picrate 2.1.2-java → 2.4.2-java

Sign up to get free protection for your applications and to get access to all the features.
Files changed (58) hide show
  1. checksums.yaml +4 -4
  2. data/.mvn/extensions.xml +1 -1
  3. data/CHANGELOG.md +8 -0
  4. data/README.md +3 -2
  5. data/Rakefile +2 -1
  6. data/docs/_includes/footer.html +1 -1
  7. data/docs/_layouts/post.html +1 -1
  8. data/docs/_methods/noise_mode.md +88 -0
  9. data/docs/_posts/2018-05-06-install_jruby.md +1 -1
  10. data/docs/_posts/2018-11-18-building-gem.md +3 -1
  11. data/docs/classes.md +2 -2
  12. data/docs/editors.md +2 -2
  13. data/docs/gems.md +3 -3
  14. data/docs/index.html +1 -1
  15. data/docs/libraries.md +2 -2
  16. data/docs/live.md +2 -2
  17. data/docs/magic.md +2 -2
  18. data/docs/methods.md +2 -2
  19. data/docs/modules.md +3 -3
  20. data/docs/objects.md +2 -2
  21. data/lib/picrate/app.rb +7 -6
  22. data/lib/picrate/native_folder.rb +1 -3
  23. data/lib/picrate/version.rb +1 -1
  24. data/library/pdf/pdf.rb +7 -0
  25. data/library/svg/svg.rb +7 -0
  26. data/picrate.gemspec +5 -3
  27. data/pom.rb +25 -4
  28. data/pom.xml +39 -4
  29. data/src/main/java/monkstone/FastNoiseModuleJava.java +127 -0
  30. data/src/main/java/monkstone/PicrateLibrary.java +3 -1
  31. data/src/main/java/monkstone/SmoothNoiseModuleJava.java +127 -0
  32. data/src/main/java/monkstone/fastmath/DegLutTables.java +111 -0
  33. data/src/main/java/monkstone/fastmath/Deglut.java +41 -93
  34. data/src/main/java/monkstone/noise/OpenSimplex2F.java +914 -0
  35. data/src/main/java/monkstone/noise/OpenSimplex2S.java +1138 -0
  36. data/src/main/java/monkstone/vecmath/package-info.java +1 -1
  37. data/src/main/java/monkstone/vecmath/vec3/Vec3.java +1 -1
  38. data/src/main/java/monkstone/videoevent/package-info.java +1 -1
  39. data/src/main/java/processing/awt/ShimAWT.java +260 -94
  40. data/src/main/java/processing/core/PApplet.java +14664 -13450
  41. data/src/main/java/processing/core/PConstants.java +5 -5
  42. data/src/main/java/processing/core/PFont.java +1 -1
  43. data/src/main/java/processing/core/PGraphics.java +200 -201
  44. data/src/main/java/processing/core/PImage.java +539 -549
  45. data/src/main/java/processing/core/PShape.java +18 -18
  46. data/src/main/java/processing/core/PVector.java +23 -23
  47. data/src/main/java/processing/data/Table.java +4 -4
  48. data/src/main/java/processing/net/Client.java +13 -13
  49. data/src/main/java/processing/net/Server.java +5 -5
  50. data/src/main/java/processing/opengl/PGraphicsOpenGL.java +4 -4
  51. data/src/main/java/processing/pdf/PGraphicsPDF.java +529 -0
  52. data/src/main/java/processing/svg/PGraphicsSVG.java +378 -0
  53. data/test/deglut_spec_test.rb +2 -2
  54. data/test/respond_to_test.rb +0 -2
  55. data/test/test_helper.rb +1 -1
  56. data/vendors/Rakefile +1 -1
  57. metadata +26 -15
  58. data/src/main/java/monkstone/noise/SimplexNoise.java +0 -465
@@ -1,465 +0,0 @@
1
- /*
2
- * A speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
3
- *
4
- * Based on example code by Stefan Gustavson (stegu@itn.liu.se).
5
- * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
6
- * Better rank ordering method for 4D by Stefan Gustavson in 2012.
7
- *
8
- * This could be speeded up even further, but it's useful as it is.
9
- *
10
- * Version 2012-03-09
11
- *
12
- * This code was placed in the public domain by its original author,
13
- * Stefan Gustavson. You may use it as you see fit, but
14
- * attribution is appreciated.
15
- *
16
- */
17
-
18
- package monkstone.noise;
19
-
20
- /**
21
- *
22
- * @author Martin Prout
23
- */
24
- public class SimplexNoise { // Simplex noise in 2D, 3D and 4D
25
-
26
- private static Grad grad3[] = {new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0),
27
- new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1),
28
- new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)};
29
-
30
- private static Grad grad4[] = {new Grad(0, 1, 1, 1), new Grad(0, 1, 1, -1), new Grad(0, 1, -1, 1), new Grad(0, 1, -1, -1),
31
- new Grad(0, -1, 1, 1), new Grad(0, -1, 1, -1), new Grad(0, -1, -1, 1), new Grad(0, -1, -1, -1),
32
- new Grad(1, 0, 1, 1), new Grad(1, 0, 1, -1), new Grad(1, 0, -1, 1), new Grad(1, 0, -1, -1),
33
- new Grad(-1, 0, 1, 1), new Grad(-1, 0, 1, -1), new Grad(-1, 0, -1, 1), new Grad(-1, 0, -1, -1),
34
- new Grad(1, 1, 0, 1), new Grad(1, 1, 0, -1), new Grad(1, -1, 0, 1), new Grad(1, -1, 0, -1),
35
- new Grad(-1, 1, 0, 1), new Grad(-1, 1, 0, -1), new Grad(-1, -1, 0, 1), new Grad(-1, -1, 0, -1),
36
- new Grad(1, 1, 1, 0), new Grad(1, 1, -1, 0), new Grad(1, -1, 1, 0), new Grad(1, -1, -1, 0),
37
- new Grad(-1, 1, 1, 0), new Grad(-1, 1, -1, 0), new Grad(-1, -1, 1, 0), new Grad(-1, -1, -1, 0)};
38
-
39
- private final static short PERMS[] = {151, 160, 137, 91, 90, 15,
40
- 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
41
- 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
42
- 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
43
- 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
44
- 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
45
- 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
46
- 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
47
- 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
48
- 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
49
- 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
50
- 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
51
- 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180};
52
- // To remove the need for index wrapping, double the permutation table length
53
- static final short[] PERM = new short[512];
54
- static final short[] PERM_MOD_12 = new short[512];
55
-
56
- static {
57
- for (int i = 0; i < 512; i++) {
58
- PERM[i] = PERMS[i & 255];
59
- PERM_MOD_12[i] = (short) (PERM[i] % 12);
60
- }
61
- }
62
-
63
- // Skewing and unskewing factors for 2, 3, and 4 dimensions
64
- private static final double F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
65
- private static final double G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
66
- private static final double F3 = 1.0 / 3.0;
67
- private static final double G3 = 1.0 / 6.0;
68
- private static final double F4 = (Math.sqrt(5.0) - 1.0) / 4.0;
69
- private static final double G4 = (5.0 - Math.sqrt(5.0)) / 20.0;
70
-
71
- // This method is a *lot* faster than using (int)Math.floor(x)
72
- private static int fastfloor(double x) {
73
- int xi = (int) x;
74
- return x < xi ? xi - 1 : xi;
75
- }
76
-
77
- private static double dot(Grad g, double x, double y) {
78
- return g.x * x + g.y * y;
79
- }
80
-
81
- private static double dot(Grad g, double x, double y, double z) {
82
- return g.x * x + g.y * y + g.z * z;
83
- }
84
-
85
- private static double dot(Grad g, double x, double y, double z, double w) {
86
- return g.x * x + g.y * y + g.z * z + g.w * w;
87
- }
88
-
89
- // 2D simplex noise
90
-
91
- /**
92
- *
93
- * @param xin
94
- * @param yin
95
- * @return noise double
96
- */
97
- public static double noise(double xin, double yin) {
98
- double n0, n1, n2; // Noise contributions from the three corners
99
- // Skew the input space to determine which simplex cell we're in
100
- double s = (xin + yin) * F2; // Hairy factor for 2D
101
- int i = fastfloor(xin + s);
102
- int j = fastfloor(yin + s);
103
- double t = (i + j) * G2;
104
- double X0 = i - t; // Unskew the cell origin back to (x,y) space
105
- double Y0 = j - t;
106
- double x0 = xin - X0; // The x,y distances from the cell origin
107
- double y0 = yin - Y0;
108
- // For the 2D case, the simplex shape is an equilateral triangle.
109
- // Determine which simplex we are in.
110
- int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
111
- if (x0 > y0) {
112
- i1 = 1;
113
- j1 = 0;
114
- } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
115
- else {
116
- i1 = 0;
117
- j1 = 1;
118
- } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
119
- // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
120
- // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
121
- // c = (3-sqrt(3))/6
122
- double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
123
- double y1 = y0 - j1 + G2;
124
- double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
125
- double y2 = y0 - 1.0 + 2.0 * G2;
126
- // Work out the hashed gradient indices of the three simplex corners
127
- int ii = i & 255;
128
- int jj = j & 255;
129
- int gi0 = PERM_MOD_12[ii + PERM[jj]];
130
- int gi1 = PERM_MOD_12[ii + i1 + PERM[jj + j1]];
131
- int gi2 = PERM_MOD_12[ii + 1 + PERM[jj + 1]];
132
- // Calculate the contribution from the three corners
133
- double t0 = 0.5 - x0 * x0 - y0 * y0;
134
- if (t0 < 0) {
135
- n0 = 0.0;
136
- } else {
137
- t0 *= t0;
138
- n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
139
- }
140
- double t1 = 0.5 - x1 * x1 - y1 * y1;
141
- if (t1 < 0) {
142
- n1 = 0.0;
143
- } else {
144
- t1 *= t1;
145
- n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
146
- }
147
- double t2 = 0.5 - x2 * x2 - y2 * y2;
148
- if (t2 < 0) {
149
- n2 = 0.0;
150
- } else {
151
- t2 *= t2;
152
- n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
153
- }
154
- // Add contributions from each corner to get the final noise value.
155
- // The result is scaled to return values in the interval [-1,1].
156
- return 70.0 * (n0 + n1 + n2);
157
- }
158
-
159
- // 3D simplex noise
160
-
161
- /**
162
- *
163
- * @param xin
164
- * @param yin
165
- * @param zin
166
- * @return
167
- */
168
- public static double noise(double xin, double yin, double zin) {
169
- double n0, n1, n2, n3; // Noise contributions from the four corners
170
- // Skew the input space to determine which simplex cell we're in
171
- double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
172
- int i = fastfloor(xin + s);
173
- int j = fastfloor(yin + s);
174
- int k = fastfloor(zin + s);
175
- double t = (i + j + k) * G3;
176
- double X0 = i - t; // Unskew the cell origin back to (x,y,z) space
177
- double Y0 = j - t;
178
- double Z0 = k - t;
179
- double x0 = xin - X0; // The x,y,z distances from the cell origin
180
- double y0 = yin - Y0;
181
- double z0 = zin - Z0;
182
- // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
183
- // Determine which simplex we are in.
184
- int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
185
- int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
186
- if (x0 >= y0) {
187
- if (y0 >= z0) {
188
- i1 = 1;
189
- j1 = 0;
190
- k1 = 0;
191
- i2 = 1;
192
- j2 = 1;
193
- k2 = 0;
194
- } // X Y Z order
195
- else if (x0 >= z0) {
196
- i1 = 1;
197
- j1 = 0;
198
- k1 = 0;
199
- i2 = 1;
200
- j2 = 0;
201
- k2 = 1;
202
- } // X Z Y order
203
- else {
204
- i1 = 0;
205
- j1 = 0;
206
- k1 = 1;
207
- i2 = 1;
208
- j2 = 0;
209
- k2 = 1;
210
- } // Z X Y order
211
- } else { // x0<y0
212
- if (y0 < z0) {
213
- i1 = 0;
214
- j1 = 0;
215
- k1 = 1;
216
- i2 = 0;
217
- j2 = 1;
218
- k2 = 1;
219
- } // Z Y X order
220
- else if (x0 < z0) {
221
- i1 = 0;
222
- j1 = 1;
223
- k1 = 0;
224
- i2 = 0;
225
- j2 = 1;
226
- k2 = 1;
227
- } // Y Z X order
228
- else {
229
- i1 = 0;
230
- j1 = 1;
231
- k1 = 0;
232
- i2 = 1;
233
- j2 = 1;
234
- k2 = 0;
235
- } // Y X Z order
236
- }
237
- // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
238
- // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
239
- // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
240
- // c = 1/6.
241
- double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
242
- double y1 = y0 - j1 + G3;
243
- double z1 = z0 - k1 + G3;
244
- double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
245
- double y2 = y0 - j2 + 2.0 * G3;
246
- double z2 = z0 - k2 + 2.0 * G3;
247
- double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
248
- double y3 = y0 - 1.0 + 3.0 * G3;
249
- double z3 = z0 - 1.0 + 3.0 * G3;
250
- // Work out the hashed gradient indices of the four simplex corners
251
- int ii = i & 255;
252
- int jj = j & 255;
253
- int kk = k & 255;
254
- int gi0 = PERM_MOD_12[ii + PERM[jj + PERM[kk]]];
255
- int gi1 = PERM_MOD_12[ii + i1 + PERM[jj + j1 + PERM[kk + k1]]];
256
- int gi2 = PERM_MOD_12[ii + i2 + PERM[jj + j2 + PERM[kk + k2]]];
257
- int gi3 = PERM_MOD_12[ii + 1 + PERM[jj + 1 + PERM[kk + 1]]];
258
- // Calculate the contribution from the four corners
259
- double t0 = 0.5 - x0 * x0 - y0 * y0 - z0 * z0;
260
- if (t0 < 0) {
261
- n0 = 0.0;
262
- } else {
263
- t0 *= t0;
264
- n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
265
- }
266
- double t1 = 0.5 - x1 * x1 - y1 * y1 - z1 * z1;
267
- if (t1 < 0) {
268
- n1 = 0.0;
269
- } else {
270
- t1 *= t1;
271
- n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
272
- }
273
- double t2 = 0.5 - x2 * x2 - y2 * y2 - z2 * z2;
274
- if (t2 < 0) {
275
- n2 = 0.0;
276
- } else {
277
- t2 *= t2;
278
- n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
279
- }
280
- double t3 = 0.5 - x3 * x3 - y3 * y3 - z3 * z3;
281
- if (t3 < 0) {
282
- n3 = 0.0;
283
- } else {
284
- t3 *= t3;
285
- n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
286
- }
287
- // Add contributions from each corner to get the final noise value.
288
- // The result is scaled to stay just inside [-1,1]
289
- return 32.0 * (n0 + n1 + n2 + n3);
290
- }
291
-
292
- // 4D simplex noise, better simplex rank ordering method 2012-03-09
293
-
294
- /**
295
- *
296
- * @param x
297
- * @param y
298
- * @param z
299
- * @param w
300
- * @return noise double
301
- */
302
- public static double noise(double x, double y, double z, double w) {
303
-
304
- double n0, n1, n2, n3, n4; // Noise contributions from the five corners
305
- // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
306
- double s = (x + y + z + w) * F4; // Factor for 4D skewing
307
- int i = fastfloor(x + s);
308
- int j = fastfloor(y + s);
309
- int k = fastfloor(z + s);
310
- int l = fastfloor(w + s);
311
- double t = (i + j + k + l) * G4; // Factor for 4D unskewing
312
- double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
313
- double Y0 = j - t;
314
- double Z0 = k - t;
315
- double W0 = l - t;
316
- double x0 = x - X0; // The x,y,z,w distances from the cell origin
317
- double y0 = y - Y0;
318
- double z0 = z - Z0;
319
- double w0 = w - W0;
320
- // For the 4D case, the simplex is a 4D shape I won't even try to describe.
321
- // To find out which of the 24 possible simplices we're in, we need to
322
- // determine the magnitude ordering of x0, y0, z0 and w0.
323
- // Six pair-wise comparisons are performed between each possible pair
324
- // of the four coordinates, and the results are used to rank the numbers.
325
- int rankx = 0;
326
- int ranky = 0;
327
- int rankz = 0;
328
- int rankw = 0;
329
- if (x0 > y0) {
330
- rankx++;
331
- } else {
332
- ranky++;
333
- }
334
- if (x0 > z0) {
335
- rankx++;
336
- } else {
337
- rankz++;
338
- }
339
- if (x0 > w0) {
340
- rankx++;
341
- } else {
342
- rankw++;
343
- }
344
- if (y0 > z0) {
345
- ranky++;
346
- } else {
347
- rankz++;
348
- }
349
- if (y0 > w0) {
350
- ranky++;
351
- } else {
352
- rankw++;
353
- }
354
- if (z0 > w0) {
355
- rankz++;
356
- } else {
357
- rankw++;
358
- }
359
- int i1, j1, k1, l1; // The integer offsets for the second simplex corner
360
- int i2, j2, k2, l2; // The integer offsets for the third simplex corner
361
- int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
362
- // [rankx, ranky, rankz, rankw] is a 4-vector with the numbers 0, 1, 2 and 3
363
- // in some order. We use a thresholding to set the coordinates in turn.
364
- // Rank 3 denotes the largest coordinate.
365
- i1 = rankx >= 3 ? 1 : 0;
366
- j1 = ranky >= 3 ? 1 : 0;
367
- k1 = rankz >= 3 ? 1 : 0;
368
- l1 = rankw >= 3 ? 1 : 0;
369
- // Rank 2 denotes the second largest coordinate.
370
- i2 = rankx >= 2 ? 1 : 0;
371
- j2 = ranky >= 2 ? 1 : 0;
372
- k2 = rankz >= 2 ? 1 : 0;
373
- l2 = rankw >= 2 ? 1 : 0;
374
- // Rank 1 denotes the second smallest coordinate.
375
- i3 = rankx >= 1 ? 1 : 0;
376
- j3 = ranky >= 1 ? 1 : 0;
377
- k3 = rankz >= 1 ? 1 : 0;
378
- l3 = rankw >= 1 ? 1 : 0;
379
- // The fifth corner has all coordinate offsets = 1, so no need to compute that.
380
- double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
381
- double y1 = y0 - j1 + G4;
382
- double z1 = z0 - k1 + G4;
383
- double w1 = w0 - l1 + G4;
384
- double x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
385
- double y2 = y0 - j2 + 2.0 * G4;
386
- double z2 = z0 - k2 + 2.0 * G4;
387
- double w2 = w0 - l2 + 2.0 * G4;
388
- double x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
389
- double y3 = y0 - j3 + 3.0 * G4;
390
- double z3 = z0 - k3 + 3.0 * G4;
391
- double w3 = w0 - l3 + 3.0 * G4;
392
- double x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
393
- double y4 = y0 - 1.0 + 4.0 * G4;
394
- double z4 = z0 - 1.0 + 4.0 * G4;
395
- double w4 = w0 - 1.0 + 4.0 * G4;
396
- // Work out the hashed gradient indices of the five simplex corners
397
- int ii = i & 255;
398
- int jj = j & 255;
399
- int kk = k & 255;
400
- int ll = l & 255;
401
- int gi0 = PERM[ii + PERM[jj + PERM[kk + PERM[ll]]]] % 32;
402
- int gi1 = PERM[ii + i1 + PERM[jj + j1 + PERM[kk + k1 + PERM[ll + l1]]]] % 32;
403
- int gi2 = PERM[ii + i2 + PERM[jj + j2 + PERM[kk + k2 + PERM[ll + l2]]]] % 32;
404
- int gi3 = PERM[ii + i3 + PERM[jj + j3 + PERM[kk + k3 + PERM[ll + l3]]]] % 32;
405
- int gi4 = PERM[ii + 1 + PERM[jj + 1 + PERM[kk + 1 + PERM[ll + 1]]]] % 32;
406
- // Calculate the contribution from the five corners
407
- double t0 = 0.5 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
408
- if (t0 < 0) {
409
- n0 = 0.0;
410
- } else {
411
- t0 *= t0;
412
- n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
413
- }
414
- double t1 = 0.5 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
415
- if (t1 < 0) {
416
- n1 = 0.0;
417
- } else {
418
- t1 *= t1;
419
- n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
420
- }
421
- double t2 = 0.5 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
422
- if (t2 < 0) {
423
- n2 = 0.0;
424
- } else {
425
- t2 *= t2;
426
- n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
427
- }
428
- double t3 = 0.5 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
429
- if (t3 < 0) {
430
- n3 = 0.0;
431
- } else {
432
- t3 *= t3;
433
- n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
434
- }
435
- double t4 = 0.5 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
436
- if (t4 < 0) {
437
- n4 = 0.0;
438
- } else {
439
- t4 *= t4;
440
- n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
441
- }
442
- // Sum up and scale the result to cover the range [-1,1]
443
- return 27.0 * (n0 + n1 + n2 + n3 + n4);
444
- }
445
-
446
- // Inner class to speed upp gradient computations
447
- // (In Java, array access is a lot slower than member access)
448
- private static class Grad {
449
-
450
- double x, y, z, w;
451
-
452
- Grad(double x, double y, double z) {
453
- this.x = x;
454
- this.y = y;
455
- this.z = z;
456
- }
457
-
458
- Grad(double x, double y, double z, double w) {
459
- this.x = x;
460
- this.y = y;
461
- this.z = z;
462
- this.w = w;
463
- }
464
- }
465
- }