perlin 0.1.0pre1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,35 @@
1
+ /*
2
+ * class Perlin::Generator
3
+ */
4
+
5
+ #ifndef GENERATOR_H
6
+ #define GENERATOR_H
7
+
8
+ #include <ruby.h>
9
+
10
+ #include "classic.h"
11
+ #include "simplex.h"
12
+
13
+ extern long seed;
14
+
15
+ // Arbitrary number used to add an extra "seed" dimension for Simplex noise.
16
+ // Seed 2D noise by offsetting the 3rd dimension.
17
+ // Seed 3D noise by seeding with the 4th dimension.
18
+ #define SEED_OFFSET -12354.1123f
19
+
20
+ VALUE Perlin_Generator_set_seed(const VALUE self, const VALUE seed);
21
+ VALUE Perlin_Generator_set_persistence(const VALUE self, const VALUE persistence);
22
+ VALUE Perlin_Generator_set_octave(const VALUE self, const VALUE octave);
23
+ VALUE Perlin_Generator_set_classic(const VALUE self, const VALUE classic);
24
+
25
+ VALUE Perlin_Generator_run(const int argc, const VALUE *argv, const VALUE self);
26
+ VALUE Perlin_Generator_run2d(const VALUE self, const VALUE x, const VALUE y);
27
+ VALUE Perlin_Generator_run3d(const VALUE self, const VALUE x, const VALUE y, const VALUE z);
28
+
29
+ VALUE Perlin_Generator_chunk(const int argc, const VALUE *argv, const VALUE self);
30
+ VALUE Perlin_Generator_chunk2d(const VALUE self, const VALUE x, const VALUE y, const VALUE steps_x, const VALUE steps_y, VALUE interval);
31
+ VALUE Perlin_Generator_chunk3d(const VALUE self, const VALUE x, const VALUE y, const VALUE z, const VALUE steps_x, const VALUE steps_y, const VALUE steps_z, const VALUE interval);
32
+
33
+ VALUE Perlin_Generator_init(const VALUE self, const VALUE seed, const VALUE persistence, const VALUE octave, const VALUE classic);
34
+
35
+ #endif // GENERATOR_H
@@ -0,0 +1,27 @@
1
+ /*
2
+ Ruby module that is built according to the Perlin Noise function
3
+ located at http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
4
+ */
5
+
6
+ #include "perlin.h"
7
+
8
+ void Init_perlin() {
9
+ VALUE jm_Module = rb_define_module("Perlin");
10
+ VALUE rb_cPerlin = rb_define_class_under(jm_Module, "Generator", rb_cObject);
11
+
12
+ rb_define_method(rb_cPerlin, "initialize_", Perlin_Generator_init, 4);
13
+
14
+ rb_define_method(rb_cPerlin, "seed=", Perlin_Generator_set_seed, 1);
15
+ rb_define_method(rb_cPerlin, "persistence=", Perlin_Generator_set_persistence, 1);
16
+ rb_define_method(rb_cPerlin, "octave=", Perlin_Generator_set_octave, 1);
17
+ rb_define_method(rb_cPerlin, "classic=", Perlin_Generator_set_classic, 1);
18
+
19
+ rb_define_method(rb_cPerlin, "[]", Perlin_Generator_run, -1);
20
+ rb_define_method(rb_cPerlin, "run2d", Perlin_Generator_run2d, 2);
21
+ rb_define_method(rb_cPerlin, "run3d", Perlin_Generator_run3d, 3);
22
+
23
+ rb_define_method(rb_cPerlin, "chunk", Perlin_Generator_chunk, -1);
24
+ rb_define_method(rb_cPerlin, "chunk2d", Perlin_Generator_chunk2d, 5);
25
+ rb_define_method(rb_cPerlin, "chunk3d", Perlin_Generator_chunk3d, 7);
26
+ }
27
+
@@ -0,0 +1,20 @@
1
+ /*
2
+ * module Perlin
3
+ *
4
+ * Ruby module that is built according to the Perlin Noise function
5
+ * located at http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
6
+ *
7
+ */
8
+
9
+
10
+ #ifndef PERLIN_H
11
+ #define PERLIN_H
12
+
13
+ #include <ruby.h>
14
+
15
+ VALUE rb_cPerlin;
16
+
17
+ #include "generator.h"
18
+
19
+ #endif // PERLIN_H
20
+
@@ -0,0 +1,475 @@
1
+ /* Copyright (c) 2007-2012 Eliot Eshelman
2
+ *
3
+ * This program is free software: you can redistribute it and/or modify
4
+ * it under the terms of the GNU General Public License as published by
5
+ * the Free Software Foundation, either version 3 of the License, or
6
+ * (at your option) any later version.
7
+ *
8
+ * This program is distributed in the hope that it will be useful,
9
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
10
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11
+ * GNU General Public License for more details.
12
+ *
13
+ * You should have received a copy of the GNU General Public License
14
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
15
+ *
16
+ */
17
+
18
+
19
+ #include <math.h>
20
+
21
+ #include "simplex.h"
22
+
23
+
24
+ /* 2D, 3D and 4D Simplex Noise functions return 'random' values in (-1, 1).
25
+
26
+ This algorithm was originally designed by Ken Perlin, but my code has been
27
+ adapted from the implementation written by Stefan Gustavson (stegu@itn.liu.se)
28
+
29
+ Raw Simplex noise functions return the value generated by Ken's algorithm.
30
+
31
+ Scaled Raw Simplex noise functions adjust the range of values returned from the
32
+ traditional (-1, 1) to whichever bounds are passed to the function.
33
+
34
+ Multi-Octave Simplex noise functions compine multiple noise values to create a
35
+ more complex result. Each successive layer of noise is adjusted and scaled.
36
+
37
+ Scaled Multi-Octave Simplex noise functions scale the values returned from the
38
+ traditional (-1,1) range to whichever range is passed to the function.
39
+
40
+ In many cases, you may think you only need a 1D noise function, but in practice
41
+ 2D is almost always better. For instance, if you're using the current frame
42
+ number as the parameter for the noise, all objects will end up with the same
43
+ noise value at each frame. By adding a second parameter on the second
44
+ dimension, you can ensure that each gets a unique noise value and they don't
45
+ all look identical.
46
+ */
47
+
48
+
49
+ // 2D Multi-octave Simplex noise.
50
+ //
51
+ // For each octave, a higher frequency/lower amplitude function will be added to the original.
52
+ // The higher the persistence [0-1], the more of each succeeding octave will be added.
53
+ float octave_noise_2d( const float octaves, const float persistence, const float scale, const float x, const float y ) {
54
+ float total = 0;
55
+ float frequency = scale;
56
+ float amplitude = 1;
57
+
58
+ // We have to keep track of the largest possible amplitude,
59
+ // because each octave adds more, and we need a value in [-1, 1].
60
+ float maxAmplitude = 0;
61
+
62
+ for( int i=0; i < octaves; i++ ) {
63
+ total += raw_noise_2d( x * frequency, y * frequency ) * amplitude;
64
+
65
+ frequency *= 2;
66
+ maxAmplitude += amplitude;
67
+ amplitude *= persistence;
68
+ }
69
+
70
+ return total / maxAmplitude;
71
+ }
72
+
73
+
74
+ // 3D Multi-octave Simplex noise.
75
+ //
76
+ // For each octave, a higher frequency/lower amplitude function will be added to the original.
77
+ // The higher the persistence [0-1], the more of each succeeding octave will be added.
78
+ float octave_noise_3d( const float octaves, const float persistence, const float scale, const float x, const float y, const float z ) {
79
+ float total = 0;
80
+ float frequency = scale;
81
+ float amplitude = 1;
82
+
83
+ // We have to keep track of the largest possible amplitude,
84
+ // because each octave adds more, and we need a value in [-1, 1].
85
+ float maxAmplitude = 0;
86
+
87
+ for( int i=0; i < octaves; i++ ) {
88
+ total += raw_noise_3d( x * frequency, y * frequency, z * frequency ) * amplitude;
89
+
90
+ frequency *= 2;
91
+ maxAmplitude += amplitude;
92
+ amplitude *= persistence;
93
+ }
94
+
95
+ return total / maxAmplitude;
96
+ }
97
+
98
+
99
+ // 4D Multi-octave Simplex noise.
100
+ //
101
+ // For each octave, a higher frequency/lower amplitude function will be added to the original.
102
+ // The higher the persistence [0-1], the more of each succeeding octave will be added.
103
+ float octave_noise_4d( const float octaves, const float persistence, const float scale, const float x, const float y, const float z, const float w ) {
104
+ float total = 0;
105
+ float frequency = scale;
106
+ float amplitude = 1;
107
+
108
+ // We have to keep track of the largest possible amplitude,
109
+ // because each octave adds more, and we need a value in [-1, 1].
110
+ float maxAmplitude = 0;
111
+
112
+ for( int i=0; i < octaves; i++ ) {
113
+ total += raw_noise_4d( x * frequency, y * frequency, z * frequency, w * frequency ) * amplitude;
114
+
115
+ frequency *= 2;
116
+ maxAmplitude += amplitude;
117
+ amplitude *= persistence;
118
+ }
119
+
120
+ return total / maxAmplitude;
121
+ }
122
+
123
+
124
+
125
+ // 2D Scaled Multi-octave Simplex noise.
126
+ //
127
+ // Returned value will be between loBound and hiBound.
128
+ float scaled_octave_noise_2d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y ) {
129
+ return octave_noise_2d(octaves, persistence, scale, x, y) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
130
+ }
131
+
132
+
133
+ // 3D Scaled Multi-octave Simplex noise.
134
+ //
135
+ // Returned value will be between loBound and hiBound.
136
+ float scaled_octave_noise_3d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y, const float z ) {
137
+ return octave_noise_3d(octaves, persistence, scale, x, y, z) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
138
+ }
139
+
140
+ // 4D Scaled Multi-octave Simplex noise.
141
+ //
142
+ // Returned value will be between loBound and hiBound.
143
+ float scaled_octave_noise_4d( const float octaves, const float persistence, const float scale, const float loBound, const float hiBound, const float x, const float y, const float z, const float w ) {
144
+ return octave_noise_4d(octaves, persistence, scale, x, y, z, w) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
145
+ }
146
+
147
+
148
+
149
+ // 2D Scaled Simplex raw noise.
150
+ //
151
+ // Returned value will be between loBound and hiBound.
152
+ float scaled_raw_noise_2d( const float loBound, const float hiBound, const float x, const float y ) {
153
+ return raw_noise_2d(x, y) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
154
+ }
155
+
156
+
157
+ // 3D Scaled Simplex raw noise.
158
+ //
159
+ // Returned value will be between loBound and hiBound.
160
+ float scaled_raw_noise_3d( const float loBound, const float hiBound, const float x, const float y, const float z ) {
161
+ return raw_noise_3d(x, y, z) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
162
+ }
163
+
164
+ // 4D Scaled Simplex raw noise.
165
+ //
166
+ // Returned value will be between loBound and hiBound.
167
+ float scaled_raw_noise_4d( const float loBound, const float hiBound, const float x, const float y, const float z, const float w ) {
168
+ return raw_noise_4d(x, y, z, w) * (hiBound - loBound) / 2 + (hiBound + loBound) / 2;
169
+ }
170
+
171
+
172
+
173
+ // 2D raw Simplex noise
174
+ float raw_noise_2d( const float x, const float y ) {
175
+ // Noise contributions from the three corners
176
+ float n0, n1, n2;
177
+
178
+ // Skew the input space to determine which simplex cell we're in
179
+ float F2 = 0.5 * (sqrtf(3.0) - 1.0);
180
+ // Hairy factor for 2D
181
+ float s = (x + y) * F2;
182
+ int i = fastfloor( x + s );
183
+ int j = fastfloor( y + s );
184
+
185
+ float G2 = (3.0 - sqrtf(3.0)) / 6.0;
186
+ float t = (i + j) * G2;
187
+ // Unskew the cell origin back to (x,y) space
188
+ float X0 = i-t;
189
+ float Y0 = j-t;
190
+ // The x,y distances from the cell origin
191
+ float x0 = x-X0;
192
+ float y0 = y-Y0;
193
+
194
+ // For the 2D case, the simplex shape is an equilateral triangle.
195
+ // Determine which simplex we are in.
196
+ int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
197
+ if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
198
+ else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
199
+
200
+ // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
201
+ // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
202
+ // c = (3-sqrt(3))/6
203
+ float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
204
+ float y1 = y0 - j1 + G2;
205
+ float x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
206
+ float y2 = y0 - 1.0 + 2.0 * G2;
207
+
208
+ // Work out the hashed gradient indices of the three simplex corners
209
+ int ii = i & 255;
210
+ int jj = j & 255;
211
+ int gi0 = perm[ii+perm[jj]] % 12;
212
+ int gi1 = perm[ii+i1+perm[jj+j1]] % 12;
213
+ int gi2 = perm[ii+1+perm[jj+1]] % 12;
214
+
215
+ // Calculate the contribution from the three corners
216
+ float t0 = 0.5 - x0*x0-y0*y0;
217
+ if(t0<0) n0 = 0.0;
218
+ else {
219
+ t0 *= t0;
220
+ n0 = t0 * t0 * dot2(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
221
+ }
222
+
223
+ float t1 = 0.5 - x1*x1-y1*y1;
224
+ if(t1<0) n1 = 0.0;
225
+ else {
226
+ t1 *= t1;
227
+ n1 = t1 * t1 * dot2(grad3[gi1], x1, y1);
228
+ }
229
+
230
+ float t2 = 0.5 - x2*x2-y2*y2;
231
+ if(t2<0) n2 = 0.0;
232
+ else {
233
+ t2 *= t2;
234
+ n2 = t2 * t2 * dot2(grad3[gi2], x2, y2);
235
+ }
236
+
237
+ // Add contributions from each corner to get the final noise value.
238
+ // The result is scaled to return values in the interval [-1,1].
239
+ return 70.0 * (n0 + n1 + n2);
240
+ }
241
+
242
+
243
+ // 3D raw Simplex noise
244
+ float raw_noise_3d( const float x, const float y, const float z ) {
245
+ float n0, n1, n2, n3; // Noise contributions from the four corners
246
+
247
+ // Skew the input space to determine which simplex cell we're in
248
+ float F3 = 1.0/3.0;
249
+ float s = (x+y+z)*F3; // Very nice and simple skew factor for 3D
250
+ int i = fastfloor(x+s);
251
+ int j = fastfloor(y+s);
252
+ int k = fastfloor(z+s);
253
+
254
+ float G3 = 1.0/6.0; // Very nice and simple unskew factor, too
255
+ float t = (i+j+k)*G3;
256
+ float X0 = i-t; // Unskew the cell origin back to (x,y,z) space
257
+ float Y0 = j-t;
258
+ float Z0 = k-t;
259
+ float x0 = x-X0; // The x,y,z distances from the cell origin
260
+ float y0 = y-Y0;
261
+ float z0 = z-Z0;
262
+
263
+ // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
264
+ // Determine which simplex we are in.
265
+ int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
266
+ int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
267
+
268
+ if(x0>=y0) {
269
+ if(y0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
270
+ else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
271
+ else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
272
+ }
273
+ else { // x0<y0
274
+ if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
275
+ else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
276
+ else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
277
+ }
278
+
279
+ // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
280
+ // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
281
+ // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
282
+ // c = 1/6.
283
+ float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
284
+ float y1 = y0 - j1 + G3;
285
+ float z1 = z0 - k1 + G3;
286
+ float x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
287
+ float y2 = y0 - j2 + 2.0*G3;
288
+ float z2 = z0 - k2 + 2.0*G3;
289
+ float x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
290
+ float y3 = y0 - 1.0 + 3.0*G3;
291
+ float z3 = z0 - 1.0 + 3.0*G3;
292
+
293
+ // Work out the hashed gradient indices of the four simplex corners
294
+ int ii = i & 255;
295
+ int jj = j & 255;
296
+ int kk = k & 255;
297
+ int gi0 = perm[ii+perm[jj+perm[kk]]] % 12;
298
+ int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1]]] % 12;
299
+ int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2]]] % 12;
300
+ int gi3 = perm[ii+1+perm[jj+1+perm[kk+1]]] % 12;
301
+
302
+ // Calculate the contribution from the four corners
303
+ float t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
304
+ if(t0<0) n0 = 0.0;
305
+ else {
306
+ t0 *= t0;
307
+ n0 = t0 * t0 * dot3(grad3[gi0], x0, y0, z0);
308
+ }
309
+
310
+ float t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
311
+ if(t1<0) n1 = 0.0;
312
+ else {
313
+ t1 *= t1;
314
+ n1 = t1 * t1 * dot3(grad3[gi1], x1, y1, z1);
315
+ }
316
+
317
+ float t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
318
+ if(t2<0) n2 = 0.0;
319
+ else {
320
+ t2 *= t2;
321
+ n2 = t2 * t2 * dot3(grad3[gi2], x2, y2, z2);
322
+ }
323
+
324
+ float t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
325
+ if(t3<0) n3 = 0.0;
326
+ else {
327
+ t3 *= t3;
328
+ n3 = t3 * t3 * dot3(grad3[gi3], x3, y3, z3);
329
+ }
330
+
331
+ // Add contributions from each corner to get the final noise value.
332
+ // The result is scaled to stay just inside [-1,1]
333
+ return 32.0*(n0 + n1 + n2 + n3);
334
+ }
335
+
336
+
337
+ // 4D raw Simplex noise
338
+ float raw_noise_4d( const float x, const float y, const float z, const float w ) {
339
+ // The skewing and unskewing factors are hairy again for the 4D case
340
+ float F4 = (sqrtf(5.0)-1.0)/4.0;
341
+ float G4 = (5.0-sqrtf(5.0))/20.0;
342
+ float n0, n1, n2, n3, n4; // Noise contributions from the five corners
343
+
344
+ // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
345
+ float s = (x + y + z + w) * F4; // Factor for 4D skewing
346
+ int i = fastfloor(x + s);
347
+ int j = fastfloor(y + s);
348
+ int k = fastfloor(z + s);
349
+ int l = fastfloor(w + s);
350
+ float t = (i + j + k + l) * G4; // Factor for 4D unskewing
351
+ float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
352
+ float Y0 = j - t;
353
+ float Z0 = k - t;
354
+ float W0 = l - t;
355
+
356
+ float x0 = x - X0; // The x,y,z,w distances from the cell origin
357
+ float y0 = y - Y0;
358
+ float z0 = z - Z0;
359
+ float w0 = w - W0;
360
+
361
+ // For the 4D case, the simplex is a 4D shape I won't even try to describe.
362
+ // To find out which of the 24 possible simplices we're in, we need to
363
+ // determine the magnitude ordering of x0, y0, z0 and w0.
364
+ // The method below is a good way of finding the ordering of x,y,z,w and
365
+ // then find the correct traversal order for the simplex we're in.
366
+ // First, six pair-wise comparisons are performed between each possible pair
367
+ // of the four coordinates, and the results are used to add up binary bits
368
+ // for an integer index.
369
+ int c1 = (x0 > y0) ? 32 : 0;
370
+ int c2 = (x0 > z0) ? 16 : 0;
371
+ int c3 = (y0 > z0) ? 8 : 0;
372
+ int c4 = (x0 > w0) ? 4 : 0;
373
+ int c5 = (y0 > w0) ? 2 : 0;
374
+ int c6 = (z0 > w0) ? 1 : 0;
375
+ int c = c1 + c2 + c3 + c4 + c5 + c6;
376
+
377
+ int i1, j1, k1, l1; // The integer offsets for the second simplex corner
378
+ int i2, j2, k2, l2; // The integer offsets for the third simplex corner
379
+ int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
380
+
381
+ // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
382
+ // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
383
+ // impossible. Only the 24 indices which have non-zero entries make any sense.
384
+ // We use a thresholding to set the coordinates in turn from the largest magnitude.
385
+ // The number 3 in the "simplex" array is at the position of the largest coordinate.
386
+ i1 = simplex[c][0]>=3 ? 1 : 0;
387
+ j1 = simplex[c][1]>=3 ? 1 : 0;
388
+ k1 = simplex[c][2]>=3 ? 1 : 0;
389
+ l1 = simplex[c][3]>=3 ? 1 : 0;
390
+ // The number 2 in the "simplex" array is at the second largest coordinate.
391
+ i2 = simplex[c][0]>=2 ? 1 : 0;
392
+ j2 = simplex[c][1]>=2 ? 1 : 0;
393
+ k2 = simplex[c][2]>=2 ? 1 : 0;
394
+ l2 = simplex[c][3]>=2 ? 1 : 0;
395
+ // The number 1 in the "simplex" array is at the second smallest coordinate.
396
+ i3 = simplex[c][0]>=1 ? 1 : 0;
397
+ j3 = simplex[c][1]>=1 ? 1 : 0;
398
+ k3 = simplex[c][2]>=1 ? 1 : 0;
399
+ l3 = simplex[c][3]>=1 ? 1 : 0;
400
+ // The fifth corner has all coordinate offsets = 1, so no need to look that up.
401
+
402
+ float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
403
+ float y1 = y0 - j1 + G4;
404
+ float z1 = z0 - k1 + G4;
405
+ float w1 = w0 - l1 + G4;
406
+ float x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
407
+ float y2 = y0 - j2 + 2.0*G4;
408
+ float z2 = z0 - k2 + 2.0*G4;
409
+ float w2 = w0 - l2 + 2.0*G4;
410
+ float x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords
411
+ float y3 = y0 - j3 + 3.0*G4;
412
+ float z3 = z0 - k3 + 3.0*G4;
413
+ float w3 = w0 - l3 + 3.0*G4;
414
+ float x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
415
+ float y4 = y0 - 1.0 + 4.0*G4;
416
+ float z4 = z0 - 1.0 + 4.0*G4;
417
+ float w4 = w0 - 1.0 + 4.0*G4;
418
+
419
+ // Work out the hashed gradient indices of the five simplex corners
420
+ int ii = i & 255;
421
+ int jj = j & 255;
422
+ int kk = k & 255;
423
+ int ll = l & 255;
424
+ int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
425
+ int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
426
+ int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
427
+ int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
428
+ int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;
429
+
430
+ // Calculate the contribution from the five corners
431
+ float t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0;
432
+ if(t0<0) n0 = 0.0;
433
+ else {
434
+ t0 *= t0;
435
+ n0 = t0 * t0 * dot4(grad4[gi0], x0, y0, z0, w0);
436
+ }
437
+
438
+ float t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1;
439
+ if(t1<0) n1 = 0.0;
440
+ else {
441
+ t1 *= t1;
442
+ n1 = t1 * t1 * dot4(grad4[gi1], x1, y1, z1, w1);
443
+ }
444
+
445
+ float t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
446
+ if(t2<0) n2 = 0.0;
447
+ else {
448
+ t2 *= t2;
449
+ n2 = t2 * t2 * dot4(grad4[gi2], x2, y2, z2, w2);
450
+ }
451
+
452
+ float t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
453
+ if(t3<0) n3 = 0.0;
454
+ else {
455
+ t3 *= t3;
456
+ n3 = t3 * t3 * dot4(grad4[gi3], x3, y3, z3, w3);
457
+ }
458
+
459
+ float t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4;
460
+ if(t4<0) n4 = 0.0;
461
+ else {
462
+ t4 *= t4;
463
+ n4 = t4 * t4 * dot4(grad4[gi4], x4, y4, z4, w4);
464
+ }
465
+
466
+ // Sum up and scale the result to cover the range [-1,1]
467
+ return 27.0 * (n0 + n1 + n2 + n3 + n4);
468
+ }
469
+
470
+
471
+ int fastfloor( const float x ) { return x > 0 ? (int) x : (int) x - 1; }
472
+
473
+ float dot2( const int* g, const float x, const float y ) { return g[0]*x + g[1]*y; }
474
+ float dot3( const int* g, const float x, const float y, const float z ) { return g[0]*x + g[1]*y + g[2]*z; }
475
+ float dot4( const int* g, const float x, const float y, const float z, const float w ) { return g[0]*x + g[1]*y + g[2]*z + g[3]*w; }