.rb +34 -5
  62. data/lib/plurimath/math/function/phantom.rb +28 -0
  63. data/lib/plurimath/math/function/power.rb +27 -9
  64. data/lib/plurimath/math/function/power_base.rb +109 -11
  65. data/lib/plurimath/math/function/prod.rb +25 -4
  66. data/lib/plurimath/math/function/right.rb +22 -2
  67. data/lib/plurimath/math/function/root.rb +23 -1
  68. data/lib/plurimath/math/function/rule.rb +33 -0
  69. data/lib/plurimath/math/function/scarries.rb +12 -0
  70. data/lib/plurimath/math/function/scarry.rb +12 -0
  71. data/lib/plurimath/math/function/sqrt.rb +23 -1
  72. data/lib/plurimath/math/function/stackrel.rb +27 -0
  73. data/lib/plurimath/math/function/substack.rb +7 -0
  74. data/lib/plurimath/math/function/sum.rb +50 -2
  75. data/lib/plurimath/math/function/sup.rb +3 -0
  76. data/lib/plurimath/math/function/table/align.rb +5 -5
  77. data/lib/plurimath/math/function/table/array.rb +25 -6
  78. data/lib/plurimath/math/function/table/bmatrix.rb +18 -7
  79. data/lib/plurimath/math/function/table/matrix.rb +13 -5
  80. data/lib/plurimath/math/function/table/multline.rb +5 -5
  81. data/lib/plurimath/math/function/table/pmatrix.rb +5 -5
  82. data/lib/plurimath/math/function/table/split.rb +5 -5
  83. data/lib/plurimath/math/function/table/vmatrix.rb +5 -6
  84. data/lib/plurimath/math/function/table.rb +185 -27
  85. data/lib/plurimath/math/function/td.rb +22 -9
  86. data/lib/plurimath/math/function/ternary_function.rb +74 -9
  87. data/lib/plurimath/math/function/text.rb +36 -11
  88. data/lib/plurimath/math/function/tr.rb +23 -4
  89. data/lib/plurimath/math/function/ubrace.rb +17 -0
  90. data/lib/plurimath/math/function/ul.rb +29 -0
  91. data/lib/plurimath/math/function/unary_function.rb +81 -8
  92. data/lib/plurimath/math/function/underline.rb +12 -0
  93. data/lib/plurimath/math/function/underover.rb +107 -0
  94. data/lib/plurimath/math/function/underset.rb +39 -0
  95. data/lib/plurimath/math/function/vec.rb +7 -1
  96. data/lib/plurimath/math/number.rb +5 -5
  97. data/lib/plurimath/math/symbol.rb +51 -12
  98. data/lib/plurimath/math/unicode.rb +11 -0
  99. data/lib/plurimath/math.rb +7 -3
  100. data/lib/plurimath/mathml/constants.rb +224 -147
  101. data/lib/plurimath/mathml/parser.rb +24 -8
  102. data/lib/plurimath/mathml/transform.rb +249 -153
  103. data/lib/plurimath/omml/parser.rb +24 -4
  104. data/lib/plurimath/omml/transform.rb +219 -157
  105. data/lib/plurimath/utility.rb +342 -20
  106. data/lib/plurimath/version.rb +1 -1
  107. metadata +21 -6
  108. data/.github/workflows/test.yml +0 -33
  109. data/lib/plurimath/mathml/parse.rb +0 -68
  110. data/lib/plurimath/omml/constants.rb +0 -154
@@ -1,280 +1,2000 @@
1
- Parenthesis
2
- --
1
+ = AsciiMath symbols
2
+
3
+ == Parenthesis
4
+
3
5
  |===
4
6
  | Open | Close
5
7
 
6
- | (: | :)
7
- | {: | :}
8
- | ( | )
9
- | { | }
10
- | [ | ]
11
- | \| | \|
8
+ | `(:` | `:)`
9
+ | `{:` | `:}`
10
+ | `(` | `)`
11
+ | `{` | `}`
12
+ | `[` | `]`
13
+ | `\|` | `\|`
12
14
  |===
13
- Classes
14
- --
15
- |===
16
- | Functions | Fonts
17
15
 
18
- | stackrel | mathfrak
19
- | underset | mathcal
20
- | overset | mathbb
21
- | cancel | mathsf
22
- | obrace | mathtt
23
- | ubrace | mathbf
24
- | arctan | bbb
25
- | arcsin | bb
26
- | arccos | fr
27
- | color | cc
28
- | floor | sf
29
- | tilde | tt
30
- | oint |
31
- | root |
32
- | frac |
33
- | prod |
34
- | text |
35
- | norm |
36
- | sqrt |
37
- | cosh |
38
- | tanh |
39
- | sinh |
40
- | sech |
41
- | csch |
42
- | coth |
43
- | ddot |
44
- | ceil |
45
- | log |
46
- | mod |
47
- | sum |
48
- | int |
49
- | vec |
50
- | hat |
51
- | dot |
52
- | bar |
53
- | abs |
54
- | min |
55
- | max |
56
- | dim |
57
- | det |
58
- | csc |
59
- | cot |
60
- | lub |
61
- | lcm |
62
- | glb |
63
- | gcd |
64
- | exp |
65
- | cos |
66
- | tan |
67
- | sin |
68
- | sec |
69
- | ln |
70
- | ul |
71
- | g |
72
- | f |
73
- --
74
- === Symbols
75
16
 
76
- ** twoheadrightarrowtail
77
- ** twoheadrightarrow
78
- ** rightarrowtail
79
- ** Leftrightarrow
80
- ** leftrightarrow
81
- ** Rightarrow
82
- ** rightarrow
83
- ** varepsilon
84
- ** Leftarrow
85
- ** leftarrow
86
- ** downarrow
87
- ** therefore
88
- ** backslash
89
- ** setminus
90
- ** triangle
91
- ** bigwedge
92
- ** rceiling
93
- ** lceiling
94
- ** supseteq
95
- ** subseteq
96
- ** vartheta
97
- ** emptyset
98
- ** diamond
99
- ** uparrow
100
- ** implies
101
- ** partial
102
- ** because
103
- ** upsilon
104
- ** epsilon
105
- ** bigcap
106
- ** bigvee
107
- ** propto
108
- ** approx
109
- ** exists
110
- ** forall
111
- ** otimes
112
- ** ltimes
113
- ** bowtie
114
- ** rtimes
115
- ** models
116
- ** mapsto
117
- ** bigcup
118
- ** succeq
119
- ** preceq
120
- ** rfloor
121
- ** lfloor
122
- ** square
123
- ** supset
124
- ** subset
125
- ** lambda
126
- ** Lambda
127
- ** varphi
128
- ** >\->>
129
- ** kappa
130
- ** Delta
131
- ** delta
132
- ** gamma
133
- ** Gamma
134
- ** Theta
135
- ** theta
136
- ** alpha
137
- ** aleph
138
- ** infty
139
- ** equiv
140
- ** frown
141
- ** notin
142
- ** angle
143
- ** cdots
144
- ** vdash
145
- ** wedge
146
- ** oplus
147
- ** nabla
148
- ** ddots
149
- ** vdots
150
- ** Sigma
151
- ** Omega
152
- ** omega
153
- ** sigma
154
- ** times
155
- ** ldots
156
- ** \<\=>
157
- ** -\<=
158
- ** \^^^
159
- ** |\->
160
- ** >\->
161
- ** \->>
162
- ** \_|_
163
- ** \***
164
- ** |><|
165
- ** quad
166
- ** star
167
- ** odot
168
- ** cdot
169
- ** rarr
170
- ** darr
171
- ** prop
172
- ** lArr
173
- ** rArr
174
- ** uarr
175
- ** hArr
176
- ** harr
177
- ** larr
178
- ** grad
179
- ** circ
180
- ** sube
181
- ** supe
182
- ** succ
183
- ** prec
184
- ** cong
185
- ** beta
186
- ** zeta
187
- ** iota
188
- ** !in
189
- ** sup
190
- ** sub
191
- ** top
192
- ** vvv
193
- ** vee
194
- ** nnn
195
- ** cap
196
- ** ast
197
- ** bot
198
- ** del
199
- ** uuu
200
- ** cup
201
- ** iff
202
- ** eta
203
- ** Phi
204
- ** Psi
205
- ** psi
206
- ** chi
207
- ** phi
208
- ** rho
209
- ** tau
210
- ** div
211
- ** neg
212
- ** not
213
- ** /_\
214
- ** \->
215
- ** >-=
216
- ** ><|
217
- ** |==
218
- ** |--
219
- ** __|
220
- ** |__
221
- ** |><
222
- ** \=>
223
- ** \<=
224
- ** nn
225
- ** vv
226
- ** TT
227
- ** EE
228
- ** ox
229
- ** to
230
- ** AA
231
- ** uu
232
- ** ne
233
- ** ZZ
234
- ** RR
235
- ** QQ
236
- ** NN
237
- ** CC
238
- ** oo
239
- ** ge
240
- ** le
241
- ** in
242
- ** nu
243
- ** mu
244
- ** pi
245
- ** Pi
246
- ** xi
247
- ** Xi
248
- ** xx
249
- ** pm
250
- ** gt
251
- ** lt
252
- ** :'
253
- ** ^^
254
- ** o+
255
- ** o.
256
- ** **
257
- ** ~~
258
- ** O/
259
- ** >>
260
- ** <<
261
- ** ~|
262
- ** !=
263
- ** >-
264
- ** -<
265
- ** ~=
266
- ** -=
267
- ** :.
268
- ** >=
269
- ** |~
270
- ** /_
271
- ** +-
272
- ** -:
273
- ** @
274
- ** *
275
- ** <
276
- ** >
277
- ** -
278
- ** =
279
- ** +
280
- ** /
17
+ == Classes
18
+
19
+ === Fonts
20
+
21
+ * `mathfrak`
22
+ * `mathcal`
23
+ * `mathbb`
24
+ * `mathsf`
25
+ * `mathtt`
26
+ * `mathbf`
27
+ * `bbb`
28
+ * `bb`
29
+ * `fr`
30
+ * `cc`
31
+ * `sf`
32
+ * `tt`
33
+
34
+ === Functions
35
+
36
+ * `stackrel`
37
+ * `underset`
38
+ * `overset`
39
+ * `cancel`
40
+ * `obrace`
41
+ * `ubrace`
42
+ * `arctan`
43
+ * `arcsin`
44
+ * `arccos`
45
+ * `color`
46
+ * `floor`
47
+ * `tilde`
48
+ * `oint`
49
+ * `root`
50
+ * `frac`
51
+ * `prod`
52
+ * `text`
53
+ * `norm`
54
+ * `sqrt`
55
+ * `cosh`
56
+ * `tanh`
57
+ * `sinh`
58
+ * `sech`
59
+ * `csch`
60
+ * `coth`
61
+ * `ddot`
62
+ * `ceil`
63
+ * `log`
64
+ * `mod`
65
+ * `sum`
66
+ * `int`
67
+ * `vec`
68
+ * `hat`
69
+ * `dot`
70
+ * `bar`
71
+ * `abs`
72
+ * `min`
73
+ * `max`
74
+ * `dim`
75
+ * `det`
76
+ * `csc`
77
+ * `cot`
78
+ * `lub`
79
+ * `lcm`
80
+ * `glb`
81
+ * `gcd`
82
+ * `exp`
83
+ * `cos`
84
+ * `tan`
85
+ * `sin`
86
+ * `sec`
87
+ * `ln`
88
+ * `ul`
89
+ * `g`
90
+ * `f`
91
+
92
+
93
+ == Symbols
94
+
95
+ * `twoheadrightarrowtail`
96
+ * `twoheadrightarrow`
97
+ * `rightarrowtail`
98
+ * `Leftrightarrow`
99
+ * `leftrightarrow`
100
+ * `Rightarrow`
101
+ * `rightarrow`
102
+ * `varepsilon`
103
+ * `Leftarrow`
104
+ * `leftarrow`
105
+ * `downarrow`
106
+ * `therefore`
107
+ * `backslash`
108
+ * `setminus`
109
+ * `triangle`
110
+ * `bigwedge`
111
+ * `rceiling`
112
+ * `lceiling`
113
+ * `supseteq`
114
+ * `subseteq`
115
+ * `vartheta`
116
+ * `emptyset`
117
+ * `diamond`
118
+ * `uparrow`
119
+ * `implies`
120
+ * `partial`
121
+ * `because`
122
+ * `upsilon`
123
+ * `epsilon`
124
+ * `bigcap`
125
+ * `bigvee`
126
+ * `propto`
127
+ * `approx`
128
+ * `exists`
129
+ * `forall`
130
+ * `otimes`
131
+ * `ltimes`
132
+ * `bowtie`
133
+ * `rtimes`
134
+ * `models`
135
+ * `mapsto`
136
+ * `bigcup`
137
+ * `succeq`
138
+ * `preceq`
139
+ * `rfloor`
140
+ * `lfloor`
141
+ * `square`
142
+ * `supset`
143
+ * `subset`
144
+ * `lambda`
145
+ * `Lambda`
146
+ * `varphi`
147
+ * `>\->>`
148
+ * `kappa`
149
+ * `Delta`
150
+ * `delta`
151
+ * `gamma`
152
+ * `Gamma`
153
+ * `Theta`
154
+ * `theta`
155
+ * `alpha`
156
+ * `aleph`
157
+ * `infty`
158
+ * `equiv`
159
+ * `frown`
160
+ * `notin`
161
+ * `angle`
162
+ * `cdots`
163
+ * `vdash`
164
+ * `wedge`
165
+ * `oplus`
166
+ * `nabla`
167
+ * `ddots`
168
+ * `vdots`
169
+ * `Sigma`
170
+ * `Omega`
171
+ * `omega`
172
+ * `sigma`
173
+ * `times`
174
+ * `ldots`
175
+ * `\<\=>`
176
+ * `-\<=`
177
+ * `\^^^`
178
+ * `|\->`
179
+ * `>\->`
180
+ * `\->>`
181
+ * `\_|_`
182
+ * `\***`
183
+ * `|><|`
184
+ * `quad`
185
+ * `star`
186
+ * `odot`
187
+ * `cdot`
188
+ * `rarr`
189
+ * `darr`
190
+ * `prop`
191
+ * `lArr`
192
+ * `rArr`
193
+ * `uarr`
194
+ * `hArr`
195
+ * `harr`
196
+ * `larr`
197
+ * `grad`
198
+ * `circ`
199
+ * `sube`
200
+ * `supe`
201
+ * `succ`
202
+ * `prec`
203
+ * `cong`
204
+ * `beta`
205
+ * `zeta`
206
+ * `iota`
207
+ * `!in`
208
+ * `sup`
209
+ * `sub`
210
+ * `top`
211
+ * `vvv`
212
+ * `vee`
213
+ * `nnn`
214
+ * `cap`
215
+ * `ast`
216
+ * `bot`
217
+ * `del`
218
+ * `uuu`
219
+ * `cup`
220
+ * `iff`
221
+ * `eta`
222
+ * `Phi`
223
+ * `Psi`
224
+ * `psi`
225
+ * `chi`
226
+ * `phi`
227
+ * `rho`
228
+ * `tau`
229
+ * `div`
230
+ * `neg`
231
+ * `not`
232
+ * `/_\`
233
+ * `\->`
234
+ * `>-=`
235
+ * `><|`
236
+ * `|==`
237
+ * `|--`
238
+ * `__|`
239
+ * `|__`
240
+ * `|><`
241
+ * `\=>`
242
+ * `\<=`
243
+ * `nn`
244
+ * `vv`
245
+ * `TT`
246
+ * `EE`
247
+ * `ox`
248
+ * `to`
249
+ * `AA`
250
+ * `uu`
251
+ * `ne`
252
+ * `ZZ`
253
+ * `RR`
254
+ * `QQ`
255
+ * `NN`
256
+ * `CC`
257
+ * `oo`
258
+ * `ge`
259
+ * `le`
260
+ * `in`
261
+ * `nu`
262
+ * `mu`
263
+ * `pi`
264
+ * `Pi`
265
+ * `xi`
266
+ * `Xi`
267
+ * `xx`
268
+ * `pm`
269
+ * `gt`
270
+ * `lt`
271
+ * `:'`
272
+ * `^^`
273
+ * `o+`
274
+ * `o.`
275
+ * `**`
276
+ * `~~`
277
+ * `O/`
278
+ * `>>`
279
+ * `<<`
280
+ * `~|`
281
+ * `!=`
282
+ * `>-`
283
+ * `-<`
284
+ * `~=`
285
+ * `-=`
286
+ * `:.`
287
+ * `>=`
288
+ * `|~`
289
+ * `/_`
290
+ * `+-`
291
+ * `-:`
292
+ * `@`
293
+ * `*`
294
+ * `<`
295
+ * `>`
296
+ * `-`
297
+ * `_`
298
+ * `|`
299
+ * `'`
300
+ * `:`
301
+ * `!`
302
+ * `=`
303
+ * `+`
304
+ * `/`
305
+ * `,`
306
+ * `.`
307
+ * `;`
308
+ * `&`
309
+ * `?`
310
+ * `$`
311
+ * `#`
312
+ * `%`
313
+
314
+ = Symbols Inherited from Latex
315
+
316
+ |===
317
+ | Command | Presentation
318
+
319
+ | `barleftarrowrightarrowba` | &#x21b9;
320
+ | `rightarrowshortleftarrow` | &#x2942;
321
+ | `leftarrowshortrightarrow` | &#x2943;
322
+ | `shortrightarrowleftarrow` | &#x2944;
323
+ | `leftrightharpoondowndown` | &#x2950;
324
+ | `smallblacktriangleright` | &#x25b8;
325
+ | `invwhiteupperhalfcircle` | &#x25da;
326
+ | `invwhitelowerhalfcircle` | &#x25db;
327
+ | `concavediamondtickright` | &#x27e3;
328
+ | `nvtwoheadrightarrowtail` | &#x2917;
329
+ | `nVtwoheadrightarrowtail` | &#x2918;
330
+ | `updownharpoonrightright` | &#x294f;
331
+ | `updownharpoonsleftright` | &#x296e;
332
+ | `downupharpoonsleftright` | &#x296f;
333
+ | `leftrightarrowtriangle` | &#x21ff;
334
+ | `smallblacktriangleleft` | &#x25c2;
335
+ | `blackcircleulquadwhite` | &#x25d5;
336
+ | `concavediamondtickleft` | &#x27e2;
337
+ | `leftrightharpoonupdown` | &#x294a;
338
+ | `leftrightharpoondownup` | &#x294b;
339
+ | `updownharpoonrightleft` | &#x294c;
340
+ | `updownharpoonleftright` | &#x294d;
341
+ | `downtrianglerightblack` | &#x29e9;
342
+ | `partialmeetcontraction` | &#x2aa3;
343
+ | `nvtwoheadleftarrowtail` | &#x2b3c;
344
+ | `nVtwoheadleftarrowtail` | &#x2b3d;
345
+ | `underrightharpoondown` | &#x20ec;
346
+ | `barovernorthwestarrow` | &#x21b8;
347
+ | `rangledownzigzagarrow` | &#x237c;
348
+ | `circlebottomhalfblack` | &#x25d2;
349
+ | `updownharpoonleftleft` | &#x2951;
350
+ | `downharpoonsleftright` | &#x2965;
351
+ | `leftrightharpoonsdown` | &#x2967;
352
+ | `rightleftharpoonsdown` | &#x2969;
353
+ | `downtriangleleftblack` | &#x29e8;
354
+ | `blackdiamonddownarrow` | &#x29ea;
355
+ | `closedvarcupsmashprod` | &#x2a50;
356
+ | `underleftharpoondown` | &#x20ed;
357
+ | `CapitalDifferentialD` | &#x2145;
358
+ | `bigblacktriangledown` | &#x25bc;
359
+ | `circlerighthalfblack` | &#x25d1;
360
+ | `blackrighthalfcircle` | &#x25d7;
361
+ | `blackcircledrightdot` | &#x2688;
362
+ | `whiteinwhitetriangle` | &#x27c1;
363
+ | `whitesquaretickright` | &#x27e5;
364
+ | `barrightarrowdiamond` | &#x2920;
365
+ | `downrightcurvedarrow` | &#x2935;
366
+ | `rightdowncurvedarrow` | &#x2937;
367
+ | `curvearrowrightminus` | &#x293c;
368
+ | `leftrightarrowcircle` | &#x2948;
369
+ | `twoheaduparrowcircle` | &#x2949;
370
+ | `leftrightharpoonupup` | &#x294e;
371
+ | `leftrightharpoondown` | &#x2950;
372
+ | `dashrightharpoondown` | &#x296d;
373
+ | `blackcircledownarrow` | &#x29ed;
374
+ | `NestedGreaterGreater` | &#x2aa2;
375
+ | `twoheadleftarrowtail` | &#x2b3b;
376
+ | `rightarrowbackapprox` | &#x2b48;
377
+ | `leftrightsquigarrow` | &#x21ad;
378
+ | `whitearrowupfrombar` | &#x21ea;
379
+ | `blockthreeqtrshaded` | &#x2593;
380
+ | `blackinwhitediamond` | &#x25c8;
381
+ | `circlelefthalfblack` | &#x25d0;
382
+ | `blacklefthalfcircle` | &#x25d6;
383
+ | `blackcircledtwodots` | &#x2689;
384
+ | `whitesquaretickleft` | &#x27e4;
385
+ | `longrightsquigarrow` | &#x27ff;
386
+ | `nvtwoheadrightarrow` | &#x2900;
387
+ | `nVtwoheadrightarrow` | &#x2901;
388
+ | `diamondleftarrowbar` | &#x291f;
389
+ | `leftdowncurvedarrow` | &#x2936;
390
+ | `downharpoonrightbar` | &#x2955;
391
+ | `rightharpoondownbar` | &#x2957;
392
+ | `bardownharpoonright` | &#x295d;
393
+ | `barrightharpoondown` | &#x295f;
394
+ | `upharpoonsleftright` | &#x2963;
395
+ | `rightharpoonsupdown` | &#x2964;
396
+ | `leftrightharpoonsup` | &#x2966;
397
+ | `rightleftharpoonsup` | &#x2968;
398
+ | `dashleftharpoondown` | &#x296b;
399
+ | `twoheadleftdbkarrow` | &#x2b37;
400
+ | `leftarrowbackapprox` | &#x2b42;
401
+ | `rightharpoonaccent` | &#x20d1;
402
+ | `overleftrightarrow` | &#x20e1;
403
+ | `acwopencirclearrow` | &#x21ba;
404
+ | `upharpoonrightdown` | &#x21c2;
405
+ | `circleonrightarrow` | &#x21f4;
406
+ | `rightarrowtriangle` | &#x21fe;
407
+ | `PrecedesSlantEqual` | &#x227c;
408
+ | `SucceedsSlantEqual` | &#x227d;
409
+ | `measuredrightangle` | &#x22be;
410
+ | `blackinwhitesquare` | &#x25a3;
411
+ | `parallelogramblack` | &#x25b0;
412
+ | `bigblacktriangleup` | &#x25b2;
413
+ | `blacktriangleright` | &#x25b6;
414
+ | `smalltriangleright` | &#x25b9;
415
+ | `circletophalfblack` | &#x25d3;
416
+ | `inversewhitecircle` | &#x25d9;
417
+ | `trianglerightblack` | &#x25ee;
418
+ | `longleftrightarrow` | &#x27f7;
419
+ | `Longleftrightarrow` | &#x27fa;
420
+ | `curvearrowleftplus` | &#x293d;
421
+ | `ccwundercurvearrow` | &#x293f;
422
+ | `leftrightharpoonup` | &#x294e;
423
+ | `rightupdownharpoon` | &#x294f;
424
+ | `RightDownVectorBar` | &#x2955;
425
+ | `barleftharpoondown` | &#x2956;
426
+ | `DownRightVectorBar` | &#x2957;
427
+ | `downharpoonleftbar` | &#x2959;
428
+ | `RightDownTeeVector` | &#x295d;
429
+ | `leftharpoondownbar` | &#x295e;
430
+ | `DownRightTeeVector` | &#x295f;
431
+ | `bardownharpoonleft` | &#x2961;
432
+ | `leftharpoonsupdown` | &#x2962;
433
+ | `rightrightharpoons` | &#x2964;
434
+ | `rightharpoonupdash` | &#x296c;
435
+ | `circledwhitebullet` | &#x29be;
436
+ | `errbarblackdiamond` | &#x29f1;
437
+ | `longleftsquigarrow` | &#x2b33;
438
+ | `nvtwoheadleftarrow` | &#x2b34;
439
+ | `nVtwoheadleftarrow` | &#x2b35;
440
+ | `bsimilarrightarrow` | &#x2b47;
441
+ | `rightarrowbsimilar` | &#x2b4c;
442
+ | `rightpentagonblack` | &#x2b53;
443
+ | `leftharpoonaccent` | &#x20d0;
444
+ | `cwopencirclearrow` | &#x21bb;
445
+ | `upharpoonleftdown` | &#x21c3;
446
+ | `leftrightharpoons` | &#x21cb;
447
+ | `rightleftharpoons` | &#x21cc;
448
+ | `leftarrowtriangle` | &#x21fd;
449
+ | `kernelcontraction` | &#x223b;
450
+ | `vardoublebarwedge` | &#x2306;
451
+ | `varhexagonlrbonds` | &#x232c;
452
+ | `varcarriagereturn` | &#x23ce;
453
+ | `blackpointerright` | &#x25ba;
454
+ | `whitepointerright` | &#x25bb;
455
+ | `blacktriangledown` | &#x25be;
456
+ | `smalltriangledown` | &#x25bf;
457
+ | `blacktriangleleft` | &#x25c0;
458
+ | `smalltriangleleft` | &#x25c3;
459
+ | `circleurquadblack` | &#x25d4;
460
+ | `triangleleftblack` | &#x25ed;
461
+ | `acwgapcirclearrow` | &#x27f2;
462
+ | `rightarrowonoplus` | &#x27f4;
463
+ | `rightarrowdiamond` | &#x291e;
464
+ | `uprightcurvearrow` | &#x2934;
465
+ | `cwundercurvearrow` | &#x293e;
466
+ | `leftupdownharpoon` | &#x2951;
467
+ | `rightharpoonupbar` | &#x2953;
468
+ | `barupharpoonright` | &#x2954;
469
+ | `DownLeftVectorBar` | &#x2956;
470
+ | `LeftDownVectorBar` | &#x2959;
471
+ | `barrightharpoonup` | &#x295b;
472
+ | `upharpoonrightbar` | &#x295c;
473
+ | `DownLeftTeeVector` | &#x295e;
474
+ | `LeftDownTeeVector` | &#x2961;
475
+ | `leftharpoonupdash` | &#x296a;
476
+ | `similarrightarrow` | &#x2972;
477
+ | `rightarrowsimilar` | &#x2974;
478
+ | `measuredangleleft` | &#x299b;
479
+ | `errbarblacksquare` | &#x29ef;
480
+ | `errbarblackcircle` | &#x29f3;
481
+ | `diamondrightblack` | &#x2b17;
482
+ | `circleonleftarrow` | &#x2b30;
483
+ | `bsimilarleftarrow` | &#x2b41;
484
+ | `leftarrowbsimilar` | &#x2b4b;
485
+ | `twoheadleftarrow` | &#x219e;
486
+ | `twoheaddownarrow` | &#x21a1;
487
+ | `circlearrowright` | &#x21bb;
488
+ | `rightharpoondown` | &#x21c1;
489
+ | `downharpoonright` | &#x21c2;
490
+ | `uparrowdownarrow` | &#x21c5;
491
+ | `rightrightarrows` | &#x21c9;
492
+ | `downarrowuparrow` | &#x21f5;
493
+ | `rightthreearrows` | &#x21f6;
494
+ | `nvleftrightarrow` | &#x21f9;
495
+ | `nVleftrightarrow` | &#x21fc;
496
+ | `varointclockwise` | &#x2232;
497
+ | `ointctrclockwise` | &#x2233;
498
+ | `vartriangleright` | &#x22b3;
499
+ | `multimapdotbothA` | &#x22b6;
500
+ | `multimapdotbothB` | &#x22b7;
501
+ | `NotRightTriangle` | &#x22eb;
502
+ | `ntrianglerighteq` | &#x22ed;
503
+ | `APLrightarrowbox` | &#x2348;
504
+ | `blackpointerleft` | &#x25c4;
505
+ | `whitepointerleft` | &#x25c5;
506
+ | `squarerightblack` | &#x25e8;
507
+ | `cwgapcirclearrow` | &#x27f3;
508
+ | `nvLeftrightarrow` | &#x2904;
509
+ | `nvrightarrowtail` | &#x2914;
510
+ | `nVrightarrowtail` | &#x2915;
511
+ | `diamondleftarrow` | &#x291d;
512
+ | `rightcurvedarrow` | &#x2933;
513
+ | `acwunderarcarrow` | &#x293b;
514
+ | `leftrightharpoon` | &#x294a;
515
+ | `rightleftharpoon` | &#x294b;
516
+ | `barleftharpoonup` | &#x2952;
517
+ | `RightUpVectorBar` | &#x2954;
518
+ | `barupharpoonleft` | &#x2958;
519
+ | `leftharpoonupbar` | &#x295a;
520
+ | `RightUpTeeVector` | &#x295c;
521
+ | `upharpoonleftbar` | &#x2960;
522
+ | `leftleftharpoons` | &#x2962;
523
+ | `downdownharpoons` | &#x2965;
524
+ | `uprevequilibrium` | &#x296f;
525
+ | `leftarrowsimilar` | &#x2973;
526
+ | `rightarrowapprox` | &#x2975;
527
+ | `sphericalangleup` | &#x29a1;
528
+ | `RightTriangleBar` | &#x29d0;
529
+ | `diamondleftblack` | &#x2b16;
530
+ | `leftarrowonoplus` | &#x2b32;
531
+ | `rightarrowsupset` | &#x2b44;
532
+ | `similarleftarrow` | &#x2b49;
533
+ | `unicodeellipsis` | &#x2026;
534
+ | `enleadertwodots` | &#x2025;
535
+ | `enclosetriangle` | &#x20e4;
536
+ | `widebridgeabove` | &#x20e9;
537
+ | `underrightarrow` | &#x20ef;
538
+ | `nleftrightarrow` | &#x21ae;
539
+ | `downzigzagarrow` | &#x21af;
540
+ | `curvearrowright` | &#x21b7;
541
+ | `circlearrowleft` | &#x21ba;
542
+ | `leftharpoondown` | &#x21bd;
543
+ | `upharpoonleftup` | &#x21bf;
544
+ | `downharpoonleft` | &#x21c3;
545
+ | `rightleftarrows` | &#x21c4;
546
+ | `leftrightarrows` | &#x21c6;
547
+ | `nLeftrightarrow` | &#x21ce;
548
+ | `rightsquigarrow` | &#x21dd;
549
+ | `rightwhitearrow` | &#x21e8;
550
+ | `NotGreaterTilde` | &#x2275;
551
+ | `vartriangleleft` | &#x22b2;
552
+ | `trianglerighteq` | &#x22b5;
553
+ | `rightthreetimes` | &#x22cc;
554
+ | `NotLeftTriangle` | &#x22ea;
555
+ | `ntrianglelefteq` | &#x22ec;
556
+ | `APLnotbackslash` | &#x2340;
557
+ | `APLleftarrowbox` | &#x2347;
558
+ | `APLdownarrowbox` | &#x2357;
559
+ | `blockhalfshaded` | &#x2592;
560
+ | `squarecrossfill` | &#x25a9;
561
+ | `hrectangleblack` | &#x25ac;
562
+ | `vrectangleblack` | &#x25ae;
563
+ | `blacktriangleup` | &#x25b4;
564
+ | `smalltriangleup` | &#x25b5;
565
+ | `bigtriangledown` | &#x25bd;
566
+ | `lrblacktriangle` | &#x25e2;
567
+ | `llblacktriangle` | &#x25e3;
568
+ | `ulblacktriangle` | &#x25e4;
569
+ | `urblacktriangle` | &#x25e5;
570
+ | `squareleftblack` | &#x25e7;
571
+ | `circledrightdot` | &#x2686;
572
+ | `downarrowbarred` | &#x2908;
573
+ | `cwrightarcarrow` | &#x2938;
574
+ | `acwleftarcarrow` | &#x2939;
575
+ | `acwoverarcarrow` | &#x293a;
576
+ | `LeftUpVectorBar` | &#x2958;
577
+ | `LeftUpTeeVector` | &#x2960;
578
+ | `rightbarharpoon` | &#x296c;
579
+ | `barrightharpoon` | &#x296d;
580
+ | `equalrightarrow` | &#x2971;
581
+ | `leftarrowsubset` | &#x297a;
582
+ | `measanglerutone` | &#x29a8;
583
+ | `measanglelutonw` | &#x29a9;
584
+ | `measanglerdtose` | &#x29aa;
585
+ | `measangleldtosw` | &#x29ab;
586
+ | `measangleurtone` | &#x29ac;
587
+ | `measangleultonw` | &#x29ad;
588
+ | `measangledrtose` | &#x29ae;
589
+ | `measangledltosw` | &#x29af;
590
+ | `circledparallel` | &#x29b7;
591
+ | `uparrowoncircle` | &#x29bd;
592
+ | `LeftTriangleBar` | &#x29cf;
593
+ | `circledownarrow` | &#x29ec;
594
+ | `bigtriangleleft` | &#x2a1e;
595
+ | `diamondtopblack` | &#x2b18;
596
+ | `diamondbotblack` | &#x2b19;
597
+ | `varhexagonblack` | &#x2b22;
598
+ | `leftthreearrows` | &#x2b31;
599
+ | `twoheadmapsfrom` | &#x2b36;
600
+ | `nvleftarrowtail` | &#x2b39;
601
+ | `nVleftarrowtail` | &#x2b3a;
602
+ | `leftcurvedarrow` | &#x2b3f;
603
+ | `leftarrowapprox` | &#x2b4a;
604
+ | `enclosediamond` | &#x20df;
605
+ | `underleftarrow` | &#x20ee;
606
+ | `rightwavearrow` | &#x219d;
607
+ | `twoheaduparrow` | &#x219f;
608
+ | `updownarrowbar` | &#x21a8;
609
+ | `hookrightarrow` | &#x21aa;
610
+ | `looparrowright` | &#x21ac;
611
+ | `carriagereturn` | &#x21b5;
612
+ | `curvearrowleft` | &#x21b6;
613
+ | `upharpoonright` | &#x21be;
614
+ | `rightharpoonup` | &#x21c0;
615
+ | `rightleftarrow` | &#x21c4;
616
+ | `leftleftarrows` | &#x21c7;
617
+ | `downdownarrows` | &#x21ca;
618
+ | `revequilibrium` | &#x21cb;
619
+ | `leftsquigarrow` | &#x21dc;
620
+ | `dashrightarrow` | &#x21e2;
621
+ | `rightdasharrow` | &#x21e2;
622
+ | `leftwhitearrow` | &#x21e6;
623
+ | `downwhitearrow` | &#x21e9;
624
+ | `sphericalangle` | &#x2222;
625
+ | `NotGreaterLess` | &#x2279;
626
+ | `trianglelefteq` | &#x22b4;
627
+ | `leftthreetimes` | &#x22cb;
628
+ | `ntriangleright` | &#x22eb;
629
+ | `APLboxquestion` | &#x2370;
630
+ | `lparenextender` | &#x239c;
631
+ | `rparenextender` | &#x239f;
632
+ | `lbrackextender` | &#x23a2;
633
+ | `rbrackextender` | &#x23a5;
634
+ | `vbraceextender` | &#x23aa;
635
+ | `harrowextender` | &#x23af;
636
+ | `blockrighthalf` | &#x2590;
637
+ | `blockqtrshaded` | &#x2591;
638
+ | `squarenwsefill` | &#x25a7;
639
+ | `squareneswfill` | &#x25a8;
640
+ | `mdlgblkdiamond` | &#x25c6;
641
+ | `mdlgwhtdiamond` | &#x25c7;
642
+ | `mdlgwhtlozenge` | &#x25ca;
643
+ | `circlevertfill` | &#x25cd;
644
+ | `vardiamondsuit` | &#x2666;
645
+ | `circledtwodots` | &#x2687;
646
+ | `rightouterjoin` | &#x27d6;
647
+ | `concavediamond` | &#x27e1;
648
+ | `longrightarrow` | &#x27f6;
649
+ | `Longrightarrow` | &#x27f9;
650
+ | `longmappedfrom` | &#x27fb;
651
+ | `Longmappedfrom` | &#x27fd;
652
+ | `fdiagovnearrow` | &#x292f;
653
+ | `rdiagovsearrow` | &#x2930;
654
+ | `acwcirclearrow` | &#x2940;
655
+ | `rightarrowplus` | &#x2945;
656
+ | `RightVectorBar` | &#x2953;
657
+ | `RightTeeVector` | &#x295b;
658
+ | `leftbarharpoon` | &#x296a;
659
+ | `barleftharpoon` | &#x296b;
660
+ | `updownharpoons` | &#x296e;
661
+ | `downupharpoons` | &#x296f;
662
+ | `rightanglemdot` | &#x299d;
663
+ | `triangleserifs` | &#x29cd;
664
+ | `blackhourglass` | &#x29d7;
665
+ | `mdlgblklozenge` | &#x29eb;
666
+ | `bigslopedwedge` | &#x2a58;
667
+ | `doublebarwedge` | &#x2a5e;
668
+ | `wedgedoublebar` | &#x2a60;
669
+ | `NestedLessLess` | &#x2aa1;
670
+ | `squaretopblack` | &#x2b12;
671
+ | `squarebotblack` | &#x2b13;
672
+ | `equalleftarrow` | &#x2b40;
673
+ | `ocommatopright` | &#x315;
674
+ | `overleftarrow` | &#x20d6;
675
+ | `enclosecircle` | &#x20dd;
676
+ | `enclosesquare` | &#x20de;
677
+ | `threeunderdot` | &#x20e8;
678
+ | `sansLmirrored` | &#x2143;
679
+ | `DifferentialD` | &#x2146;
680
+ | `leftwavearrow` | &#x219c;
681
+ | `leftarrowtail` | &#x21a2;
682
+ | `hookleftarrow` | &#x21a9;
683
+ | `looparrowleft` | &#x21ab;
684
+ | `leftharpoonup` | &#x21bc;
685
+ | `upharpoonleft` | &#x21bf;
686
+ | `dashleftarrow` | &#x21e0;
687
+ | `leftdasharrow` | &#x21e0;
688
+ | `downdasharrow` | &#x21e3;
689
+ | `RightArrowBar` | &#x21e5;
690
+ | `rightarrowbar` | &#x21e5;
691
+ | `smallsetminus` | &#x2216;
692
+ | `vysmwhtcircle` | &#x2218;
693
+ | `vysmblkcircle` | &#x2219;
694
+ | `measuredangle` | &#x2221;
695
+ | `dotsminusdots` | &#x223a;
696
+ | `fallingdotseq` | &#x2252;
697
+ | `PrecedesTilde` | &#x227e;
698
+ | `SucceedsTilde` | &#x227f;
699
+ | `varlrtriangle` | &#x22bf;
700
+ | `divideontimes` | &#x22c7;
701
+ | `equalparallel` | &#x22d5;
702
+ | `ntriangleleft` | &#x22ea;
703
+ | `APLuparrowbox` | &#x2350;
704
+ | `APLboxupcaret` | &#x2353;
705
+ | `bdtriplevdash` | &#x2506;
706
+ | `blocklefthalf` | &#x258c;
707
+ | `mdlgblksquare` | &#x25a0;
708
+ | `parallelogram` | &#x25b1;
709
+ | `blacktriangle` | &#x25b4;
710
+ | `triangleright` | &#x25b7;
711
+ | `mdlgwhtcircle` | &#x25cb;
712
+ | `mdlgblkcircle` | &#x25cf;
713
+ | `inversebullet` | &#x25d8;
714
+ | `topsemicircle` | &#x25e0;
715
+ | `botsemicircle` | &#x25e1;
716
+ | `squareulblack` | &#x25e9;
717
+ | `squarelrblack` | &#x25ea;
718
+ | `mdsmwhtsquare` | &#x25fd;
719
+ | `mdsmblksquare` | &#x25fe;
720
+ | `sixteenthnote` | &#x266c;
721
+ | `Hermaphrodite` | &#x26a5;
722
+ | `mdsmwhtcircle` | &#x26ac;
723
+ | `draftingarrow` | &#x279b;
724
+ | `leftouterjoin` | &#x27d5;
725
+ | `fullouterjoin` | &#x27d7;
726
+ | `longleftarrow` | &#x27f5;
727
+ | `Longleftarrow` | &#x27f8;
728
+ | `twoheadmapsto` | &#x2905;
729
+ | `uparrowbarred` | &#x2909;
730
+ | `rightdotarrow` | &#x2911;
731
+ | `cwcirclearrow` | &#x2941;
732
+ | `leftarrowplus` | &#x2946;
733
+ | `LeftVectorBar` | &#x2952;
734
+ | `LeftTeeVector` | &#x295a;
735
+ | `upequilibrium` | &#x296e;
736
+ | `leftarrowless` | &#x2977;
737
+ | `rightfishtail` | &#x297d;
738
+ | `mdsmblkcircle` | &#x2981;
739
+ | `llparenthesis` | &#x2987;
740
+ | `rrparenthesis` | &#x2988;
741
+ | `rightanglesqr` | &#x299c;
742
+ | `wideangledown` | &#x29a6;
743
+ | `mdlgwhtsquare` | &#x25a1;
744
+ | `emptysetocirc` | &#x29b2;
745
+ | `emptysetoarrl` | &#x29b4;
746
+ | `circledbslash` | &#x29b8;
747
+ | `circledbullet` | &#x29bf;
748
+ | `errbardiamond` | &#x29f0;
749
+ | `triangleminus` | &#x2a3a;
750
+ | `triangletimes` | &#x2a3b;
751
+ | `shortlefttack` | &#x2ade;
752
+ | `shortdowntack` | &#x2adf;
753
+ | `threedotcolon` | &#x2af6;
754
+ | `biginterleave` | &#x2afc;
755
+ | `bigtalloblong` | &#x2aff;
756
+ | `squareurblack` | &#x2b14;
757
+ | `squarellblack` | &#x2b15;
758
+ | `vysmblksquare` | &#x2b1d;
759
+ | `vysmwhtsquare` | &#x2b1e;
760
+ | `pentagonblack` | &#x2b1f;
761
+ | `rightarrowgtr` | &#x2b43;
762
+ | `rightpentagon` | &#x2b54;
763
+ | `upbackepsilon` | &#x3f6;
764
+ | `bigtriangleup` | &#x25b3;
765
+ | `wasytherefore` | &#x2234;
766
+ | `smwhtdiamond` | &#x22c4;
767
+ | `unicodecdots` | &#x22ef;
768
+ | `hyphenbullet` | &#x2043;
769
+ | `PropertyLine` | &#x214a;
770
+ | `updownarrows` | &#x21c5;
771
+ | `LeftArrowBar` | &#x21e4;
772
+ | `barleftarrow` | &#x21e4;
773
+ | `upwhitearrow` | &#x21e7;
774
+ | `downuparrows` | &#x21f5;
775
+ | `nvrightarrow` | &#x21f8;
776
+ | `nVrightarrow` | &#x21fb;
777
+ | `intclockwise` | &#x2231;
778
+ | `cntclockoint` | &#x2233;
779
+ | `risingdotseq` | &#x2253;
780
+ | `NotLessTilde` | &#x2274;
781
+ | `varsubsetneq` | &#x228a;
782
+ | `cupleftarrow` | &#x228c;
783
+ | `circledequal` | &#x229c;
784
+ | `hermitmatrix` | &#x22b9;
785
+ | `npreccurlyeq` | &#x22e0;
786
+ | `nsucccurlyeq` | &#x22e1;
787
+ | `notbackslash` | &#x2340;
788
+ | `underbracket` | &#x23b5;
789
+ | `blocklowhalf` | &#x2584;
790
+ | `squarehvfill` | &#x25a6;
791
+ | `triangledown` | &#x25bf;
792
+ | `triangleleft` | &#x25c1;
793
+ | `Diamondblack` | &#x25c6;
794
+ | `dottedcircle` | &#x25cc;
795
+ | `trianglecdot` | &#x25ec;
796
+ | `squareulquad` | &#x25f0;
797
+ | `squarellquad` | &#x25f1;
798
+ | `squarelrquad` | &#x25f2;
799
+ | `squareurquad` | &#x25f3;
800
+ | `circleulquad` | &#x25f4;
801
+ | `circlellquad` | &#x25f5;
802
+ | `circlelrquad` | &#x25f6;
803
+ | `circleurquad` | &#x25f7;
804
+ | `bigwhitestar` | &#x2606;
805
+ | `invsmileface` | &#x263b;
806
+ | `varspadesuit` | &#x2664;
807
+ | `varheartsuit` | &#x2665;
808
+ | `dingasterisk` | &#x273d;
809
+ | `longdivision` | &#x27cc;
810
+ | `lozengeminus` | &#x27e0;
811
+ | `longmapsfrom` | &#x27fb;
812
+ | `Longmapsfrom` | &#x27fd;
813
+ | `nvRightarrow` | &#x2903;
814
+ | `rightbkarrow` | &#x290d;
815
+ | `leftdbkarrow` | &#x290e;
816
+ | `DownArrowBar` | &#x2913;
817
+ | `downarrowbar` | &#x2913;
818
+ | `rightdbltail` | &#x291c;
819
+ | `rdiagovfdiag` | &#x292b;
820
+ | `fdiagovrdiag` | &#x292c;
821
+ | `upupharpoons` | &#x2963;
822
+ | `leftfishtail` | &#x297c;
823
+ | `downfishtail` | &#x297f;
824
+ | `lbrackultick` | &#x298d;
825
+ | `rbracklrtick` | &#x298e;
826
+ | `lbracklltick` | &#x298f;
827
+ | `rbrackurtick` | &#x2990;
828
+ | `revangleubar` | &#x29a5;
829
+ | `emptysetobar` | &#x29b1;
830
+ | `emptysetoarr` | &#x29b3;
831
+ | `odotslashdot` | &#x29bc;
832
+ | `ogreaterthan` | &#x29c1;
833
+ | `triangleodot` | &#x29ca;
834
+ | `triangleubar` | &#x29cb;
835
+ | `multimapboth` | &#x29df;
836
+ | `lrtriangleeq` | &#x29e1;
837
+ | `blacklozenge` | &#x29eb;
838
+ | `errbarsquare` | &#x29ee;
839
+ | `errbarcircle` | &#x29f2;
840
+ | `triangleplus` | &#x2a39;
841
+ | `closedvarcup` | &#x2a4c;
842
+ | `closedvarcap` | &#x2a4d;
843
+ | `wedgeonwedge` | &#x2a55;
844
+ | `bigslopedvee` | &#x2a57;
845
+ | `wedgemidvert` | &#x2a5a;
846
+ | `doublebarvee` | &#x2a62;
847
+ | `veedoublebar` | &#x2a63;
848
+ | `eqqslantless` | &#x2a9b;
849
+ | `subsetapprox` | &#x2ac9;
850
+ | `supsetapprox` | &#x2aca;
851
+ | `dottedsquare` | &#x2b1a;
852
+ | `hexagonblack` | &#x2b23;
853
+ | `mdblkdiamond` | &#x2b25;
854
+ | `mdwhtdiamond` | &#x2b26;
855
+ | `mdblklozenge` | &#x2b27;
856
+ | `mdwhtlozenge` | &#x2b28;
857
+ | `smblkdiamond` | &#x2b29;
858
+ | `smblklozenge` | &#x2b2a;
859
+ | `smwhtlozenge` | &#x2b2b;
860
+ | `leftdotarrow` | &#x2b38;
861
+ | `medwhitestar` | &#x2b50;
862
+ | `medblackstar` | &#x2b51;
863
+ | `oturnedcomma` | &#x312;
864
+ | `upvarepsilon` | &#x3f5;
865
+ | `mathsterling` | &#xa3;
866
+ | `smblkcircle` | &#x2022;
867
+ | `backtrprime` | &#x2037;
868
+ | `caretinsert` | &#x2038;
869
+ | `vertoverlay` | &#x20d2;
870
+ | `asteraccent` | &#x20f0;
871
+ | `Planckconst` | &#x210e;
872
+ | `sansLturned` | &#x2142;
873
+ | `ExponetialE` | &#x2147;
874
+ | `updownarrow` | &#x2195;
875
+ | `nrightarrow` | &#x219b;
876
+ | `restriction` | &#x21be;
877
+ | `equilibrium` | &#x21cc;
878
+ | `nRightarrow` | &#x21cf;
879
+ | `Updownarrow` | &#x21d5;
880
+ | `Rrightarrow` | &#x21db;
881
+ | `nHdownarrow` | &#x21df;
882
+ | `updasharrow` | &#x21e1;
883
+ | `nvleftarrow` | &#x21f7;
884
+ | `nVleftarrow` | &#x21fa;
885
+ | `approxident` | &#x224b;
886
+ | `corresponds` | &#x2259;
887
+ | `GreaterLess` | &#x2277;
888
+ | `preccurlyeq` | &#x227c;
889
+ | `succcurlyeq` | &#x227d;
890
+ | `circledcirc` | &#x229a;
891
+ | `circleddash` | &#x229d;
892
+ | `curlyeqprec` | &#x22de;
893
+ | `curlyeqsucc` | &#x22df;
894
+ | `nsqsubseteq` | &#x22e2;
895
+ | `nsqsupseteq` | &#x22e3;
896
+ | `sqsubsetneq` | &#x22e4;
897
+ | `sqsupsetneq` | &#x22e5;
898
+ | `varisinobar` | &#x22f6;
899
+ | `varbarwedge` | &#x2305;
900
+ | `wasylozenge` | &#x2311;
901
+ | `APLnotslash` | &#x233f;
902
+ | `invdiameter` | &#x2349;
903
+ | `intextender` | &#x23ae;
904
+ | `overbracket` | &#x23b4;
905
+ | `blockuphalf` | &#x2580;
906
+ | `squarehfill` | &#x25a4;
907
+ | `squarevfill` | &#x25a5;
908
+ | `smblksquare` | &#x25aa;
909
+ | `smwhtsquare` | &#x25ab;
910
+ | `vartriangle` | &#x25b5;
911
+ | `RIGHTcircle` | &#x25d1;
912
+ | `RIGHTCIRCLE` | &#x25d7;
913
+ | `smwhtcircle` | &#x25e6;
914
+ | `lgwhtcircle` | &#x25ef;
915
+ | `mdwhtsquare` | &#x25fb;
916
+ | `blacksquare` | &#x25fc;
917
+ | `mdblksquare` | &#x25fc;
918
+ | `blacksmiley` | &#x263b;
919
+ | `sagittarius` | &#x2650;
920
+ | `capricornus` | &#x2651;
921
+ | `diamondsuit` | &#x2662;
922
+ | `varclubsuit` | &#x2667;
923
+ | `quarternote` | &#x2669;
924
+ | `mdwhtcircle` | &#x26aa;
925
+ | `mdblkcircle` | &#x26ab;
926
+ | `ballotcheck` | &#x2713;
927
+ | `circledstar` | &#x272a;
928
+ | `arrowbullet` | &#x27a2;
929
+ | `threedangle` | &#x27c0;
930
+ | `diamondcdot` | &#x27d0;
931
+ | `multimapinv` | &#x27dc;
932
+ | `nvLeftarrow` | &#x2902;
933
+ | `leftbkarrow` | &#x290c;
934
+ | `leftdbltail` | &#x291b;
935
+ | `seovnearrow` | &#x292d;
936
+ | `neovsearrow` | &#x292e;
937
+ | `neovnwarrow` | &#x2931;
938
+ | `nwovnearrow` | &#x2932;
939
+ | `rightarrowx` | &#x2947;
940
+ | `wideangleup` | &#x29a7;
941
+ | `revemptyset` | &#x29b0;
942
+ | `circledvert` | &#x29b6;
943
+ | `circledless` | &#x29c0;
944
+ | `gleichstark` | &#x29e6;
945
+ | `ruledelayed` | &#x29f4;
946
+ | `lcurvyangle` | &#x29fc;
947
+ | `rcurvyangle` | &#x29fd;
948
+ | `otimeslhrim` | &#x2a34;
949
+ | `otimesrhrim` | &#x2a35;
950
+ | `midbarwedge` | &#x2a5c;
951
+ | `simminussim` | &#x2a6c;
952
+ | `eqslantless` | &#x2a95;
953
+ | `eqqslantgtr` | &#x2a9c;
954
+ | `precnapprox` | &#x2ab9;
955
+ | `succnapprox` | &#x2aba;
956
+ | `shortuptack` | &#x2ae0;
957
+ | `lgblksquare` | &#x2b1b;
958
+ | `lgwhtsquare` | &#x2b1c;
959
+ | `lgblkcircle` | &#x2b24;
960
+ | `blkhorzoval` | &#x2b2c;
961
+ | `whthorzoval` | &#x2b2d;
962
+ | `blkvertoval` | &#x2b2e;
963
+ | `whtvertoval` | &#x2b2f;
964
+ | `RRightarrow` | &#x2b46;
965
+ | `smwhitestar` | &#x2b52;
966
+ | `backepsilon` | &#x3f6;
967
+ | `wideutilde` | &#x330;
968
+ | `upoldKoppa` | &#x3d8;
969
+ | `upoldkoppa` | &#x3d9;
970
+ | `upvarkappa` | &#x3f0;
971
+ | `upvarsigma` | &#x3c2;
972
+ | `octothorpe` | &#x23;
973
+ | `mathdollar` | &#x24;
974
+ | `twolowline` | &#x2017;
975
+ | `backdprime` | &#x2036;
976
+ | `Eulerconst` | &#x2107;
977
+ | `turnediota` | &#x2129;
978
+ | `nleftarrow` | &#x219a;
979
+ | `mappedfrom` | &#x21a4;
980
+ | `upuparrows` | &#x21c8;
981
+ | `nLeftarrow` | &#x21cd;
982
+ | `Lleftarrow` | &#x21da;
983
+ | `complement` | &#x2201;
984
+ | `fourthroot` | &#x221c;
985
+ | `rightangle` | &#x221f;
986
+ | `Proportion` | &#x2237;
987
+ | `sqsubseteq` | &#x2291;
988
+ | `sqsupseteq` | &#x2292;
989
+ | `circledast` | &#x229b;
990
+ | `curlywedge` | &#x22cf;
991
+ | `conictaper` | &#x2332;
992
+ | `APLcomment` | &#x235d;
993
+ | `lparenuend` | &#x239b;
994
+ | `lparenlend` | &#x239d;
995
+ | `rparenuend` | &#x239e;
996
+ | `rparenlend` | &#x23a0;
997
+ | `lbrackuend` | &#x23a1;
998
+ | `lbracklend` | &#x23a3;
999
+ | `rbrackuend` | &#x23a4;
1000
+ | `rbracklend` | &#x23a6;
1001
+ | `lbraceuend` | &#x23a7;
1002
+ | `lbracelend` | &#x23a9;
1003
+ | `rbraceuend` | &#x23ab;
1004
+ | `rbracelend` | &#x23ad;
1005
+ | `lmoustache` | &#x23b0;
1006
+ | `rmoustache` | &#x23b1;
1007
+ | `sqrtbottom` | &#x23b7;
1008
+ | `underparen` | &#x23dd;
1009
+ | `underbrace` | &#x23df;
1010
+ | `hrectangle` | &#x25ad;
1011
+ | `vrectangle` | &#x25af;
1012
+ | `LEFTcircle` | &#x25d0;
1013
+ | `LEFTCIRCLE` | &#x25d6;
1014
+ | `ultriangle` | &#x25f8;
1015
+ | `urtriangle` | &#x25f9;
1016
+ | `lltriangle` | &#x25fa;
1017
+ | `lrtriangle` | &#x25ff;
1018
+ | `CheckedBox` | &#x2611;
1019
+ | `pointright` | &#x261e;
1020
+ | `vardiamond` | &#x2666;
1021
+ | `eighthnote` | &#x266a;
1022
+ | `subsetcirc` | &#x27c3;
1023
+ | `supsetcirc` | &#x27c4;
1024
+ | `Diamonddot` | &#x27d0;
1025
+ | `DDownarrow` | &#x27f1;
1026
+ | `longmapsto` | &#x27fc;
1027
+ | `Longmapsto` | &#x27fe;
1028
+ | `Mappedfrom` | &#x2906;
1029
+ | `Ddownarrow` | &#x290b;
1030
+ | `UpArrowBar` | &#x2912;
1031
+ | `baruparrow` | &#x2912;
1032
+ | `rightimply` | &#x2970;
1033
+ | `upfishtail` | &#x297e;
1034
+ | `lbrackubar` | &#x298b;
1035
+ | `rbrackubar` | &#x298c;
1036
+ | `lparenless` | &#x2993;
1037
+ | `Rparenless` | &#x2996;
1038
+ | `lblkbrbrak` | &#x2997;
1039
+ | `rblkbrbrak` | &#x2998;
1040
+ | `circlehbar` | &#x29b5;
1041
+ | `circledgtr` | &#x29c1;
1042
+ | `doubleplus` | &#x29fa;
1043
+ | `tripleplus` | &#x29fb;
1044
+ | `plussubtwo` | &#x2a27;
1045
+ | `commaminus` | &#x2a29;
1046
+ | `minusfdots` | &#x2a2b;
1047
+ | `minusrdots` | &#x2a2c;
1048
+ | `opluslhrim` | &#x2a2d;
1049
+ | `oplusrhrim` | &#x2a2e;
1050
+ | `smashtimes` | &#x2a33;
1051
+ | `cupovercap` | &#x2a46;
1052
+ | `capovercup` | &#x2a47;
1053
+ | `veeonwedge` | &#x2a59;
1054
+ | `veemidvert` | &#x2a5b;
1055
+ | `equivVvert` | &#x2a69;
1056
+ | `lessapprox` | &#x2a85;
1057
+ | `lesseqqgtr` | &#x2a8b;
1058
+ | `gtreqqless` | &#x2a8c;
1059
+ | `eqslantgtr` | &#x2a96;
1060
+ | `rightslice` | &#x2aa7;
1061
+ | `precapprox` | &#x2ab7;
1062
+ | `succapprox` | &#x2ab8;
1063
+ | `subsetplus` | &#x2abf;
1064
+ | `supsetplus` | &#x2ac0;
1065
+ | `subsetneqq` | &#x2acb;
1066
+ | `supsetneqq` | &#x2acc;
1067
+ | `interleave` | &#x2af4;
1068
+ | `talloblong` | &#x2afe;
1069
+ | `varhexagon` | &#x2b21;
1070
+ | `leftarrowx` | &#x2b3e;
1071
+ | `LLeftarrow` | &#x2b45;
1072
+ | `postalmark` | &#x3012;
1073
+ | `upvartheta` | &#x3d1;
1074
+ | `upvarTheta` | &#x3f4;
1075
+ | `varnothing` | &#x2205;
1076
+ | `underline` | &#x332;
1077
+ | `upEpsilon` | &#x395;
1078
+ | `upepsilon` | &#x3b5;
1079
+ | `upOmicron` | &#x39f;
1080
+ | `upUpsilon` | &#x3a5;
1081
+ | `upupsilon` | &#x3c5;
1082
+ | `upomicron` | &#x3bf;
1083
+ | `upvarbeta` | &#x3d0;
1084
+ | `upDigamma` | &#x3dc;
1085
+ | `updigamma` | &#x3dd;
1086
+ | `ampersand` | &#x26;
1087
+ | `semicolon` | &#x3b;
1088
+ | `backprime` | &#x2035;
1089
+ | `tieconcat` | &#x2040;
1090
+ | `fracslash` | &#x2044;
1091
+ | `Angstroem` | &#x212b;
1092
+ | `lightning` | &#x21af;
1093
+ | `rightturn` | &#x21bb;
1094
+ | `Downarrow` | &#x21d3;
1095
+ | `nHuparrow` | &#x21de;
1096
+ | `dasharrow` | &#x21e2;
1097
+ | `increment` | &#x2206;
1098
+ | `nparallel` | &#x2226;
1099
+ | `clockoint` | &#x2232;
1100
+ | `mathratio` | &#x2236;
1101
+ | `dashcolon` | &#x2239;
1102
+ | `triangleq` | &#x225c;
1103
+ | `nleqslant` | &#x2270;
1104
+ | `ngeqslant` | &#x2271;
1105
+ | `nsubseteq` | &#x2288;
1106
+ | `nsupseteq` | &#x2289;
1107
+ | `subsetneq` | &#x228a;
1108
+ | `supsetneq` | &#x228b;
1109
+ | `backsimeq` | &#x22cd;
1110
+ | `pitchfork` | &#x22d4;
1111
+ | `lesseqgtr` | &#x22da;
1112
+ | `gtreqless` | &#x22db;
1113
+ | `varniobar` | &#x22fd;
1114
+ | `bagmember` | &#x22ff;
1115
+ | `sqlozenge` | &#x2311;
1116
+ | `turnednot` | &#x2319;
1117
+ | `intbottom` | &#x2321;
1118
+ | `lbracemid` | &#x23a8;
1119
+ | `rbracemid` | &#x23ac;
1120
+ | `sumbottom` | &#x23b3;
1121
+ | `lvboxline` | &#x23b8;
1122
+ | `rvboxline` | &#x23b9;
1123
+ | `overparen` | &#x23dc;
1124
+ | `wideparen` | &#x23dc;
1125
+ | `overbrace` | &#x23de;
1126
+ | `trapezium` | &#x23e2;
1127
+ | `accurrent` | &#x23e6;
1128
+ | `blockfull` | &#x2588;
1129
+ | `radiation` | &#x2622;
1130
+ | `biohazard` | &#x2623;
1131
+ | `smileface` | &#x263a;
1132
+ | `rightmoon` | &#x263d;
1133
+ | `spadesuit` | &#x2660;
1134
+ | `heartsuit` | &#x2661;
1135
+ | `medbullet` | &#x26ab;
1136
+ | `checkmark` | &#x2713;
1137
+ | `DashVDash` | &#x27da;
1138
+ | `dashVdash` | &#x27db;
1139
+ | `vlongdash` | &#x27dd;
1140
+ | `longdashv` | &#x27de;
1141
+ | `llbracket` | &#x27e6;
1142
+ | `rrbracket` | &#x27e7;
1143
+ | `impliedby` | &#x27f8;
1144
+ | `righttail` | &#x291a;
1145
+ | `nwsearrow` | &#x2921;
1146
+ | `neswarrow` | &#x2922;
1147
+ | `hknwarrow` | &#x2923;
1148
+ | `hknearrow` | &#x2924;
1149
+ | `typecolon` | &#x2982;
1150
+ | `langledot` | &#x2991;
1151
+ | `rangledot` | &#x2992;
1152
+ | `rparengtr` | &#x2994;
1153
+ | `Lparengtr` | &#x2995;
1154
+ | `fourvdots` | &#x2999;
1155
+ | `turnangle` | &#x29a2;
1156
+ | `angleubar` | &#x29a4;
1157
+ | `olessthan` | &#x29c0;
1158
+ | `boxbslash` | &#x29c5;
1159
+ | `mathcolon` | &#x3a;
1160
+ | `mathslash` | &#x2f;
1161
+ | `boxcircle` | &#x29c7;
1162
+ | `triangles` | &#x29cc;
1163
+ | `hourglass` | &#x29d6;
1164
+ | `bigotimes` | &#x2a02;
1165
+ | `bigcupdot` | &#x2a03;
1166
+ | `conjquant` | &#x2a07;
1167
+ | `disjquant` | &#x2a08;
1168
+ | `modtwosum` | &#x2a0a;
1169
+ | `otimeshat` | &#x2a36;
1170
+ | `cupbarcap` | &#x2a48;
1171
+ | `capbarcup` | &#x2a49;
1172
+ | `wedgeodot` | &#x2a51;
1173
+ | `midbarvee` | &#x2a5d;
1174
+ | `varveebar` | &#x2a61;
1175
+ | `equivVert` | &#x2a68;
1176
+ | `hatapprox` | &#x2a6f;
1177
+ | `approxeqq` | &#x2a70;
1178
+ | `gtrapprox` | &#x2a86;
1179
+ | `leftslice` | &#x2aa6;
1180
+ | `subsetdot` | &#x2abd;
1181
+ | `supsetdot` | &#x2abe;
1182
+ | `subseteqq` | &#x2ac5;
1183
+ | `supseteqq` | &#x2ac6;
1184
+ | `leqqslant` | &#x2af9;
1185
+ | `geqqslant` | &#x2afa;
1186
+ | `partialup` | &#x2202;
1187
+ | `upvarphi` | &#x3c6;
1188
+ | `horizbar` | &#x2015;
1189
+ | `Question` | &#x2047;
1190
+ | `medspace` | &#x205f;
1191
+ | `Angstrom` | &#x212b;
1192
+ | `ComplexI` | &#x2148;
1193
+ | `ComplexJ` | &#x2149;
1194
+ | `mapsfrom` | &#x21a4;
1195
+ | `MapsDown` | &#x21a7;
1196
+ | `mapsdown` | &#x21a7;
1197
+ | `linefeed` | &#x21b4;
1198
+ | `leftturn` | &#x21ba;
1199
+ | `divslash` | &#x2215;
1200
+ | `cuberoot` | &#x221b;
1201
+ | `parallel` | &#x2225;
1202
+ | `dotminus` | &#x2238;
1203
+ | `invlazys` | &#x223e;
1204
+ | `sinewave` | &#x223f;
1205
+ | `approxeq` | &#x224a;
1206
+ | `backcong` | &#x224c;
1207
+ | `dotequal` | &#x2250;
1208
+ | `doteqdot` | &#x2251;
1209
+ | `coloneqq` | &#x2254;
1210
+ | `eqqcolon` | &#x2255;
1211
+ | `notasymp` | &#x226d;
1212
+ | `nlesssim` | &#x2274;
1213
+ | `nlessgtr` | &#x2278;
1214
+ | `ngtrless` | &#x2279;
1215
+ | `sqsubset` | &#x228f;
1216
+ | `sqsupset` | &#x2290;
1217
+ | `boxminus` | &#x229f;
1218
+ | `boxtimes` | &#x22a0;
1219
+ | `multimap` | &#x22b8;
1220
+ | `intercal` | &#x22ba;
1221
+ | `barwedge` | &#x22bc;
1222
+ | `curlyvee` | &#x22ce;
1223
+ | `precnsim` | &#x22e8;
1224
+ | `succnsim` | &#x22e9;
1225
+ | `varisins` | &#x22f3;
1226
+ | `isinobar` | &#x22f7;
1227
+ | `diameter` | &#x2300;
1228
+ | `profline` | &#x2312;
1229
+ | `profsurf` | &#x2313;
1230
+ | `viewdata` | &#x2317;
1231
+ | `ulcorner` | &#x231c;
1232
+ | `urcorner` | &#x231d;
1233
+ | `llcorner` | &#x231e;
1234
+ | `lrcorner` | &#x231f;
1235
+ | `notslash` | &#x233f;
1236
+ | `APLinput` | &#x235e;
1237
+ | `bbrktbrk` | &#x23b6;
1238
+ | `elinters` | &#x23e7;
1239
+ | `bullseye` | &#x25ce;
1240
+ | `astrosun` | &#x2609;
1241
+ | `steaming` | &#x2615;
1242
+ | `leftmoon` | &#x263e;
1243
+ | `varEarth` | &#x2641;
1244
+ | `aquarius` | &#x2652;
1245
+ | `clubsuit` | &#x2663;
1246
+ | `varspade` | &#x2664;
1247
+ | `varheart` | &#x2665;
1248
+ | `twonotes` | &#x266b;
1249
+ | `acidfree` | &#x267e;
1250
+ | `bsolhsub` | &#x27c8;
1251
+ | `wedgedot` | &#x27d1;
1252
+ | `pullback` | &#x27d3;
1253
+ | `UUparrow` | &#x27f0;
1254
+ | `Mapsfrom` | &#x2906;
1255
+ | `Uuparrow` | &#x290a;
1256
+ | `drbkarow` | &#x2910;
1257
+ | `lefttail` | &#x2919;
1258
+ | `hksearow` | &#x2925;
1259
+ | `hkswarow` | &#x2926;
1260
+ | `strictfi` | &#x297c;
1261
+ | `strictif` | &#x297d;
1262
+ | `revangle` | &#x29a3;
1263
+ | `boxslash` | &#x29c4;
1264
+ | `boxonbox` | &#x29c9;
1265
+ | `rtriltri` | &#x29ce;
1266
+ | `lfbowtie` | &#x29d1;
1267
+ | `rfbowtie` | &#x29d2;
1268
+ | `lvzigzag` | &#x29d8;
1269
+ | `rvzigzag` | &#x29d9;
1270
+ | `Lvzigzag` | &#x29da;
1271
+ | `Rvzigzag` | &#x29db;
1272
+ | `tieinfty` | &#x29dd;
1273
+ | `smeparsl` | &#x29e4;
1274
+ | `eqvparsl` | &#x29e5;
1275
+ | `bigoplus` | &#x2a01;
1276
+ | `biguplus` | &#x2a04;
1277
+ | `bigsqcap` | &#x2a05;
1278
+ | `bigsqcup` | &#x2a06;
1279
+ | `bigtimes` | &#x2a09;
1280
+ | `cirfnint` | &#x2a10;
1281
+ | `rppolint` | &#x2a12;
1282
+ | `scpolint` | &#x2a13;
1283
+ | `pointint` | &#x2a15;
1284
+ | `intlarhk` | &#x2a17;
1285
+ | `zproject` | &#x2a21;
1286
+ | `ringplus` | &#x2a22;
1287
+ | `plustrif` | &#x2a28;
1288
+ | `minusdot` | &#x2a2a;
1289
+ | `vectimes` | &#x2a2f;
1290
+ | `dottimes` | &#x2a30;
1291
+ | `timesbar` | &#x2a31;
1292
+ | `intprodr` | &#x2a3d;
1293
+ | `capwedge` | &#x2a44;
1294
+ | `veeonvee` | &#x2a56;
1295
+ | `wedgebar` | &#x2a5f;
1296
+ | `dotequiv` | &#x2a67;
1297
+ | `simrdots` | &#x2a6b;
1298
+ | `Coloneqq` | &#x2a74;
1299
+ | `leqslant` | &#x2a7d;
1300
+ | `geqslant` | &#x2a7e;
1301
+ | `lesdotor` | &#x2a83;
1302
+ | `gesdotol` | &#x2a84;
1303
+ | `lnapprox` | &#x2a89;
1304
+ | `gnapprox` | &#x2a8a;
1305
+ | `precneqq` | &#x2ab5;
1306
+ | `succneqq` | &#x2ab6;
1307
+ | `forksnot` | &#x2add;
1308
+ | `varVdash` | &#x2ae6;
1309
+ | `pentagon` | &#x2b20;
1310
+ | `mathring` | &#x30a;
1311
+ | `underbar` | &#x331;
1312
+ | `varsigma` | &#x3c2;
1313
+ | `upStigma` | &#x3da;
1314
+ | `upstigma` | &#x3db;
1315
+ | `varkappa` | &#x3f0;
1316
+ | `upvarrho` | &#x3f1;
1317
+ | `question` | &#x3f;
1318
+ | `mathcent` | &#xa2;
1319
+ | `sterling` | &#xa3;
1320
+ | `circledR` | &#xae;
1321
+ | `uplambda` | &#x3bb;
1322
+ | `upLambda` | &#x39b;
1323
+ | `ddagger` | &#x2021;
1324
+ | `trprime` | &#x2034;
1325
+ | `closure` | &#x2050;
1326
+ | `annuity` | &#x20e7;
1327
+ | `nwarrow` | &#x2196;
1328
+ | `nearrow` | &#x2197;
1329
+ | `searrow` | &#x2198;
1330
+ | `swarrow` | &#x2199;
1331
+ | `Uparrow` | &#x21d1;
1332
+ | `Nwarrow` | &#x21d6;
1333
+ | `Nearrow` | &#x21d7;
1334
+ | `Searrow` | &#x21d8;
1335
+ | `Swarrow` | &#x21d9;
1336
+ | `nexists` | &#x2204;
1337
+ | `smallin` | &#x220a;
1338
+ | `smallni` | &#x220d;
1339
+ | `dotplus` | &#x2214;
1340
+ | `dbloint` | &#x222f;
1341
+ | `eqcolon` | &#x2239;
1342
+ | `backsim` | &#x223d;
1343
+ | `simneqq` | &#x2246;
1344
+ | `napprox` | &#x2249;
1345
+ | `coloneq` | &#x2254;
1346
+ | `varsdef` | &#x225c;
1347
+ | `questeq` | &#x225f;
1348
+ | `between` | &#x226c;
1349
+ | `lesssim` | &#x2272;
1350
+ | `ngtrsim` | &#x2275;
1351
+ | `lessgtr` | &#x2276;
1352
+ | `gtrless` | &#x2277;
1353
+ | `precsim` | &#x227e;
1354
+ | `succsim` | &#x227f;
1355
+ | `nsubset` | &#x2284;
1356
+ | `nsupset` | &#x2285;
1357
+ | `boxplus` | &#x229e;
1358
+ | `imageof` | &#x22b7;
1359
+ | `lessdot` | &#x22d6;
1360
+ | `npreceq` | &#x22e0;
1361
+ | `nsucceq` | &#x22e1;
1362
+ | `isindot` | &#x22f5;
1363
+ | `hexagon` | &#x2394;
1364
+ | `obrbrak` | &#x23e0;
1365
+ | `ubrbrak` | &#x23e1;
1366
+ | `benzenr` | &#x23e3;
1367
+ | `squoval` | &#x25a2;
1368
+ | `Diamond` | &#x25c7;
1369
+ | `fisheye` | &#x25c9;
1370
+ | `lozenge` | &#x25ca;
1371
+ | `bigstar` | &#x2605;
1372
+ | `yinyang` | &#x262f;
1373
+ | `frownie` | &#x2639;
1374
+ | `sadface` | &#x2639;
1375
+ | `mercury` | &#x263f;
1376
+ | `Mercury` | &#x263f;
1377
+ | `jupiter` | &#x2643;
1378
+ | `Jupiter` | &#x2643;
1379
+ | `neptune` | &#x2646;
1380
+ | `Neptune` | &#x2646;
1381
+ | `scorpio` | &#x264f;
1382
+ | `Scorpio` | &#x264f;
1383
+ | `varclub` | &#x2667;
1384
+ | `natural` | &#x266e;
1385
+ | `recycle` | &#x267b;
1386
+ | `diceiii` | &#x2682;
1387
+ | `warning` | &#x26a0;
1388
+ | `medcirc` | &#x26aa;
1389
+ | `ballotx` | &#x2717;
1390
+ | `maltese` | &#x2720;
1391
+ | `varstar` | &#x2736;
1392
+ | `lbrbrak` | &#x2772;
1393
+ | `rbrbrak` | &#x2773;
1394
+ | `suphsol` | &#x27c9;
1395
+ | `pushout` | &#x27d4;
1396
+ | `Lbrbrak` | &#x27ec;
1397
+ | `Rbrbrak` | &#x27ed;
1398
+ | `implies` | &#x27f9;
1399
+ | `dbkarow` | &#x290f;
1400
+ | `leadsto` | &#x2933;
1401
+ | `subrarr` | &#x2979;
1402
+ | `suplarr` | &#x297b;
1403
+ | `llangle` | &#x2989;
1404
+ | `rrangle` | &#x298a;
1405
+ | `vzigzag` | &#x299a;
1406
+ | `obslash` | &#x29b8;
1407
+ | `olcross` | &#x29bb;
1408
+ | `cirscir` | &#x29c2;
1409
+ | `boxdiag` | &#x29c4;
1410
+ | `fbowtie` | &#x29d3;
1411
+ | `lftimes` | &#x29d4;
1412
+ | `lrtimes` | &#x22c8;
1413
+ | `rftimes` | &#x29d5;
1414
+ | `nvinfty` | &#x29de;
1415
+ | `dualmap` | &#x29df;
1416
+ | `shuffle` | &#x29e2;
1417
+ | `thermod` | &#x29e7;
1418
+ | `rsolbar` | &#x29f7;
1419
+ | `bigodot` | &#x2a00;
1420
+ | `varprod` | &#x2a09;
1421
+ | `npolint` | &#x2a14;
1422
+ | `project` | &#x2a21;
1423
+ | `plushat` | &#x2a23;
1424
+ | `simplus` | &#x2a24;
1425
+ | `plusdot` | &#x2a25;
1426
+ | `plussim` | &#x2a26;
1427
+ | `intprod` | &#x2a3c;
1428
+ | `twocups` | &#x2a4a;
1429
+ | `twocaps` | &#x2a4b;
1430
+ | `veeodot` | &#x2a52;
1431
+ | `percent` | &#x25;
1432
+ | `congdot` | &#x2a6d;
1433
+ | `eqqplus` | &#x2a71;
1434
+ | `pluseqq` | &#x2a72;
1435
+ | `Coloneq` | &#x2a74;
1436
+ | `ddotseq` | &#x2a77;
1437
+ | `equivDD` | &#x2a78;
1438
+ | `ltquest` | &#x2a7b;
1439
+ | `gtquest` | &#x2a7c;
1440
+ | `lesdoto` | &#x2a81;
1441
+ | `gesdoto` | &#x2a82;
1442
+ | `eqqless` | &#x2a99;
1443
+ | `simless` | &#x2a9d;
1444
+ | `bumpeqq` | &#x2aae;
1445
+ | `precneq` | &#x2ab1;
1446
+ | `succneq` | &#x2ab2;
1447
+ | `preceqq` | &#x2ab3;
1448
+ | `succeqq` | &#x2ab4;
1449
+ | `llcurly` | &#x2abb;
1450
+ | `ggcurly` | &#x2abc;
1451
+ | `submult` | &#x2ac1;
1452
+ | `supmult` | &#x2ac2;
1453
+ | `subedot` | &#x2ac3;
1454
+ | `supedot` | &#x2ac4;
1455
+ | `lsqhook` | &#x2acd;
1456
+ | `rsqhook` | &#x2ace;
1457
+ | `suphsub` | &#x2ad7;
1458
+ | `supdsub` | &#x2ad8;
1459
+ | `topfork` | &#x2ada;
1460
+ | `revnmid` | &#x2aee;
1461
+ | `nhVvert` | &#x2af5;
1462
+ | `lllnest` | &#x2af7;
1463
+ | `gggnest` | &#x2af8;
1464
+ | `trslash` | &#x2afb;
1465
+ | `hzigzag` | &#x3030;
1466
+ | `overbar` | &#x305;
1467
+ | `upAlpha` | &#x391;
1468
+ | `upalpha` | &#x3b1;
1469
+ | `upKappa` | &#x39a;
1470
+ | `upkappa` | &#x3ba;
1471
+ | `Upsilon` | &#x3a5;
1472
+ | `varbeta` | &#x3d0;
1473
+ | `upvarpi` | &#x3d6;
1474
+ | `Digamma` | &#x3dc;
1475
+ | `digamma` | &#x3dd;
1476
+ | `upKoppa` | &#x3de;
1477
+ | `upkoppa` | &#x3df;
1478
+ | `upSampi` | &#x3e0;
1479
+ | `upsampi` | &#x3e1;
1480
+ | `updelta` | &#x3b4;
1481
+ | `upDelta` | &#x394;
1482
+ | `epsilon` | &#x3f5;
1483
+ | `matheth` | &#xf0;
1484
+ | `greater` | &#x3e;
1485
+ | `sptilde` | &#x7e;
1486
+ | `upgamma` | &#x3b3;
1487
+ | `upGamma` | &#x393;
1488
+ | `upomega` | &#x3c9;
1489
+ | `upOmega` | &#x3a9;
1490
+ | `upsigma` | &#x3c3;
1491
+ | `upSigma` | &#x3a3;
1492
+ | `uptheta` | &#x3b8;
1493
+ | `upTheta` | &#x398;
1494
+ | `dagger` | &#x2020;
1495
+ | `upbeta` | &#x3b2;
1496
+ | `bullet` | &#x2022;
1497
+ | `second` | &#x2033;
1498
+ | `dprime` | &#x2033;
1499
+ | `Exclam` | &#x203c;
1500
+ | `exclam` | &#x21;
1501
+ | `fourth` | &#x2057;
1502
+ | `qprime` | &#x2057;
1503
+ | `ddddot` | &#x20dc;
1504
+ | `hslash` | &#x210f;
1505
+ | `daleth` | &#x2138;
1506
+ | `invamp` | &#x214b;
1507
+ | `MapsUp` | &#x21a5;
1508
+ | `mapsup` | &#x21a5;
1509
+ | `coprod` | &#x2210;
1510
+ | `coprod` | &#x2210;
1511
+ | `oiiint` | &#x2230;
1512
+ | `nsimeq` | &#x2244;
1513
+ | `Bumpeq` | &#x224e;
1514
+ | `bumpeq` | &#x224f;
1515
+ | `eqcirc` | &#x2256;
1516
+ | `circeq` | &#x2257;
1517
+ | `wedgeq` | &#x2259;
1518
+ | `stareq` | &#x225b;
1519
+ | `measeq` | &#x225e;
1520
+ | `nequiv` | &#x2262;
1521
+ | `nasymp` | &#x226d;
1522
+ | `apprle` | &#x2272;
1523
+ | `gtrsim` | &#x2273;
1524
+ | `apprge` | &#x2273;
1525
+ | `cupdot` | &#x228d;
1526
+ | `ominus` | &#x2296;
1527
+ | `oslash` | &#x2298;
1528
+ | `boxdot` | &#x22a1;
1529
+ | `assert` | &#x22a6;
1530
+ | `models` | &#x22a7;
1531
+ | `Vvdash` | &#x22aa;
1532
+ | `nvdash` | &#x22ac;
1533
+ | `nvDash` | &#x22ad;
1534
+ | `nVdash` | &#x22ae;
1535
+ | `nVDash` | &#x22af;
1536
+ | `prurel` | &#x22b0;
1537
+ | `scurel` | &#x22b1;
1538
+ | `origof` | &#x22b6;
1539
+ | `veebar` | &#x22bb;
1540
+ | `barvee` | &#x22bd;
1541
+ | `Subset` | &#x22d0;
1542
+ | `Supset` | &#x22d1;
1543
+ | `gtrdot` | &#x22d7;
1544
+ | `eqless` | &#x22dc;
1545
+ | `nunlhd` | &#x22ec;
1546
+ | `nunrhd` | &#x22ed;
1547
+ | `iddots` | &#x22f0;
1548
+ | `isinvb` | &#x22f8;
1549
+ | `varnis` | &#x22fb;
1550
+ | `niobar` | &#x22fe;
1551
+ | `invneg` | &#x2310;
1552
+ | `invnot` | &#x2310;
1553
+ | `inttop` | &#x2320;
1554
+ | `topbot` | &#x2336;
1555
+ | `APLinv` | &#x2339;
1556
+ | `APLlog` | &#x235f;
1557
+ | `sumtop` | &#x23b2;
1558
+ | `Circle` | &#x25cb;
1559
+ | `CIRCLE` | &#x25cf;
1560
+ | `boxbar` | &#x25eb;
1561
+ | `square` | &#x25fb;
1562
+ | `Square` | &#x2610;
1563
+ | `danger` | &#x2621;
1564
+ | `smiley` | &#x263a;
1565
+ | `female` | &#x2640;
1566
+ | `saturn` | &#x2644;
1567
+ | `Saturn` | &#x2644;
1568
+ | `uranus` | &#x2645;
1569
+ | `Uranus` | &#x2645;
1570
+ | `taurus` | &#x2649;
1571
+ | `Taurus` | &#x2649;
1572
+ | `gemini` | &#x264a;
1573
+ | `Gemini` | &#x264a;
1574
+ | `cancer` | &#x264b;
1575
+ | `pisces` | &#x2653;
1576
+ | `diceii` | &#x2681;
1577
+ | `diceiv` | &#x2683;
1578
+ | `dicevi` | &#x2685;
1579
+ | `anchor` | &#x2693;
1580
+ | `swords` | &#x2694;
1581
+ | `neuter` | &#x26b2;
1582
+ | `pencil` | &#x270e;
1583
+ | `veedot` | &#x27c7;
1584
+ | `bigbot` | &#x27d8;
1585
+ | `bigtop` | &#x27d9;
1586
+ | `cirbot` | &#x27df;
1587
+ | `lBrack` | &#x27e6;
1588
+ | `Lbrack` | &#x27e6;
1589
+ | `rBrack` | &#x27e7;
1590
+ | `Rbrack` | &#x27e7;
1591
+ | `langle` | &#x27e8;
1592
+ | `lAngle` | &#x27ea;
1593
+ | `rAngle` | &#x27eb;
1594
+ | `rangle` | &#x27e9;
1595
+ | `lgroup` | &#x27ee;
1596
+ | `rgroup` | &#x27ef;
1597
+ | `Mapsto` | &#x2907;
1598
+ | `ltlarr` | &#x2976;
1599
+ | `gtrarr` | &#x2978;
1600
+ | `lBrace` | &#x2983;
1601
+ | `rBrace` | &#x2984;
1602
+ | `Lparen` | &#x2985;
1603
+ | `lParen` | &#x2985;
1604
+ | `Rparen` | &#x2986;
1605
+ | `rParen` | &#x2986;
1606
+ | `angles` | &#x299e;
1607
+ | `angdnr` | &#x299f;
1608
+ | `gtlpar` | &#x29a0;
1609
+ | `boxast` | &#x29c6;
1610
+ | `boxbox` | &#x29c8;
1611
+ | `ltrivb` | &#x29cf;
1612
+ | `vbrtri` | &#x29d0;
1613
+ | `iinfin` | &#x29dc;
1614
+ | `laplac` | &#x29e0;
1615
+ | `eparsl` | &#x29e3;
1616
+ | `tminus` | &#x29ff;
1617
+ | `sumint` | &#x2a0b;
1618
+ | `iiiint` | &#x2a0c;
1619
+ | `intbar` | &#x2a0d;
1620
+ | `intBar` | &#x2a0e;
1621
+ | `sqrint` | &#x2a16;
1622
+ | `intcap` | &#x2a19;
1623
+ | `intcup` | &#x2a1a;
1624
+ | `lowint` | &#x2a1c;
1625
+ | `btimes` | &#x2a32;
1626
+ | `Otimes` | &#x2a37;
1627
+ | `capdot` | &#x2a40;
1628
+ | `uminus` | &#x2a41;
1629
+ | `barcup` | &#x2a42;
1630
+ | `barcap` | &#x2a43;
1631
+ | `cupvee` | &#x2a45;
1632
+ | `dotsim` | &#x2a6a;
1633
+ | `eqqsim` | &#x2a73;
1634
+ | `eqeqeq` | &#x2a76;
1635
+ | `lesdot` | &#x2a7f;
1636
+ | `gesdot` | &#x2a80;
1637
+ | `lesges` | &#x2a93;
1638
+ | `gesles` | &#x2a94;
1639
+ | `elsdot` | &#x2a97;
1640
+ | `egsdot` | &#x2a98;
1641
+ | `eqqgtr` | &#x2a9a;
1642
+ | `simgtr` | &#x2a9e;
1643
+ | `subsim` | &#x2ac7;
1644
+ | `supsim` | &#x2ac8;
1645
+ | `subsup` | &#x2ad3;
1646
+ | `supsub` | &#x2ad4;
1647
+ | `subsub` | &#x2ad5;
1648
+ | `supsup` | &#x2ad6;
1649
+ | `vDdash` | &#x2ae2;
1650
+ | `cirmid` | &#x2aef;
1651
+ | `midcir` | &#x2af0;
1652
+ | `topcir` | &#x2af1;
1653
+ | `parsim` | &#x2af3;
1654
+ | `sslash` | &#x2afd;
1655
+ | `ovhook` | &#x309;
1656
+ | `candra` | &#x310;
1657
+ | `droang` | &#x31a;
1658
+ | `utilde` | &#x330;
1659
+ | `upBeta` | &#x392;
1660
+ | `upZeta` | &#x396;
1661
+ | `upzeta` | &#x3b6;
1662
+ | `upIota` | &#x399;
1663
+ | `upiota` | &#x3b9;
1664
+ | `Stigma` | &#x3da;
1665
+ | `stigma` | &#x3db;
1666
+ | `varrho` | &#x3f1;
1667
+ | `lparen` | &#x28;
1668
+ | `rparen` | &#x29;
1669
+ | `period` | &#x2e;
1670
+ | `lbrack` | &#x5b;
1671
+ | `rbrack` | &#x5d;
1672
+ | `lbrace` | &#x7b;
1673
+ | `rbrace` | &#x7d;
1674
+ | `pounds` | &#xa3;
1675
+ | `spddot` | &#xa8;
1676
+ | `atsign` | &#x40;
1677
+ | `minus` | &#x2212;
1678
+ | `upphi` | &#x3d5;
1679
+ | `upPhi` | &#x3a6;
1680
+ | `qquad` | &#xa0;&#xa0;&#xa0;&#xa0;
1681
+ | `prime` | &#x2032;
1682
+ | `third` | &#x2034;
1683
+ | `dddot` | &#x20db;
1684
+ | `DDDot` | &#x20db;
1685
+ | `Euler` | &#x2107;
1686
+ | `tcohm` | &#x2126;
1687
+ | `gimel` | &#x2137;
1688
+ | `upand` | &#x214b;
1689
+ | `notni` | &#x220c;
1690
+ | `slash` | &#x2215;
1691
+ | `iiint` | &#x222d;
1692
+ | `oiint` | &#x222f;
1693
+ | `Colon` | &#x2237;
1694
+ | `colon` | &#x3a;
1695
+ | `rceil` | &#x2309;
1696
+ | `eqsim` | &#x2242;
1697
+ | `simeq` | &#x2243;
1698
+ | `nsime` | &#x2244;
1699
+ | `ncong` | &#x2247;
1700
+ | `asymp` | &#x224d;
1701
+ | `doteq` | &#x2250;
1702
+ | `Doteq` | &#x2251;
1703
+ | `arceq` | &#x2258;
1704
+ | `veeeq` | &#x225a;
1705
+ | `eqdef` | &#x225d;
1706
+ | `Equiv` | &#x2263;
1707
+ | `lneqq` | &#x2268;
1708
+ | `gneqq` | &#x2269;
1709
+ | `nless` | &#x226e;
1710
+ | `nprec` | &#x2280;
1711
+ | `nsucc` | &#x2281;
1712
+ | `uplus` | &#x228e;
1713
+ | `sqcap` | &#x2293;
1714
+ | `sqcup` | &#x2294;
1715
+ | `dashv` | &#x22a3;
1716
+ | `Vdash` | &#x22a9;
1717
+ | `VDash` | &#x22ab;
1718
+ | `vDash` | &#x22a8;
1719
+ | `unlhd` | &#x22b4;
1720
+ | `unrhd` | &#x22b5;
1721
+ | `eqgtr` | &#x22dd;
1722
+ | `lnsim` | &#x22e6;
1723
+ | `gnsim` | &#x22e7;
1724
+ | `adots` | &#x22f0;
1725
+ | `disin` | &#x22f2;
1726
+ | `isins` | &#x22f4;
1727
+ | `barin` | &#x22f6;
1728
+ | `isinE` | &#x22f9;
1729
+ | `house` | &#x2302;
1730
+ | `smile` | &#x2323;
1731
+ | `strns` | &#x23e4;
1732
+ | `fltns` | &#x23e5;
1733
+ | `ularc` | &#x25dc;
1734
+ | `urarc` | &#x25dd;
1735
+ | `lrarc` | &#x25de;
1736
+ | `llarc` | &#x25df;
1737
+ | `skull` | &#x2620;
1738
+ | `Venus` | &#x2640;
1739
+ | `earth` | &#x2641;
1740
+ | `pluto` | &#x2647;
1741
+ | `Pluto` | &#x2647;
1742
+ | `aries` | &#x2648;
1743
+ | `Aries` | &#x2648;
1744
+ | `virgo` | &#x264d;
1745
+ | `libra` | &#x264e;
1746
+ | `Libra` | &#x264e;
1747
+ | `sharp` | &#x266f;
1748
+ | `dicei` | &#x2680;
1749
+ | `dicev` | &#x2684;
1750
+ | `psurj` | &#x2900;
1751
+ | `Vvert` | &#x2980;
1752
+ | `lblot` | &#x2989;
1753
+ | `rblot` | &#x298a;
1754
+ | `operp` | &#x29b9;
1755
+ | `zhide` | &#x29f9;
1756
+ | `xbsol` | &#x29f9;
1757
+ | `tplus` | &#x29fe;
1758
+ | `awint` | &#x2a11;
1759
+ | `sqint` | &#x2a16;
1760
+ | `upint` | &#x2a1b;
1761
+ | `lceil` | &#x2308;
1762
+ | `zpipe` | &#x2a20;
1763
+ | `amalg` | &#x2a3f;
1764
+ | `Sqcap` | &#x2a4e;
1765
+ | `Sqcup` | &#x2a4f;
1766
+ | `Wedge` | &#x2a53;
1767
+ | `ndres` | &#x2a64;
1768
+ | `nrres` | &#x2a65;
1769
+ | `eqdot` | &#x2a66;
1770
+ | `asteq` | &#x2a6e;
1771
+ | `Equal` | &#x2a75;
1772
+ | `equal` | &#x3d;
1773
+ | `ltcir` | &#x2a79;
1774
+ | `gtcir` | &#x2a7a;
1775
+ | `lsime` | &#x2a8d;
1776
+ | `gsime` | &#x2a8e;
1777
+ | `lsimg` | &#x2a8f;
1778
+ | `gsiml` | &#x2a90;
1779
+ | `simlE` | &#x2a9f;
1780
+ | `simgE` | &#x2aa0;
1781
+ | `lescc` | &#x2aa8;
1782
+ | `gescc` | &#x2aa9;
1783
+ | `csube` | &#x2ad1;
1784
+ | `csupe` | &#x2ad2;
1785
+ | `forkv` | &#x2ad9;
1786
+ | `forks` | &#x2adc;
1787
+ | `perps` | &#x2ae1;
1788
+ | `dashV` | &#x2ae3;
1789
+ | `Dashv` | &#x2ae4;
1790
+ | `DashV` | &#x2ae5;
1791
+ | `vBarv` | &#x2ae9;
1792
+ | `nhpar` | &#x2af2;
1793
+ | `hline` | &#x23af;
1794
+ | `imath` | &#x131;
1795
+ | `jmath` | &#x237;
1796
+ | `grave` | &#x300;
1797
+ | `acute` | &#x301;
1798
+ | `breve` | &#x306;
1799
+ | `ocirc` | &#x30a;
1800
+ | `check` | &#x30c;
1801
+ | `upEta` | &#x397;
1802
+ | `upeta` | &#x3b7;
1803
+ | `upRho` | &#x3a1;
1804
+ | `uprho` | &#x3c1;
1805
+ | `upTau` | &#x3a4;
1806
+ | `uptau` | &#x3c4;
1807
+ | `upChi` | &#x3a7;
1808
+ | `varpi` | &#x3d6;
1809
+ | `Qoppa` | &#x3d8;
1810
+ | `Koppa` | &#x3d8;
1811
+ | `qoppa` | &#x3d9;
1812
+ | `koppa` | &#x3d9;
1813
+ | `Sampi` | &#x3e0;
1814
+ | `sampi` | &#x3e1;
1815
+ | `comma` | &#x2c;
1816
+ | `sphat` | &#x5e;
1817
+ | `Micro` | &#xb5;
1818
+ | `cdotp` | &#xb7;
1819
+ | `upchi` | &#x3c7;
1820
+ | `uppsi` | &#x3c8;
1821
+ | `upPsi` | &#x3a8;
1822
+ | `tinj` | &#x21a3;
1823
+ | `uppi` | &#x3c0;
1824
+ | `upPi` | &#x3a0;
1825
+ | `tsur` | &#x21a0;
1826
+ | `less` | &#x3c;
1827
+ | `Vert` | &#x2016;
1828
+ | `vert` | &#x7c;
1829
+ | `euro` | &#x20ac;
1830
+ | `lvec` | &#x20d0;
1831
+ | `LVec` | &#x20d6;
1832
+ | `Finv` | &#x2132;
1833
+ | `beth` | &#x2136;
1834
+ | `Game` | &#x2141;
1835
+ | `dlsh` | &#x21b2;
1836
+ | `Ldsh` | &#x21b2;
1837
+ | `drsh` | &#x21b3;
1838
+ | `Rdsh` | &#x21b3;
1839
+ | `pfun` | &#x21f8;
1840
+ | `ffun` | &#x21fb;
1841
+ | `nexi` | &#x2204;
1842
+ | `owns` | &#x220b;
1843
+ | `nmid` | &#x2224;
1844
+ | `iint` | &#x222c;
1845
+ | `oint` | &#x222e;
1846
+ | `nsim` | &#x2241;
1847
+ | `sdef` | &#x2259;
1848
+ | `leqq` | &#x2266;
1849
+ | `geqq` | &#x2267;
1850
+ | `ngtr` | &#x226f;
1851
+ | `nleq` | &#x2270;
1852
+ | `ngeq` | &#x2271;
1853
+ | `buni` | &#x228e;
1854
+ | `hash` | &#x22d5;
1855
+ | `nisd` | &#x22fa;
1856
+ | `obar` | &#x233d;
1857
+ | `rres` | &#x25b7;
1858
+ | `dres` | &#x25c1;
1859
+ | `XBox` | &#x2612;
1860
+ | `male` | &#x2642;
1861
+ | `Mars` | &#x2642;
1862
+ | `flat` | &#x266d;
1863
+ | `perp` | &#x27c2;
1864
+ | `Lbag` | &#x27c5;
1865
+ | `lbag` | &#x27c5;
1866
+ | `Rbag` | &#x27c6;
1867
+ | `rbag` | &#x27c6;
1868
+ | `upin` | &#x27d2;
1869
+ | `lang` | &#x27ea;
1870
+ | `rang` | &#x27eb;
1871
+ | `psur` | &#x2900;
1872
+ | `pinj` | &#x2914;
1873
+ | `finj` | &#x2915;
1874
+ | `tona` | &#x2927;
1875
+ | `toea` | &#x2928;
1876
+ | `tosa` | &#x2929;
1877
+ | `towa` | &#x292a;
1878
+ | `VERT` | &#x2980;
1879
+ | `spot` | &#x2981;
1880
+ | `limg` | &#x2987;
1881
+ | `rimg` | &#x2988;
1882
+ | `obot` | &#x29ba;
1883
+ | `cirE` | &#x29c3;
1884
+ | `dsol` | &#x29f6;
1885
+ | `xsol` | &#x29f8;
1886
+ | `hide` | &#x29f9;
1887
+ | `fint` | &#x2a0f;
1888
+ | `intx` | &#x2a18;
1889
+ | `Join` | &#x2a1d;
1890
+ | `zcmp` | &#x2a1f;
1891
+ | `semi` | &#x2a1f;
1892
+ | `odiv` | &#x2a38;
1893
+ | `fcmp` | &#x2a3e;
1894
+ | `comp` | &#x2a3e;
1895
+ | `dsub` | &#x2a64;
1896
+ | `rsub` | &#x2a65;
1897
+ | `eqeq` | &#x2a75;
1898
+ | `Same` | &#x2a76;
1899
+ | `lneq` | &#x2a87;
1900
+ | `lnot` | &#xac;
1901
+ | `gneq` | &#x2a88;
1902
+ | `ltcc` | &#x2aa6;
1903
+ | `gtcc` | &#x2aa7;
1904
+ | `smte` | &#x2aac;
1905
+ | `late` | &#x2aad;
1906
+ | `Prec` | &#x2abb;
1907
+ | `Succ` | &#x2abc;
1908
+ | `csub` | &#x2acf;
1909
+ | `csup` | &#x2ad0;
1910
+ | `mlcp` | &#x2adb;
1911
+ | `Barv` | &#x2ae7;
1912
+ | `vBar` | &#x2ae8;
1913
+ | `barV` | &#x2aea;
1914
+ | `Vbar` | &#x2aeb;
1915
+ | `Perp` | &#x2aeb;
1916
+ | `bNot` | &#x2aed;
1917
+ | `Zbar` | &#x1b5;
1918
+ | `ddot` | &#x308;
1919
+ | `plus` | &#x2b;
1920
+ | `DDot` | &#x308;
1921
+ | `ring` | &#x30a;
1922
+ | `upMu` | &#x39c;
1923
+ | `upmu` | &#x3bc;
1924
+ | `upNu` | &#x39d;
1925
+ | `upnu` | &#x3bd;
1926
+ | `cent` | &#xa2;
1927
+ | `tcmu` | &#xb5;
1928
+ | `dint` | &#x22c2;
1929
+ | `duni` | &#x22c3;
1930
+ | `gets` | &#x2190;
1931
+ | `land` | &#x2227;
1932
+ | `upxi` | &#x3be;
1933
+ | `upXi` | &#x39e;
1934
+ | `neq` | &#x2260;
1935
+ | `leq` | &#x2264;
1936
+ | `exi` | &#x2203;
1937
+ | `geq` | &#x2265;
1938
+ | `bij` | &#x2916;
1939
+ | `cat` | &#x2040;
1940
+ | `Vec` | &#x20d7;
1941
+ | `ell` | &#x2113;
1942
+ | `mho` | &#x2127;
1943
+ | `Mho` | &#x2127;
1944
+ | `Yup` | &#x2144;
1945
+ | `Lsh` | &#x21b0;
1946
+ | `Rsh` | &#x21b1;
1947
+ | `nni` | &#x220c;
1948
+ | `QED` | &#x220e;
1949
+ | `mid` | &#x2223;
1950
+ | `int` | &#x222b;
1951
+ | `sim` | &#x223c;
1952
+ | `Cap` | &#x22d2;
1953
+ | `Cup` | &#x22d3;
1954
+ | `lll` | &#x22d8;
1955
+ | `ggg` | &#x22d9;
1956
+ | `nis` | &#x22fc;
1957
+ | `RHD` | &#x25b6;
1958
+ | `rhd` | &#x25b7;
1959
+ | `nin` | &#x2209;
1960
+ | `LHD` | &#x25c0;
1961
+ | `rel` | &#x2194;
1962
+ | `lhd` | &#x25c1;
1963
+ | `Sun` | &#x2609;
1964
+ | `sun` | &#x263c;
1965
+ | `leo` | &#x264c;
1966
+ | `Leo` | &#x264c;
1967
+ | `iff` | &#x27fa;
1968
+ | `Vee` | &#x2a54;
1969
+ | `lor` | &#x2228;
1970
+ | `lgE` | &#x2a91;
1971
+ | `glE` | &#x2a92;
1972
+ | `glj` | &#x2aa4;
1973
+ | `gla` | &#x2aa5;
1974
+ | `smt` | &#x2aaa;
1975
+ | `lat` | &#x2aab;
1976
+ | `Top` | &#x2aea;
1977
+ | `Bot` | &#x2aeb;
1978
+ | `Not` | &#x2aec;
1979
+ | `dot` | &#x307;
1980
+ | `Dot` | &#x307;
1981
+ | `not` | &#x338;
1982
+ | `yen` | &#xa5;
1983
+ | `eth` | &#xf0;
1984
+ | `Im` | &#x2111;
1985
+ | `wp` | &#x2118;
1986
+ | `Re` | &#x211c;
1987
+ | `DD` | &#x2145;
1988
+ | `dd` | &#x2146;
1989
+ | `ee` | &#x2147;
1990
+ | `ii` | &#x2148;
1991
+ | `jj` | &#x2149;
1992
+ | `ni` | &#x220b;
1993
+ | `mp` | &#x2213;
1994
+ | `AC` | &#x223f;
1995
+ | `wr` | &#x2240;
1996
+ | `ll` | &#x226a;
1997
+ | `gg` | &#x226b;
1998
+ | `Lt` | &#x2aa1;
1999
+ | `Gt` | &#x2aa2;
2000
+ |===