pikl 0.2.7-x86-mswin32 → 0.2.8-x86-mswin32
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/Manifest.txt +23 -0
- data/ext/pikl/decrease/fsdither.h +554 -0
- data/ext/pikl/decrease/median.c +1179 -0
- data/ext/pikl/decrease/median.h +7 -0
- data/ext/pikl/decrease/neuquan5.c +563 -0
- data/ext/pikl/decrease/neuquant.h +62 -0
- data/ext/pikl/decrease/wu.c +447 -0
- data/ext/pikl/decrease/wu.h +7 -0
- data/ext/pikl/pikl_affine.c +250 -0
- data/ext/pikl/pikl_affine.h +20 -0
- data/ext/pikl/pikl_blur.c +244 -0
- data/ext/pikl/pikl_blur.h +12 -0
- data/ext/pikl/pikl_decrease.c +126 -0
- data/ext/pikl/pikl_decrease.h +19 -0
- data/ext/pikl/pikl_effect2.c +240 -0
- data/ext/pikl/pikl_effect2.h +55 -0
- data/ext/pikl/pikl_effect3.c +266 -0
- data/ext/pikl/pikl_effect3.h +12 -0
- data/ext/pikl/pikl_effect4.c +495 -0
- data/ext/pikl/pikl_effect4.h +12 -0
- data/ext/pikl/pikl_pattern.c +611 -0
- data/ext/pikl/pikl_pattern.h +12 -0
- data/ext/pikl/pikl_scrap.c +731 -0
- data/ext/pikl/pikl_scrap.h +12 -0
- data/lib/pikl/version.rb +1 -1
- metadata +26 -3
@@ -0,0 +1,1179 @@
|
|
1
|
+
/*
|
2
|
+
Based upon a GIMP filter ("to-indexed.c"):
|
3
|
+
"The GIMP -- an image manipulation program
|
4
|
+
Copyright (C) 1995 Spencer Kimball and Peter Mattis"
|
5
|
+
|
6
|
+
"This filter takes an rgb input image and creates a new
|
7
|
+
indexed color image."
|
8
|
+
|
9
|
+
median_cut, 2-pass, floyd no/yes
|
10
|
+
char *out = to_indexed(input_image, num, dither, xsize, ysize, &colormap);
|
11
|
+
|
12
|
+
Benny:
|
13
|
+
v0.2 - Win95 GPF fixed.
|
14
|
+
v0.3 - weeded out some functions.
|
15
|
+
*/
|
16
|
+
|
17
|
+
#include <stdio.h>
|
18
|
+
#include <stdlib.h>
|
19
|
+
#include <string.h>
|
20
|
+
#include <malloc.h>
|
21
|
+
//#include <mem.h>
|
22
|
+
|
23
|
+
|
24
|
+
#include "fsdither.h" // tables:
|
25
|
+
/* 'range_array' 'floyd_steinberg_error1' 'floyd_steinberg_error2'
|
26
|
+
'floyd_steinberg_error3' 'floyd_steinberg_error4'*/
|
27
|
+
|
28
|
+
#define MAXNUMCOLORS 256
|
29
|
+
|
30
|
+
/* dither type */
|
31
|
+
#define NODITHER 0
|
32
|
+
#define FSDITHER 1
|
33
|
+
|
34
|
+
#define PRECISION_R 6
|
35
|
+
#define PRECISION_G 6
|
36
|
+
//#define PRECISION_B 6 // worse
|
37
|
+
#define PRECISION_B 5 // ori
|
38
|
+
|
39
|
+
//#if 0
|
40
|
+
#define R_SCALE
|
41
|
+
#define G_SCALE
|
42
|
+
#define B_SCALE
|
43
|
+
//#else
|
44
|
+
///* scale RGB distances by *2,*3,*1 */
|
45
|
+
//#define R_SCALE << 1
|
46
|
+
//#define G_SCALE * 3
|
47
|
+
//#define B_SCALE
|
48
|
+
//#endif
|
49
|
+
|
50
|
+
|
51
|
+
#define HIST_R_ELEMS (1<<PRECISION_R)
|
52
|
+
#define HIST_G_ELEMS (1<<PRECISION_G)
|
53
|
+
#define HIST_B_ELEMS (1<<PRECISION_B)
|
54
|
+
|
55
|
+
#define MR HIST_G_ELEMS*HIST_B_ELEMS
|
56
|
+
#define MG HIST_B_ELEMS
|
57
|
+
|
58
|
+
#define BITS_IN_SAMPLE 8
|
59
|
+
|
60
|
+
#define R_SHIFT (BITS_IN_SAMPLE - PRECISION_R)
|
61
|
+
#define G_SHIFT (BITS_IN_SAMPLE - PRECISION_G)
|
62
|
+
#define B_SHIFT (BITS_IN_SAMPLE - PRECISION_B)
|
63
|
+
|
64
|
+
typedef struct _Color Color;
|
65
|
+
typedef struct _QuantizeObj QuantizeObj;
|
66
|
+
typedef void (*Pass_Func) (QuantizeObj *, unsigned char *, unsigned char *, long, long);
|
67
|
+
//typedef void (*Cleanup_Func) (QuantizeObj *);
|
68
|
+
typedef unsigned long ColorFreq;
|
69
|
+
typedef ColorFreq *Histogram;
|
70
|
+
|
71
|
+
struct _Color {
|
72
|
+
int red;
|
73
|
+
int green;
|
74
|
+
int blue;
|
75
|
+
};
|
76
|
+
|
77
|
+
struct _QuantizeObj {
|
78
|
+
Pass_Func first_pass; /* first pass over image data creates colormap */
|
79
|
+
Pass_Func second_pass; /* second pass maps from image data to colormap */
|
80
|
+
// Cleanup_Func delete_func; /* function to clean up data associated with private */
|
81
|
+
// int bpp; /* bytes per pixel (grayscale vs rgb) */
|
82
|
+
int desired_number_of_colors; /* Number of colors we will allow */
|
83
|
+
int actual_number_of_colors; /* Number of colors actually needed */
|
84
|
+
Color cmap[256]; /* colormap created by quantization */
|
85
|
+
Histogram histogram; /* holds the histogram */
|
86
|
+
};
|
87
|
+
|
88
|
+
typedef struct {
|
89
|
+
/* The bounds of the box (inclusive); expressed as histogram indexes */
|
90
|
+
int Rmin, Rmax;
|
91
|
+
int Gmin, Gmax;
|
92
|
+
int Bmin, Bmax;
|
93
|
+
/* The volume (actually 2-norm) of the box */
|
94
|
+
int volume;
|
95
|
+
/* The number of nonzero histogram cells within this box */
|
96
|
+
long colorcount;
|
97
|
+
} box , *boxptr;
|
98
|
+
|
99
|
+
typedef struct {
|
100
|
+
long ncolors;
|
101
|
+
long dither;
|
102
|
+
} Options;
|
103
|
+
|
104
|
+
//void error(char*);
|
105
|
+
void error(char*msg){
|
106
|
+
fprintf(stderr, "%s\n", msg);
|
107
|
+
}
|
108
|
+
|
109
|
+
/*
|
110
|
+
static void *xmalloc(unsigned long size)
|
111
|
+
{
|
112
|
+
void *p;
|
113
|
+
p = malloc(size);
|
114
|
+
if (!p) error("could not xmallocate memory");
|
115
|
+
return p;
|
116
|
+
}
|
117
|
+
*/
|
118
|
+
|
119
|
+
static void xfree(void *p)
|
120
|
+
{
|
121
|
+
if (p)
|
122
|
+
free(p);
|
123
|
+
}
|
124
|
+
|
125
|
+
static void zero_histogram_rgb(Histogram histogram)
|
126
|
+
{
|
127
|
+
int r, g, b;
|
128
|
+
for (r = 0; r < HIST_R_ELEMS; r++)
|
129
|
+
for (g = 0; g < HIST_G_ELEMS; g++)
|
130
|
+
for (b = 0; b < HIST_B_ELEMS; b++)
|
131
|
+
histogram[r * MR + g * MG + b] = 0;
|
132
|
+
}
|
133
|
+
|
134
|
+
static void generate_histogram_rgb(histogram, src, width, height)
|
135
|
+
Histogram histogram;
|
136
|
+
unsigned char *src;
|
137
|
+
long width;
|
138
|
+
long height;
|
139
|
+
{
|
140
|
+
int num_elems;
|
141
|
+
ColorFreq *col;
|
142
|
+
|
143
|
+
num_elems = width * height;
|
144
|
+
zero_histogram_rgb(histogram);
|
145
|
+
|
146
|
+
while (num_elems--) {
|
147
|
+
col = &histogram[(src[0] >> R_SHIFT) * MR +
|
148
|
+
(src[1] >> G_SHIFT) * MG +
|
149
|
+
(src[2] >> B_SHIFT)];
|
150
|
+
(*col)++;
|
151
|
+
src += 3;
|
152
|
+
}
|
153
|
+
}
|
154
|
+
|
155
|
+
static boxptr
|
156
|
+
find_biggest_color_pop(boxlist, numboxes)
|
157
|
+
boxptr boxlist;
|
158
|
+
int numboxes;
|
159
|
+
/* Find the splittable box with the largest color population */
|
160
|
+
/* Returns 0 if no splittable boxes remain */
|
161
|
+
{
|
162
|
+
boxptr boxp;
|
163
|
+
int i;
|
164
|
+
long maxc = 0;
|
165
|
+
boxptr which = 0;
|
166
|
+
|
167
|
+
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
|
168
|
+
if (boxp->colorcount > maxc && boxp->volume > 0) {
|
169
|
+
which = boxp;
|
170
|
+
maxc = boxp->colorcount;
|
171
|
+
}
|
172
|
+
}
|
173
|
+
|
174
|
+
return which;
|
175
|
+
}
|
176
|
+
|
177
|
+
|
178
|
+
static boxptr
|
179
|
+
find_biggest_volume(boxlist, numboxes)
|
180
|
+
boxptr boxlist;
|
181
|
+
int numboxes;
|
182
|
+
/* Find the splittable box with the largest (scaled) volume */
|
183
|
+
/* Returns 0 if no splittable boxes remain */
|
184
|
+
{
|
185
|
+
boxptr boxp;
|
186
|
+
int i;
|
187
|
+
int maxv = 0;
|
188
|
+
boxptr which = 0;
|
189
|
+
|
190
|
+
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
|
191
|
+
if (boxp->volume > maxv) {
|
192
|
+
which = boxp;
|
193
|
+
maxv = boxp->volume;
|
194
|
+
}
|
195
|
+
}
|
196
|
+
|
197
|
+
return which;
|
198
|
+
}
|
199
|
+
|
200
|
+
|
201
|
+
static void update_box_rgb(histogram, boxp)
|
202
|
+
Histogram histogram;
|
203
|
+
boxptr boxp;
|
204
|
+
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
|
205
|
+
/* and recompute its volume and population */
|
206
|
+
{
|
207
|
+
ColorFreq *histp;
|
208
|
+
int R, G, B;
|
209
|
+
int Rmin, Rmax, Gmin, Gmax, Bmin, Bmax;
|
210
|
+
int dist0, dist1, dist2;
|
211
|
+
long ccount;
|
212
|
+
|
213
|
+
Rmin = boxp->Rmin;
|
214
|
+
Rmax = boxp->Rmax;
|
215
|
+
Gmin = boxp->Gmin;
|
216
|
+
Gmax = boxp->Gmax;
|
217
|
+
Bmin = boxp->Bmin;
|
218
|
+
Bmax = boxp->Bmax;
|
219
|
+
|
220
|
+
if (Rmax > Rmin)
|
221
|
+
for (R = Rmin; R <= Rmax; R++)
|
222
|
+
for (G = Gmin; G <= Gmax; G++) {
|
223
|
+
histp = histogram + R * MR + G * MG + Bmin;
|
224
|
+
for (B = Bmin; B <= Bmax; B++)
|
225
|
+
if (*histp++ != 0) {
|
226
|
+
boxp->Rmin = Rmin = R;
|
227
|
+
goto have_Rmin;
|
228
|
+
}
|
229
|
+
}
|
230
|
+
have_Rmin:
|
231
|
+
if (Rmax > Rmin)
|
232
|
+
for (R = Rmax; R >= Rmin; R--)
|
233
|
+
for (G = Gmin; G <= Gmax; G++) {
|
234
|
+
histp = histogram + R * MR + G * MG + Bmin;
|
235
|
+
for (B = Bmin; B <= Bmax; B++)
|
236
|
+
if (*histp++ != 0) {
|
237
|
+
boxp->Rmax = Rmax = R;
|
238
|
+
goto have_Rmax;
|
239
|
+
}
|
240
|
+
}
|
241
|
+
have_Rmax:
|
242
|
+
if (Gmax > Gmin)
|
243
|
+
for (G = Gmin; G <= Gmax; G++)
|
244
|
+
for (R = Rmin; R <= Rmax; R++) {
|
245
|
+
histp = histogram + R * MR + G * MG + Bmin;
|
246
|
+
for (B = Bmin; B <= Bmax; B++)
|
247
|
+
if (*histp++ != 0) {
|
248
|
+
boxp->Gmin = Gmin = G;
|
249
|
+
goto have_Gmin;
|
250
|
+
}
|
251
|
+
}
|
252
|
+
have_Gmin:
|
253
|
+
if (Gmax > Gmin)
|
254
|
+
for (G = Gmax; G >= Gmin; G--)
|
255
|
+
for (R = Rmin; R <= Rmax; R++) {
|
256
|
+
histp = histogram + R * MR + G * MG + Bmin;
|
257
|
+
for (B = Bmin; B <= Bmax; B++)
|
258
|
+
if (*histp++ != 0) {
|
259
|
+
boxp->Gmax = Gmax = G;
|
260
|
+
goto have_Gmax;
|
261
|
+
}
|
262
|
+
}
|
263
|
+
have_Gmax:
|
264
|
+
if (Bmax > Bmin)
|
265
|
+
for (B = Bmin; B <= Bmax; B++)
|
266
|
+
for (R = Rmin; R <= Rmax; R++) {
|
267
|
+
histp = histogram + R * MR + Gmin * MG + B;
|
268
|
+
for (G = Gmin; G <= Gmax; G++, histp += MG)
|
269
|
+
if (*histp != 0) {
|
270
|
+
boxp->Bmin = Bmin = B;
|
271
|
+
goto have_Bmin;
|
272
|
+
}
|
273
|
+
}
|
274
|
+
have_Bmin:
|
275
|
+
if (Bmax > Bmin)
|
276
|
+
for (B = Bmax; B >= Bmin; B--)
|
277
|
+
for (R = Rmin; R <= Rmax; R++) {
|
278
|
+
histp = histogram + R * MR + Gmin * MG + B;
|
279
|
+
for (G = Gmin; G <= Gmax; G++, histp += MG)
|
280
|
+
if (*histp != 0) {
|
281
|
+
boxp->Bmax = Bmax = B;
|
282
|
+
goto have_Bmax;
|
283
|
+
}
|
284
|
+
}
|
285
|
+
have_Bmax:
|
286
|
+
|
287
|
+
/* Update box volume.
|
288
|
+
* We use 2-norm rather than real volume here; this biases the method
|
289
|
+
* against making long narrow boxes, and it has the side benefit that
|
290
|
+
* a box is splittable iff norm > 0.
|
291
|
+
* Since the differences are expressed in histogram-cell units,
|
292
|
+
* we have to shift back to JSAMPLE units to get consistent distances;
|
293
|
+
* after which, we scale according to the selected distance scale factors.
|
294
|
+
*/
|
295
|
+
dist0 = ((Rmax - Rmin) << R_SHIFT) R_SCALE;
|
296
|
+
dist1 = ((Gmax - Gmin) << G_SHIFT) G_SCALE;
|
297
|
+
dist2 = ((Bmax - Bmin) << B_SHIFT) B_SCALE;
|
298
|
+
boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
|
299
|
+
|
300
|
+
/* Now scan remaining volume of box and compute population */
|
301
|
+
ccount = 0;
|
302
|
+
for (R = Rmin; R <= Rmax; R++)
|
303
|
+
for (G = Gmin; G <= Gmax; G++) {
|
304
|
+
histp = histogram + R * MR + G * MG + Bmin;
|
305
|
+
for (B = Bmin; B <= Bmax; B++, histp++)
|
306
|
+
if (*histp != 0) {
|
307
|
+
ccount++;
|
308
|
+
}
|
309
|
+
}
|
310
|
+
|
311
|
+
boxp->colorcount = ccount;
|
312
|
+
}
|
313
|
+
|
314
|
+
|
315
|
+
static int median_cut_rgb(histogram, boxlist, numboxes, desired_colors)
|
316
|
+
Histogram histogram;
|
317
|
+
boxptr boxlist;
|
318
|
+
int numboxes;
|
319
|
+
int desired_colors;
|
320
|
+
/* Repeatedly select and split the largest box until we have enough boxes */
|
321
|
+
{
|
322
|
+
int n, lb;
|
323
|
+
int R, G, B, cmax;
|
324
|
+
boxptr b1, b2;
|
325
|
+
|
326
|
+
while (numboxes < desired_colors) {
|
327
|
+
/* Select box to split.
|
328
|
+
* Current algorithm: by population for first half, then by volume.
|
329
|
+
*/
|
330
|
+
if (numboxes * 2 <= desired_colors) {
|
331
|
+
b1 = find_biggest_color_pop(boxlist, numboxes);
|
332
|
+
} else {
|
333
|
+
b1 = find_biggest_volume(boxlist, numboxes);
|
334
|
+
}
|
335
|
+
|
336
|
+
if (b1 == 0) /* no splittable boxes left! */
|
337
|
+
break;
|
338
|
+
b2 = boxlist + numboxes; /* where new box will go */
|
339
|
+
/* Copy the color bounds to the new box. */
|
340
|
+
b2->Rmax = b1->Rmax;
|
341
|
+
b2->Gmax = b1->Gmax;
|
342
|
+
b2->Bmax = b1->Bmax;
|
343
|
+
b2->Rmin = b1->Rmin;
|
344
|
+
b2->Gmin = b1->Gmin;
|
345
|
+
b2->Bmin = b1->Bmin;
|
346
|
+
/* Choose which axis to split the box on.
|
347
|
+
* Current algorithm: longest scaled axis.
|
348
|
+
* See notes in update_box about scaling distances.
|
349
|
+
*/
|
350
|
+
R = ((b1->Rmax - b1->Rmin) << R_SHIFT) R_SCALE;
|
351
|
+
G = ((b1->Gmax - b1->Gmin) << G_SHIFT) G_SCALE;
|
352
|
+
B = ((b1->Bmax - b1->Bmin) << B_SHIFT) B_SCALE;
|
353
|
+
/* We want to break any ties in favor of green, then red, blue last.
|
354
|
+
*/
|
355
|
+
cmax = G;
|
356
|
+
n = 1;
|
357
|
+
if (R > cmax) {
|
358
|
+
cmax = R;
|
359
|
+
n = 0;
|
360
|
+
}
|
361
|
+
if (B > cmax) {
|
362
|
+
n = 2;
|
363
|
+
}
|
364
|
+
/* Choose split point along selected axis, and update box bounds.
|
365
|
+
* Current algorithm: split at halfway point.
|
366
|
+
* (Since the box has been shrunk to minimum volume,
|
367
|
+
* any split will produce two nonempty subboxes.)
|
368
|
+
* Note that lb value is max for lower box, so must be < old max.
|
369
|
+
*/
|
370
|
+
switch (n) {
|
371
|
+
case 0:
|
372
|
+
lb = (b1->Rmax + b1->Rmin) / 2;
|
373
|
+
b1->Rmax = lb;
|
374
|
+
b2->Rmin = lb + 1;
|
375
|
+
break;
|
376
|
+
case 1:
|
377
|
+
lb = (b1->Gmax + b1->Gmin) / 2;
|
378
|
+
b1->Gmax = lb;
|
379
|
+
b2->Gmin = lb + 1;
|
380
|
+
break;
|
381
|
+
case 2:
|
382
|
+
lb = (b1->Bmax + b1->Bmin) / 2;
|
383
|
+
b1->Bmax = lb;
|
384
|
+
b2->Bmin = lb + 1;
|
385
|
+
break;
|
386
|
+
}
|
387
|
+
/* Update stats for boxes */
|
388
|
+
update_box_rgb(histogram, b1);
|
389
|
+
update_box_rgb(histogram, b2);
|
390
|
+
numboxes++;
|
391
|
+
}
|
392
|
+
return numboxes;
|
393
|
+
}
|
394
|
+
|
395
|
+
|
396
|
+
static void compute_color_rgb(quantobj, histogram, boxp, icolor)
|
397
|
+
QuantizeObj *quantobj;
|
398
|
+
Histogram histogram;
|
399
|
+
boxptr boxp;
|
400
|
+
int icolor;
|
401
|
+
/* Compute representative color for a box, put it in colormap[icolor] */
|
402
|
+
{
|
403
|
+
/* Current algorithm: mean weighted by pixels (not colors) */
|
404
|
+
/* Note it is important to get the rounding correct! */
|
405
|
+
ColorFreq *histp;
|
406
|
+
int R, G, B;
|
407
|
+
int Rmin, Rmax;
|
408
|
+
int Gmin, Gmax;
|
409
|
+
int Bmin, Bmax;
|
410
|
+
long count;
|
411
|
+
long total = 0;
|
412
|
+
long Rtotal = 0;
|
413
|
+
long Gtotal = 0;
|
414
|
+
long Btotal = 0;
|
415
|
+
|
416
|
+
Rmin = boxp->Rmin;
|
417
|
+
Rmax = boxp->Rmax;
|
418
|
+
Gmin = boxp->Gmin;
|
419
|
+
Gmax = boxp->Gmax;
|
420
|
+
Bmin = boxp->Bmin;
|
421
|
+
Bmax = boxp->Bmax;
|
422
|
+
|
423
|
+
for (R = Rmin; R <= Rmax; R++)
|
424
|
+
for (G = Gmin; G <= Gmax; G++) {
|
425
|
+
histp = histogram + R * MR + G * MG + Bmin;
|
426
|
+
for (B = Bmin; B <= Bmax; B++) {
|
427
|
+
if ((count = *histp++) != 0) {
|
428
|
+
total += count;
|
429
|
+
Rtotal += ((R << R_SHIFT) + ((1 << R_SHIFT) >> 1)) * count;
|
430
|
+
Gtotal += ((G << G_SHIFT) + ((1 << G_SHIFT) >> 1)) * count;
|
431
|
+
Btotal += ((B << B_SHIFT) + ((1 << B_SHIFT) >> 1)) * count;
|
432
|
+
}
|
433
|
+
}
|
434
|
+
}
|
435
|
+
|
436
|
+
quantobj->cmap[icolor].red = (Rtotal + (total >> 1)) / total;
|
437
|
+
quantobj->cmap[icolor].green = (Gtotal + (total >> 1)) / total;
|
438
|
+
quantobj->cmap[icolor].blue = (Btotal + (total >> 1)) / total;
|
439
|
+
}
|
440
|
+
|
441
|
+
|
442
|
+
static void select_colors_rgb(quantobj, histogram)
|
443
|
+
QuantizeObj *quantobj;
|
444
|
+
Histogram histogram;
|
445
|
+
/* Master routine for color selection */
|
446
|
+
{
|
447
|
+
boxptr boxlist;
|
448
|
+
int numboxes;
|
449
|
+
int desired = quantobj->desired_number_of_colors;
|
450
|
+
int i;
|
451
|
+
|
452
|
+
/* Allocate workspace for box list */
|
453
|
+
boxlist = (boxptr) malloc(desired * sizeof(box));
|
454
|
+
if (!boxlist) error("could not alloc mem");
|
455
|
+
|
456
|
+
/* Initialize one box containing whole space */
|
457
|
+
numboxes = 1;
|
458
|
+
boxlist[0].Rmin = 0;
|
459
|
+
boxlist[0].Rmax = (1 << PRECISION_R) - 1;
|
460
|
+
boxlist[0].Gmin = 0;
|
461
|
+
boxlist[0].Gmax = (1 << PRECISION_G) - 1;
|
462
|
+
boxlist[0].Bmin = 0;
|
463
|
+
boxlist[0].Bmax = (1 << PRECISION_B) - 1;
|
464
|
+
/* Shrink it to actually-used volume and set its statistics */
|
465
|
+
update_box_rgb(histogram, boxlist);
|
466
|
+
/* Perform median-cut to produce final box list */
|
467
|
+
numboxes = median_cut_rgb(histogram, boxlist, numboxes, desired);
|
468
|
+
quantobj->actual_number_of_colors = numboxes;
|
469
|
+
/* Compute the representative color for each box, fill colormap */
|
470
|
+
for (i = 0; i < numboxes; i++)
|
471
|
+
compute_color_rgb(quantobj, histogram, boxlist + i, i);
|
472
|
+
|
473
|
+
//add by soezimaster
|
474
|
+
free(boxlist);
|
475
|
+
}
|
476
|
+
|
477
|
+
|
478
|
+
/*
|
479
|
+
* These routines are concerned with the time-critical task of mapping input
|
480
|
+
* colors to the nearest color in the selected colormap.
|
481
|
+
*
|
482
|
+
* We re-use the histogram space as an "inverse color map", essentially a
|
483
|
+
* cache for the results of nearest-color searches. All colors within a
|
484
|
+
* histogram cell will be mapped to the same colormap entry, namely the one
|
485
|
+
* closest to the cell's center. This may not be quite the closest entry to
|
486
|
+
* the actual input color, but it's almost as good. A zero in the cache
|
487
|
+
* indicates we haven't found the nearest color for that cell yet; the array
|
488
|
+
* is cleared to zeroes before starting the mapping pass. When we find the
|
489
|
+
* nearest color for a cell, its colormap index plus one is recorded in the
|
490
|
+
* cache for future use. The pass2 scanning routines call fill_inverse_cmap
|
491
|
+
* when they need to use an unfilled entry in the cache.
|
492
|
+
*
|
493
|
+
* Our method of efficiently finding nearest colors is based on the "locally
|
494
|
+
* sorted search" idea described by Heckbert and on the incremental distance
|
495
|
+
* calculation described by Spencer W. Thomas in chapter III.1 of Graphics
|
496
|
+
* Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
|
497
|
+
* the distances from a given colormap entry to each cell of the histogram can
|
498
|
+
* be computed quickly using an incremental method: the differences between
|
499
|
+
* distances to adjacent cells themselves differ by a constant. This allows a
|
500
|
+
* fairly fast implementation of the "brute force" approach of computing the
|
501
|
+
* distance from every colormap entry to every histogram cell. Unfortunately,
|
502
|
+
* it needs a work array to hold the best-distance-so-far for each histogram
|
503
|
+
* cell (because the inner loop has to be over cells, not colormap entries).
|
504
|
+
* The work array elements have to be ints, so the work array would need
|
505
|
+
* 256Kb at our recommended precision. This is not feasible in DOS machines.
|
506
|
+
|
507
|
+
[ 256*1024/4 = 65,536 ]
|
508
|
+
|
509
|
+
* To get around these problems, we apply Thomas' method to compute the
|
510
|
+
* nearest colors for only the cells within a small subbox of the histogram.
|
511
|
+
* The work array need be only as big as the subbox, so the memory usage
|
512
|
+
* problem is solved. Furthermore, we need not fill subboxes that are never
|
513
|
+
* referenced in pass2; many images use only part of the color gamut, so a
|
514
|
+
* fair amount of work is saved. An additional advantage of this
|
515
|
+
* approach is that we can apply Heckbert's locality criterion to quickly
|
516
|
+
* eliminate colormap entries that are far away from the subbox; typically
|
517
|
+
* three-fourths of the colormap entries are rejected by Heckbert's criterion,
|
518
|
+
* and we need not compute their distances to individual cells in the subbox.
|
519
|
+
* The speed of this approach is heavily influenced by the subbox size: too
|
520
|
+
* small means too much overhead, too big loses because Heckbert's criterion
|
521
|
+
* can't eliminate as many colormap entries. Empirically the best subbox
|
522
|
+
* size seems to be about 1/512th of the histogram (1/8th in each direction).
|
523
|
+
*
|
524
|
+
* Thomas' article also describes a refined method which is asymptotically
|
525
|
+
* faster than the brute-force method, but it is also far more complex and
|
526
|
+
* cannot efficiently be applied to small subboxes. It is therefore not
|
527
|
+
* useful for programs intended to be portable to DOS machines. On machines
|
528
|
+
* with plenty of memory, filling the whole histogram in one shot with Thomas'
|
529
|
+
* refined method might be faster than the present code --- but then again,
|
530
|
+
* it might not be any faster, and it's certainly more complicated.
|
531
|
+
*/
|
532
|
+
|
533
|
+
/* log2(histogram cells in update box) for each axis; this can be adjusted */
|
534
|
+
#define BOX_R_LOG (PRECISION_R-3)
|
535
|
+
#define BOX_G_LOG (PRECISION_G-3)
|
536
|
+
#define BOX_B_LOG (PRECISION_B-3)
|
537
|
+
|
538
|
+
#define BOX_R_ELEMS (1<<BOX_R_LOG) /* # of hist cells in update box */
|
539
|
+
#define BOX_G_ELEMS (1<<BOX_G_LOG)
|
540
|
+
#define BOX_B_ELEMS (1<<BOX_B_LOG)
|
541
|
+
|
542
|
+
#define BOX_R_SHIFT (R_SHIFT + BOX_R_LOG)
|
543
|
+
#define BOX_G_SHIFT (G_SHIFT + BOX_G_LOG)
|
544
|
+
#define BOX_B_SHIFT (B_SHIFT + BOX_B_LOG)
|
545
|
+
|
546
|
+
/*
|
547
|
+
* The next three routines implement inverse colormap filling. They could
|
548
|
+
* all be folded into one big routine, but splitting them up this way saves
|
549
|
+
* some stack space (the mindist[] and bestdist[] arrays need not coexist)
|
550
|
+
* and may allow some compilers to produce better code by registerizing more
|
551
|
+
* inner-loop variables.
|
552
|
+
*/
|
553
|
+
|
554
|
+
static int find_nearby_colors(quantobj, minR, minG, minB, colorlist)
|
555
|
+
QuantizeObj *quantobj;
|
556
|
+
int minR;
|
557
|
+
int minG;
|
558
|
+
int minB;
|
559
|
+
int colorlist[];
|
560
|
+
/* Locate the colormap entries close enough to an update box to be candidates
|
561
|
+
* for the nearest entry to some cell(s) in the update box. The update box
|
562
|
+
* is specified by the center coordinates of its first cell. The number of
|
563
|
+
* candidate colormap entries is returned, and their colormap indexes are
|
564
|
+
* placed in colorlist[].
|
565
|
+
* This routine uses Heckbert's "locally sorted search" criterion to select
|
566
|
+
* the colors that need further consideration.
|
567
|
+
*/
|
568
|
+
{
|
569
|
+
int numcolors = quantobj->actual_number_of_colors;
|
570
|
+
int maxR, maxG, maxB;
|
571
|
+
int centerR, centerG, centerB;
|
572
|
+
int i, x, ncolors;
|
573
|
+
int minmaxdist, min_dist, max_dist, tdist;
|
574
|
+
int mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
|
575
|
+
|
576
|
+
/* Compute true coordinates of update box's upper corner and center.
|
577
|
+
* Actually we compute the coordinates of the center of the upper-corner
|
578
|
+
* histogram cell, which are the upper bounds of the volume we care about.
|
579
|
+
* Note that since ">>" rounds down, the "center" values may be closer to
|
580
|
+
* min than to max; hence comparisons to them must be "<=", not "<".
|
581
|
+
*/
|
582
|
+
maxR = minR + ((1 << BOX_R_SHIFT) - (1 << R_SHIFT));
|
583
|
+
centerR = (minR + maxR) >> 1;
|
584
|
+
maxG = minG + ((1 << BOX_G_SHIFT) - (1 << G_SHIFT));
|
585
|
+
centerG = (minG + maxG) >> 1;
|
586
|
+
maxB = minB + ((1 << BOX_B_SHIFT) - (1 << B_SHIFT));
|
587
|
+
centerB = (minB + maxB) >> 1;
|
588
|
+
|
589
|
+
/* For each color in colormap, find:
|
590
|
+
* 1. its minimum squared-distance to any point in the update box
|
591
|
+
* (zero if color is within update box);
|
592
|
+
* 2. its maximum squared-distance to any point in the update box.
|
593
|
+
* Both of these can be found by considering only the corners of the box.
|
594
|
+
* We save the minimum distance for each color in mindist[];
|
595
|
+
* only the smallest maximum distance is of interest.
|
596
|
+
*/
|
597
|
+
minmaxdist = 0x7FFFFFFFL;
|
598
|
+
|
599
|
+
for (i = 0; i < numcolors; i++) {
|
600
|
+
/* We compute the squared-R-distance term, then add in the other two. */
|
601
|
+
x = quantobj->cmap[i].red;
|
602
|
+
if (x < minR) {
|
603
|
+
tdist = (x - minR) R_SCALE;
|
604
|
+
min_dist = tdist * tdist;
|
605
|
+
tdist = (x - maxR) R_SCALE;
|
606
|
+
max_dist = tdist * tdist;
|
607
|
+
} else if (x > maxR) {
|
608
|
+
tdist = (x - maxR) R_SCALE;
|
609
|
+
min_dist = tdist * tdist;
|
610
|
+
tdist = (x - minR) R_SCALE;
|
611
|
+
max_dist = tdist * tdist;
|
612
|
+
} else {
|
613
|
+
/* within cell range so no contribution to min_dist */
|
614
|
+
min_dist = 0;
|
615
|
+
if (x <= centerR) {
|
616
|
+
tdist = (x - maxR) R_SCALE;
|
617
|
+
max_dist = tdist * tdist;
|
618
|
+
} else {
|
619
|
+
tdist = (x - minR) R_SCALE;
|
620
|
+
max_dist = tdist * tdist;
|
621
|
+
}
|
622
|
+
}
|
623
|
+
|
624
|
+
x = quantobj->cmap[i].green;
|
625
|
+
if (x < minG) {
|
626
|
+
tdist = (x - minG) G_SCALE;
|
627
|
+
min_dist += tdist * tdist;
|
628
|
+
tdist = (x - maxG) G_SCALE;
|
629
|
+
max_dist += tdist * tdist;
|
630
|
+
} else if (x > maxG) {
|
631
|
+
tdist = (x - maxG) G_SCALE;
|
632
|
+
min_dist += tdist * tdist;
|
633
|
+
tdist = (x - minG) G_SCALE;
|
634
|
+
max_dist += tdist * tdist;
|
635
|
+
} else {
|
636
|
+
/* within cell range so no contribution to min_dist */
|
637
|
+
if (x <= centerG) {
|
638
|
+
tdist = (x - maxG) G_SCALE;
|
639
|
+
max_dist += tdist * tdist;
|
640
|
+
} else {
|
641
|
+
tdist = (x - minG) G_SCALE;
|
642
|
+
max_dist += tdist * tdist;
|
643
|
+
}
|
644
|
+
}
|
645
|
+
|
646
|
+
x = quantobj->cmap[i].blue;
|
647
|
+
if (x < minB) {
|
648
|
+
tdist = (x - minB) B_SCALE;
|
649
|
+
min_dist += tdist * tdist;
|
650
|
+
tdist = (x - maxB) B_SCALE;
|
651
|
+
max_dist += tdist * tdist;
|
652
|
+
} else if (x > maxB) {
|
653
|
+
tdist = (x - maxB) B_SCALE;
|
654
|
+
min_dist += tdist * tdist;
|
655
|
+
tdist = (x - minB) B_SCALE;
|
656
|
+
max_dist += tdist * tdist;
|
657
|
+
} else {
|
658
|
+
/* within cell range so no contribution to min_dist */
|
659
|
+
if (x <= centerB) {
|
660
|
+
tdist = (x - maxB) B_SCALE;
|
661
|
+
max_dist += tdist * tdist;
|
662
|
+
} else {
|
663
|
+
tdist = (x - minB) B_SCALE;
|
664
|
+
max_dist += tdist * tdist;
|
665
|
+
}
|
666
|
+
}
|
667
|
+
|
668
|
+
mindist[i] = min_dist; /* save away the results */
|
669
|
+
if (max_dist < minmaxdist)
|
670
|
+
minmaxdist = max_dist;
|
671
|
+
}
|
672
|
+
|
673
|
+
/* Now we know that no cell in the update box is more than minmaxdist
|
674
|
+
* away from some colormap entry. Therefore, only colors that are
|
675
|
+
* within minmaxdist of some part of the box need be considered.
|
676
|
+
*/
|
677
|
+
ncolors = 0;
|
678
|
+
for (i = 0; i < numcolors; i++) {
|
679
|
+
if (mindist[i] <= minmaxdist)
|
680
|
+
colorlist[ncolors++] = i;
|
681
|
+
}
|
682
|
+
return ncolors;
|
683
|
+
}
|
684
|
+
|
685
|
+
|
686
|
+
static void find_best_colors(quantobj, minR, minG, minB, numcolors, colorlist, bestcolor)
|
687
|
+
QuantizeObj *quantobj;
|
688
|
+
int minR;
|
689
|
+
int minG;
|
690
|
+
int minB;
|
691
|
+
int numcolors;
|
692
|
+
int colorlist[];
|
693
|
+
int bestcolor[];
|
694
|
+
/* Find the closest colormap entry for each cell in the update box,
|
695
|
+
given the list of candidate colors prepared by find_nearby_colors.
|
696
|
+
Return the indexes of the closest entries in the bestcolor[] array.
|
697
|
+
This routine uses Thomas' incremental distance calculation method to
|
698
|
+
find the distance from a colormap entry to successive cells in the box.
|
699
|
+
*/
|
700
|
+
{
|
701
|
+
int iR, iG, iB;
|
702
|
+
int i, icolor;
|
703
|
+
int *bptr; /* pointer into bestdist[] array */
|
704
|
+
int *cptr; /* pointer into bestcolor[] array */
|
705
|
+
int dist0, dist1; /* initial distance values */
|
706
|
+
int dist2; /* current distance in inner loop */
|
707
|
+
int xx0, xx1; /* distance increments */
|
708
|
+
int xx2;
|
709
|
+
int inR, inG, inB; /* initial values for increments */
|
710
|
+
|
711
|
+
/* This array holds the distance to the nearest-so-far color for each cell */
|
712
|
+
int bestdist[BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS];
|
713
|
+
|
714
|
+
/* Initialize best-distance for each cell of the update box */
|
715
|
+
bptr = bestdist;
|
716
|
+
for (i = BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS - 1; i >= 0; i--)
|
717
|
+
*bptr++ = 0x7FFFFFFFL;
|
718
|
+
|
719
|
+
/* For each color selected by find_nearby_colors,
|
720
|
+
* compute its distance to the center of each cell in the box.
|
721
|
+
* If that's less than best-so-far, update best distance and color number.
|
722
|
+
*/
|
723
|
+
|
724
|
+
/* Nominal steps between cell centers ("x" in Thomas article) */
|
725
|
+
#define STEP_R ((1 << R_SHIFT) R_SCALE)
|
726
|
+
#define STEP_G ((1 << G_SHIFT) G_SCALE)
|
727
|
+
#define STEP_B ((1 << B_SHIFT) B_SCALE)
|
728
|
+
|
729
|
+
for (i = 0; i < numcolors; i++) {
|
730
|
+
icolor = colorlist[i];
|
731
|
+
/* Compute (square of) distance from minR/G/B to this color */
|
732
|
+
inR = (minR - quantobj->cmap[icolor].red) R_SCALE;
|
733
|
+
dist0 = inR * inR;
|
734
|
+
inG = (minG - quantobj->cmap[icolor].green) G_SCALE;
|
735
|
+
dist0 += inG * inG;
|
736
|
+
inB = (minB - quantobj->cmap[icolor].blue) B_SCALE;
|
737
|
+
dist0 += inB * inB;
|
738
|
+
/* Form the initial difference increments */
|
739
|
+
inR = inR * (2 * STEP_R) + STEP_R * STEP_R;
|
740
|
+
inG = inG * (2 * STEP_G) + STEP_G * STEP_G;
|
741
|
+
inB = inB * (2 * STEP_B) + STEP_B * STEP_B;
|
742
|
+
/* Now loop over all cells in box, updating distance per Thomas method */
|
743
|
+
bptr = bestdist;
|
744
|
+
cptr = bestcolor;
|
745
|
+
xx0 = inR;
|
746
|
+
for (iR = BOX_R_ELEMS - 1; iR >= 0; iR--) {
|
747
|
+
dist1 = dist0;
|
748
|
+
xx1 = inG;
|
749
|
+
for (iG = BOX_G_ELEMS - 1; iG >= 0; iG--) {
|
750
|
+
dist2 = dist1;
|
751
|
+
xx2 = inB;
|
752
|
+
for (iB = BOX_B_ELEMS - 1; iB >= 0; iB--) {
|
753
|
+
if (dist2 < *bptr) {
|
754
|
+
*bptr = dist2;
|
755
|
+
*cptr = icolor;
|
756
|
+
}
|
757
|
+
dist2 += xx2;
|
758
|
+
xx2 += 2 * STEP_B * STEP_B;
|
759
|
+
bptr++;
|
760
|
+
cptr++;
|
761
|
+
}
|
762
|
+
dist1 += xx1;
|
763
|
+
xx1 += 2 * STEP_G * STEP_G;
|
764
|
+
}
|
765
|
+
dist0 += xx0;
|
766
|
+
xx0 += 2 * STEP_R * STEP_R;
|
767
|
+
}
|
768
|
+
}
|
769
|
+
}
|
770
|
+
|
771
|
+
static void fill_inverse_cmap_rgb(quantobj, histogram, R, G, B)
|
772
|
+
QuantizeObj *quantobj;
|
773
|
+
Histogram histogram;
|
774
|
+
int R;
|
775
|
+
int G;
|
776
|
+
int B;
|
777
|
+
/* Fill the inverse-colormap entries in the update box that contains
|
778
|
+
histogram cell R/G/B. (Only that one cell MUST be filled, but
|
779
|
+
we can fill as many others as we wish.) */
|
780
|
+
{
|
781
|
+
int minR, minG, minB; /* lower left corner of update box */
|
782
|
+
int iR, iG, iB;
|
783
|
+
int *cptr; /* pointer into bestcolor[] array */
|
784
|
+
ColorFreq *cachep; /* pointer into main cache array */
|
785
|
+
/* This array lists the candidate colormap indexes. */
|
786
|
+
int colorlist[MAXNUMCOLORS];
|
787
|
+
int numcolors; /* number of candidate colors */
|
788
|
+
/* This array holds the actually closest colormap index for each cell. */
|
789
|
+
int bestcolor[BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS];
|
790
|
+
|
791
|
+
/* Convert cell coordinates to update box ID */
|
792
|
+
R >>= BOX_R_LOG;
|
793
|
+
G >>= BOX_G_LOG;
|
794
|
+
B >>= BOX_B_LOG;
|
795
|
+
|
796
|
+
/* Compute true coordinates of update box's origin corner.
|
797
|
+
* Actually we compute the coordinates of the center of the corner
|
798
|
+
* histogram cell, which are the lower bounds of the volume we care about.
|
799
|
+
*/
|
800
|
+
minR = (R << BOX_R_SHIFT) + ((1 << R_SHIFT) >> 1);
|
801
|
+
minG = (G << BOX_G_SHIFT) + ((1 << G_SHIFT) >> 1);
|
802
|
+
minB = (B << BOX_B_SHIFT) + ((1 << B_SHIFT) >> 1);
|
803
|
+
|
804
|
+
/* Determine which colormap entries are close enough to be candidates
|
805
|
+
* for the nearest entry to some cell in the update box.
|
806
|
+
*/
|
807
|
+
numcolors = find_nearby_colors(quantobj, minR, minG, minB, colorlist);
|
808
|
+
|
809
|
+
/* Determine the actually nearest colors. */
|
810
|
+
find_best_colors(quantobj, minR, minG, minB, numcolors, colorlist,
|
811
|
+
bestcolor);
|
812
|
+
|
813
|
+
/* Save the best color numbers (plus 1) in the main cache array */
|
814
|
+
R <<= BOX_R_LOG; /* convert ID back to base cell indexes */
|
815
|
+
G <<= BOX_G_LOG;
|
816
|
+
B <<= BOX_B_LOG;
|
817
|
+
cptr = bestcolor;
|
818
|
+
for (iR = 0; iR < BOX_R_ELEMS; iR++) {
|
819
|
+
for (iG = 0; iG < BOX_G_ELEMS; iG++) {
|
820
|
+
cachep = &histogram[(R + iR) * MR + (G + iG) * MG + B];
|
821
|
+
for (iB = 0; iB < BOX_B_ELEMS; iB++) {
|
822
|
+
*cachep++ = (*cptr++) + 1;
|
823
|
+
}
|
824
|
+
}
|
825
|
+
}
|
826
|
+
}
|
827
|
+
|
828
|
+
/* This is pass 1 */
|
829
|
+
static void median_cut_pass1_rgb(quantobj, src, dest, width, height)
|
830
|
+
QuantizeObj *quantobj;
|
831
|
+
unsigned char *src;
|
832
|
+
unsigned char *dest;
|
833
|
+
long width;
|
834
|
+
long height;
|
835
|
+
{
|
836
|
+
generate_histogram_rgb(quantobj->histogram, src, width, height);
|
837
|
+
select_colors_rgb(quantobj, quantobj->histogram);
|
838
|
+
}
|
839
|
+
|
840
|
+
|
841
|
+
/* Map some rows of pixels to the output colormapped representation. */
|
842
|
+
static void median_cut_pass2_no_dither_rgb(quantobj, src, dest, width, height)
|
843
|
+
QuantizeObj *quantobj;
|
844
|
+
unsigned char *src;
|
845
|
+
unsigned char *dest;
|
846
|
+
long width;
|
847
|
+
long height;
|
848
|
+
/* This version performs no dithering */
|
849
|
+
{
|
850
|
+
Histogram histogram = quantobj->histogram;
|
851
|
+
ColorFreq *cachep;
|
852
|
+
int R, G, B;
|
853
|
+
int row, col;
|
854
|
+
|
855
|
+
zero_histogram_rgb(histogram);
|
856
|
+
for (row = 0; row < height; row++) {
|
857
|
+
for (col = 0; col < width; col++) {
|
858
|
+
/* get pixel value and index into the cache */
|
859
|
+
R = (*src++) >> R_SHIFT;
|
860
|
+
G = (*src++) >> G_SHIFT;
|
861
|
+
B = (*src++) >> B_SHIFT;
|
862
|
+
cachep = &histogram[R * MR + G * MG + B];
|
863
|
+
/* If we have not seen this color before, find nearest colormap entry
|
864
|
+
and update the cache */
|
865
|
+
if (*cachep == 0)
|
866
|
+
fill_inverse_cmap_rgb(quantobj, histogram, R, G, B);
|
867
|
+
/* Now emit the colormap index for this cell */
|
868
|
+
*dest++ = *cachep - 1;
|
869
|
+
}
|
870
|
+
|
871
|
+
}
|
872
|
+
}
|
873
|
+
|
874
|
+
/*
|
875
|
+
Initialize the error-limiting transfer function (lookup table).
|
876
|
+
The raw F-S error computation can potentially compute error values of up to
|
877
|
+
+- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
|
878
|
+
much less, otherwise obviously wrong pixels will be created. (Typical
|
879
|
+
effects include weird fringes at color-area boundaries, isolated bright
|
880
|
+
pixels in a dark area, etc.) The standard advice for avoiding this problem
|
881
|
+
is to ensure that the "corners" of the color cube are allocated as output
|
882
|
+
colors; then repeated errors in the same direction cannot cause cascading
|
883
|
+
error buildup. However, that only prevents the error from getting
|
884
|
+
completely out of hand; Aaron Giles reports that error limiting improves
|
885
|
+
the results even with corner colors allocated.
|
886
|
+
|
887
|
+
A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
|
888
|
+
well, but the smoother transfer function used below is even better. Thanks
|
889
|
+
to Aaron Giles for this idea.
|
890
|
+
*/
|
891
|
+
|
892
|
+
static int *init_error_limit()
|
893
|
+
/* Allocate and fill in the error_limiter table */
|
894
|
+
{
|
895
|
+
int *table;
|
896
|
+
int in, out;
|
897
|
+
|
898
|
+
table = malloc((255 * 2 + 1) * sizeof(int));
|
899
|
+
if (!table) error("could not alloc mem");
|
900
|
+
table += 255; /* so we can index -255 ... +255 */
|
901
|
+
|
902
|
+
#define STEPSIZE 16
|
903
|
+
|
904
|
+
/* Map errors 1:1 up to +- 16 */
|
905
|
+
out = 0;
|
906
|
+
for (in = 0; in < STEPSIZE; in++, out++) {
|
907
|
+
table[in] = out;
|
908
|
+
table[-in] = -out;
|
909
|
+
}
|
910
|
+
|
911
|
+
/* Map errors 1:2 up to +- 3*16 */
|
912
|
+
for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) {
|
913
|
+
table[in] = out;
|
914
|
+
table[-in] = -out;
|
915
|
+
}
|
916
|
+
|
917
|
+
/* Clamp the rest to final out value (which is 32) */
|
918
|
+
for (; in <= 255; in++) {
|
919
|
+
table[in] = out;
|
920
|
+
table[-in] = -out;
|
921
|
+
}
|
922
|
+
|
923
|
+
#undef STEPSIZE
|
924
|
+
|
925
|
+
return table;
|
926
|
+
}
|
927
|
+
|
928
|
+
|
929
|
+
/* Map some rows of pixels to the output colormapped representation.
|
930
|
+
Perform floyd-steinberg dithering. */
|
931
|
+
static void median_cut_pass2_fs_dither_rgb(quantobj, src, dest, width, height)
|
932
|
+
QuantizeObj *quantobj;
|
933
|
+
unsigned char *src;
|
934
|
+
unsigned char *dest;
|
935
|
+
long width;
|
936
|
+
long height;
|
937
|
+
{
|
938
|
+
Histogram histogram = quantobj->histogram;
|
939
|
+
ColorFreq *cachep;
|
940
|
+
Color *color;
|
941
|
+
unsigned char *src_row;
|
942
|
+
unsigned char *dest_row;
|
943
|
+
int *error_limiter;
|
944
|
+
short *fs_err1, *fs_err2;
|
945
|
+
short *fs_err3, *fs_err4;
|
946
|
+
int *red_n_row, *red_p_row;
|
947
|
+
int *grn_n_row, *grn_p_row;
|
948
|
+
int *blu_n_row, *blu_p_row;
|
949
|
+
int *rnr, *rpr;
|
950
|
+
int *gnr, *gpr;
|
951
|
+
int *bnr, *bpr;
|
952
|
+
int *tmp;
|
953
|
+
int r, g, b;
|
954
|
+
int re, ge, be;
|
955
|
+
int row, col;
|
956
|
+
int index;
|
957
|
+
int rowstride;
|
958
|
+
int step_dest, step_src;
|
959
|
+
int odd_row;
|
960
|
+
// short *range_limiter;
|
961
|
+
unsigned char *range_limiter;
|
962
|
+
|
963
|
+
zero_histogram_rgb(histogram);
|
964
|
+
|
965
|
+
error_limiter = init_error_limit();
|
966
|
+
range_limiter = range_array + 256;
|
967
|
+
|
968
|
+
red_n_row = malloc(sizeof(int) * (width + 2));
|
969
|
+
if (!red_n_row) error("could not alloc mem");
|
970
|
+
red_p_row = malloc(sizeof(int) * (width + 2));
|
971
|
+
if (!red_p_row) error("could not alloc mem");
|
972
|
+
grn_n_row = malloc(sizeof(int) * (width + 2));
|
973
|
+
if (!grn_n_row) error("could not alloc mem");
|
974
|
+
grn_p_row = malloc(sizeof(int) * (width + 2));
|
975
|
+
if (!grn_p_row) error("could not alloc mem");
|
976
|
+
blu_n_row = malloc(sizeof(int) * (width + 2));
|
977
|
+
if (!blu_n_row) error("could not alloc mem");
|
978
|
+
blu_p_row = malloc(sizeof(int) * (width + 2));
|
979
|
+
if (!blu_p_row) error("could not alloc mem");
|
980
|
+
|
981
|
+
memset(red_p_row, 0, sizeof(int) * (width + 2) );
|
982
|
+
memset(grn_p_row, 0, sizeof(int) * (width + 2));
|
983
|
+
memset(blu_p_row, 0, sizeof(int) * (width + 2));
|
984
|
+
|
985
|
+
fs_err1 = floyd_steinberg_error1 + 511;
|
986
|
+
fs_err2 = floyd_steinberg_error2 + 511;
|
987
|
+
fs_err3 = floyd_steinberg_error3 + 511;
|
988
|
+
fs_err4 = floyd_steinberg_error4 + 511;
|
989
|
+
|
990
|
+
src_row = src;
|
991
|
+
dest_row = dest;
|
992
|
+
rowstride = width * 3;
|
993
|
+
odd_row = 0;
|
994
|
+
|
995
|
+
for (row = 0; row < height; row++) {
|
996
|
+
src = src_row;
|
997
|
+
dest = dest_row;
|
998
|
+
|
999
|
+
src_row += rowstride;
|
1000
|
+
dest_row += width;
|
1001
|
+
|
1002
|
+
rnr = red_n_row;
|
1003
|
+
gnr = grn_n_row;
|
1004
|
+
bnr = blu_n_row;
|
1005
|
+
rpr = red_p_row + 1;
|
1006
|
+
gpr = grn_p_row + 1;
|
1007
|
+
bpr = blu_p_row + 1;
|
1008
|
+
|
1009
|
+
if (odd_row) {
|
1010
|
+
step_dest = -1;
|
1011
|
+
step_src = -3;
|
1012
|
+
|
1013
|
+
src += rowstride - 3;
|
1014
|
+
dest += width - 1;
|
1015
|
+
|
1016
|
+
rnr += width + 1;
|
1017
|
+
gnr += width + 1;
|
1018
|
+
bnr += width + 1;
|
1019
|
+
rpr += width;
|
1020
|
+
gpr += width;
|
1021
|
+
bpr += width;
|
1022
|
+
|
1023
|
+
*(rnr - 1) = *(gnr - 1) = *(bnr - 1) = 0;
|
1024
|
+
} else {
|
1025
|
+
step_dest = 1;
|
1026
|
+
step_src = 3;
|
1027
|
+
|
1028
|
+
*(rnr + 1) = *(gnr + 1) = *(bnr + 1) = 0;
|
1029
|
+
}
|
1030
|
+
|
1031
|
+
*rnr = *gnr = *bnr = 0;
|
1032
|
+
|
1033
|
+
for (col = 0; col < width; col++) {
|
1034
|
+
r = range_limiter[src[0] + error_limiter[*rpr]];
|
1035
|
+
g = range_limiter[src[1] + error_limiter[*gpr]];
|
1036
|
+
b = range_limiter[src[2] + error_limiter[*bpr]];
|
1037
|
+
|
1038
|
+
re = r >> R_SHIFT;
|
1039
|
+
ge = g >> G_SHIFT;
|
1040
|
+
be = b >> B_SHIFT;
|
1041
|
+
|
1042
|
+
cachep = &histogram[re * MR + ge * MG + be];
|
1043
|
+
/* If we have not seen this color before,
|
1044
|
+
find nearest colormap entry
|
1045
|
+
and update the cache */
|
1046
|
+
if (*cachep == 0)
|
1047
|
+
fill_inverse_cmap_rgb(quantobj, histogram, re, ge, be);
|
1048
|
+
|
1049
|
+
index = *cachep - 1;
|
1050
|
+
*dest = index;
|
1051
|
+
|
1052
|
+
color = &quantobj->cmap[index];
|
1053
|
+
re = r - color->red;
|
1054
|
+
ge = g - color->green;
|
1055
|
+
be = b - color->blue;
|
1056
|
+
|
1057
|
+
if (odd_row) {
|
1058
|
+
*(--rpr) += fs_err1[re];
|
1059
|
+
*(--gpr) += fs_err1[ge];
|
1060
|
+
*(--bpr) += fs_err1[be];
|
1061
|
+
|
1062
|
+
*rnr-- += fs_err2[re];
|
1063
|
+
*gnr-- += fs_err2[ge];
|
1064
|
+
*bnr-- += fs_err2[be];
|
1065
|
+
|
1066
|
+
*rnr += fs_err3[re];
|
1067
|
+
*gnr += fs_err3[ge];
|
1068
|
+
*bnr += fs_err3[be];
|
1069
|
+
|
1070
|
+
*(rnr - 1) = fs_err4[re];
|
1071
|
+
*(gnr - 1) = fs_err4[ge];
|
1072
|
+
*(bnr - 1) = fs_err4[be];
|
1073
|
+
} else {
|
1074
|
+
*(++rpr) += fs_err1[re];
|
1075
|
+
*(++gpr) += fs_err1[ge];
|
1076
|
+
*(++bpr) += fs_err1[be];
|
1077
|
+
|
1078
|
+
*rnr++ += fs_err2[re];
|
1079
|
+
*gnr++ += fs_err2[ge];
|
1080
|
+
*bnr++ += fs_err2[be];
|
1081
|
+
|
1082
|
+
*rnr += fs_err3[re];
|
1083
|
+
*gnr += fs_err3[ge];
|
1084
|
+
*bnr += fs_err3[be];
|
1085
|
+
|
1086
|
+
*(rnr + 1) = fs_err4[re];
|
1087
|
+
*(gnr + 1) = fs_err4[ge];
|
1088
|
+
*(bnr + 1) = fs_err4[be];
|
1089
|
+
}
|
1090
|
+
|
1091
|
+
dest += step_dest;
|
1092
|
+
src += step_src;
|
1093
|
+
}
|
1094
|
+
|
1095
|
+
tmp = red_n_row;
|
1096
|
+
red_n_row = red_p_row;
|
1097
|
+
red_p_row = tmp;
|
1098
|
+
|
1099
|
+
tmp = grn_n_row;
|
1100
|
+
grn_n_row = grn_p_row;
|
1101
|
+
grn_p_row = tmp;
|
1102
|
+
|
1103
|
+
tmp = blu_n_row;
|
1104
|
+
blu_n_row = blu_p_row;
|
1105
|
+
blu_p_row = tmp;
|
1106
|
+
|
1107
|
+
odd_row = !odd_row;
|
1108
|
+
|
1109
|
+
}
|
1110
|
+
|
1111
|
+
xfree(error_limiter - 255);
|
1112
|
+
xfree(red_n_row);
|
1113
|
+
xfree(red_p_row);
|
1114
|
+
xfree(grn_n_row);
|
1115
|
+
xfree(grn_p_row);
|
1116
|
+
xfree(blu_n_row);
|
1117
|
+
xfree(blu_p_row);
|
1118
|
+
}
|
1119
|
+
|
1120
|
+
static QuantizeObj *initialize_median_cut(int num_colors, int dither_type)
|
1121
|
+
{
|
1122
|
+
QuantizeObj *quantobj;
|
1123
|
+
|
1124
|
+
/* Initialize the data structures */
|
1125
|
+
quantobj = malloc(sizeof(QuantizeObj));
|
1126
|
+
if (!quantobj) error("could not alloc mem");
|
1127
|
+
|
1128
|
+
quantobj->histogram = malloc(sizeof(ColorFreq) *
|
1129
|
+
HIST_R_ELEMS *
|
1130
|
+
HIST_G_ELEMS *
|
1131
|
+
HIST_B_ELEMS);
|
1132
|
+
if (!quantobj->histogram) error("could not alloc mem");
|
1133
|
+
|
1134
|
+
quantobj->desired_number_of_colors = num_colors;
|
1135
|
+
quantobj->first_pass = median_cut_pass1_rgb;
|
1136
|
+
|
1137
|
+
switch (dither_type) {
|
1138
|
+
case NODITHER:
|
1139
|
+
quantobj->second_pass = median_cut_pass2_no_dither_rgb;
|
1140
|
+
break;
|
1141
|
+
case FSDITHER:
|
1142
|
+
quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
|
1143
|
+
break;
|
1144
|
+
}
|
1145
|
+
|
1146
|
+
return quantobj;
|
1147
|
+
}
|
1148
|
+
|
1149
|
+
///* Externs: */
|
1150
|
+
//extern unsigned char *Picture256;
|
1151
|
+
//extern unsigned char QuantizedPalette[768];
|
1152
|
+
|
1153
|
+
//void to_indexed(char*input,long ncolors,long dither,int width,int height)
|
1154
|
+
void to_indexed(char*input,long ncolors,long dither,int width,int height,
|
1155
|
+
unsigned char *Picture256, unsigned char *QuantizedPalette)
|
1156
|
+
{
|
1157
|
+
QuantizeObj *quantobj;
|
1158
|
+
int i, j;
|
1159
|
+
|
1160
|
+
quantobj = initialize_median_cut(ncolors, dither ? FSDITHER : NODITHER);
|
1161
|
+
(*quantobj->first_pass) (quantobj, input, Picture256, width, height);
|
1162
|
+
(*quantobj->second_pass) (quantobj, input, Picture256, width, height);
|
1163
|
+
for (i = 0, j = 0; i < quantobj->actual_number_of_colors; i++) {
|
1164
|
+
//#if 0
|
1165
|
+
// rgb
|
1166
|
+
QuantizedPalette[j++] = quantobj->cmap[i].red;
|
1167
|
+
QuantizedPalette[j++] = quantobj->cmap[i].green;
|
1168
|
+
QuantizedPalette[j++] = quantobj->cmap[i].blue;
|
1169
|
+
//#else
|
1170
|
+
// bgr
|
1171
|
+
// QuantizedPalette[j++] = quantobj->cmap[i].blue;
|
1172
|
+
// QuantizedPalette[j++] = quantobj->cmap[i].green;
|
1173
|
+
// QuantizedPalette[j++] = quantobj->cmap[i].red;
|
1174
|
+
//#endif
|
1175
|
+
}
|
1176
|
+
xfree(quantobj->histogram);
|
1177
|
+
xfree(quantobj);
|
1178
|
+
}
|
1179
|
+
/*-*/
|