perfect-shape 0.3.2 → 0.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
 - data/CHANGELOG.md +43 -3
 - data/LICENSE.txt +1 -1
 - data/README.md +152 -32
 - data/VERSION +1 -1
 - data/lib/perfect-shape.rb +2 -2
 - data/lib/perfect_shape/affine_transform.rb +235 -0
 - data/lib/perfect_shape/arc.rb +5 -5
 - data/lib/perfect_shape/circle.rb +1 -1
 - data/lib/perfect_shape/composite_shape.rb +5 -4
 - data/lib/perfect_shape/cubic_bezier_curve.rb +53 -46
 - data/lib/perfect_shape/ellipse.rb +2 -3
 - data/lib/perfect_shape/line.rb +13 -13
 - data/lib/perfect_shape/math.rb +21 -0
 - data/lib/perfect_shape/multi_point.rb +21 -6
 - data/lib/perfect_shape/path.rb +65 -16
 - data/lib/perfect_shape/point.rb +24 -8
 - data/lib/perfect_shape/point_location.rb +1 -1
 - data/lib/perfect_shape/polygon.rb +10 -6
 - data/lib/perfect_shape/quadratic_bezier_curve.rb +176 -89
 - data/lib/perfect_shape/rectangle.rb +14 -7
 - data/lib/perfect_shape/rectangular_shape.rb +1 -1
 - data/lib/perfect_shape/shape.rb +7 -16
 - data/lib/perfect_shape/square.rb +1 -1
 - data/perfect-shape.gemspec +5 -4
 - metadata +8 -5
 
    
        data/lib/perfect_shape/path.rb
    CHANGED
    
    | 
         @@ -1,4 +1,4 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            # Copyright (c) 2021 Andy Maleh
         
     | 
| 
      
 1 
     | 
    
         
            +
            # Copyright (c) 2021-2022 Andy Maleh
         
     | 
| 
       2 
2 
     | 
    
         
             
            #
         
     | 
| 
       3 
3 
     | 
    
         
             
            # Permission is hereby granted, free of charge, to any person obtaining
         
     | 
| 
       4 
4 
     | 
    
         
             
            # a copy of this software and associated documentation files (the
         
     | 
| 
         @@ -27,7 +27,6 @@ require 'perfect_shape/cubic_bezier_curve' 
     | 
|
| 
       27 
27 
     | 
    
         
             
            require 'perfect_shape/multi_point'
         
     | 
| 
       28 
28 
     | 
    
         | 
| 
       29 
29 
     | 
    
         
             
            module PerfectShape
         
     | 
| 
       30 
     | 
    
         
            -
              # Mostly ported from java.awt.geom: https://docs.oracle.com/javase/8/docs/api/java/awt/geom/Path2D.html
         
     | 
| 
       31 
30 
     | 
    
         
             
              class Path < Shape
         
     | 
| 
       32 
31 
     | 
    
         
             
                include MultiPoint
         
     | 
| 
       33 
32 
     | 
    
         
             
                include Equalizer.new(:shapes, :closed, :winding_rule)
         
     | 
| 
         @@ -114,21 +113,26 @@ module PerfectShape 
     | 
|
| 
       114 
113 
     | 
    
         
             
                # @return true if the point lies within the bound of
         
     | 
| 
       115 
114 
     | 
    
         
             
                # the path or false if the point lies outside of the
         
     | 
| 
       116 
115 
     | 
    
         
             
                # path's bounds.
         
     | 
| 
       117 
     | 
    
         
            -
                def contain?(x_or_point, y = nil)
         
     | 
| 
       118 
     | 
    
         
            -
                  x, y = normalize_point(x_or_point, y)
         
     | 
| 
      
 116 
     | 
    
         
            +
                def contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0)
         
     | 
| 
      
 117 
     | 
    
         
            +
                  x, y = Point.normalize_point(x_or_point, y)
         
     | 
| 
       119 
118 
     | 
    
         
             
                  return unless x && y
         
     | 
| 
       120 
     | 
    
         
            -
                   
     | 
| 
       121 
     | 
    
         
            -
             
     | 
| 
       122 
     | 
    
         
            -
                     
     | 
| 
       123 
     | 
    
         
            -
                    return false if shapes.count < 2
         
     | 
| 
       124 
     | 
    
         
            -
                    mask = winding_rule == :wind_non_zero ? -1 : 1
         
     | 
| 
       125 
     | 
    
         
            -
                    (point_crossings(x, y) & mask) != 0
         
     | 
| 
      
 119 
     | 
    
         
            +
                  
         
     | 
| 
      
 120 
     | 
    
         
            +
                  if outline
         
     | 
| 
      
 121 
     | 
    
         
            +
                    disconnected_shapes.any? {|shape| shape.contain?(x, y, outline: true, distance_tolerance: distance_tolerance) }
         
     | 
| 
       126 
122 
     | 
    
         
             
                  else
         
     | 
| 
       127 
     | 
    
         
            -
                     
     | 
| 
       128 
     | 
    
         
            -
             
     | 
| 
       129 
     | 
    
         
            -
             
     | 
| 
       130 
     | 
    
         
            -
             
     | 
| 
       131 
     | 
    
         
            -
             
     | 
| 
      
 123 
     | 
    
         
            +
                    if (x * 0.0 + y * 0.0) == 0.0
         
     | 
| 
      
 124 
     | 
    
         
            +
                      # N * 0.0 is 0.0 only if N is finite.
         
     | 
| 
      
 125 
     | 
    
         
            +
                      # Here we know that both x and y are finite.
         
     | 
| 
      
 126 
     | 
    
         
            +
                      return false if shapes.count < 2
         
     | 
| 
      
 127 
     | 
    
         
            +
                      mask = winding_rule == :wind_non_zero ? -1 : 1
         
     | 
| 
      
 128 
     | 
    
         
            +
                      (point_crossings(x, y) & mask) != 0
         
     | 
| 
      
 129 
     | 
    
         
            +
                    else
         
     | 
| 
      
 130 
     | 
    
         
            +
                      # Either x or y was infinite or NaN.
         
     | 
| 
      
 131 
     | 
    
         
            +
                      # A NaN always produces a negative response to any test
         
     | 
| 
      
 132 
     | 
    
         
            +
                      # and Infinity values cannot be "inside" any path so
         
     | 
| 
      
 133 
     | 
    
         
            +
                      # they should return false as well.
         
     | 
| 
      
 134 
     | 
    
         
            +
                      false
         
     | 
| 
      
 135 
     | 
    
         
            +
                    end
         
     | 
| 
       132 
136 
     | 
    
         
             
                  end
         
     | 
| 
       133 
137 
     | 
    
         
             
                end
         
     | 
| 
       134 
138 
     | 
    
         | 
| 
         @@ -144,7 +148,7 @@ module PerfectShape 
     | 
|
| 
       144 
148 
     | 
    
         
             
                # The caller must check for NaN values.
         
     | 
| 
       145 
149 
     | 
    
         
             
                # The caller may also reject infinite values as well.
         
     | 
| 
       146 
150 
     | 
    
         
             
                def point_crossings(x_or_point, y = nil)
         
     | 
| 
       147 
     | 
    
         
            -
                  x, y = normalize_point(x_or_point, y)
         
     | 
| 
      
 151 
     | 
    
         
            +
                  x, y = Point.normalize_point(x_or_point, y)
         
     | 
| 
       148 
152 
     | 
    
         
             
                  return unless x && y
         
     | 
| 
       149 
153 
     | 
    
         
             
                  return 0 if shapes.count == 0
         
     | 
| 
       150 
154 
     | 
    
         
             
                  movx = movy = curx = cury = endx = endy = 0
         
     | 
| 
         @@ -218,5 +222,50 @@ module PerfectShape 
     | 
|
| 
       218 
222 
     | 
    
         
             
                  end
         
     | 
| 
       219 
223 
     | 
    
         
             
                  crossings
         
     | 
| 
       220 
224 
     | 
    
         
             
                end
         
     | 
| 
      
 225 
     | 
    
         
            +
                
         
     | 
| 
      
 226 
     | 
    
         
            +
                # Disconnected shapes have their start point filled in
         
     | 
| 
      
 227 
     | 
    
         
            +
                # so that each shape does not depend on the previous shape
         
     | 
| 
      
 228 
     | 
    
         
            +
                # to determine its start point.
         
     | 
| 
      
 229 
     | 
    
         
            +
                #
         
     | 
| 
      
 230 
     | 
    
         
            +
                # Also, if a point is followed by a non-point shape, it is removed
         
     | 
| 
      
 231 
     | 
    
         
            +
                # since it is augmented to the following shape as its start point.
         
     | 
| 
      
 232 
     | 
    
         
            +
                #
         
     | 
| 
      
 233 
     | 
    
         
            +
                # Lastly, if the path is closed, an extra shape is
         
     | 
| 
      
 234 
     | 
    
         
            +
                # added to represent the line connecting the last point to the first
         
     | 
| 
      
 235 
     | 
    
         
            +
                def disconnected_shapes
         
     | 
| 
      
 236 
     | 
    
         
            +
                  initial_point = start_point = @shapes.first.to_a.map {|n| BigDecimal(n.to_s)}
         
     | 
| 
      
 237 
     | 
    
         
            +
                  final_point = nil
         
     | 
| 
      
 238 
     | 
    
         
            +
                  the_disconnected_shapes = @shapes.drop(1).map do |shape|
         
     | 
| 
      
 239 
     | 
    
         
            +
                    case shape
         
     | 
| 
      
 240 
     | 
    
         
            +
                    when Point
         
     | 
| 
      
 241 
     | 
    
         
            +
                      disconnected_shape = Point.new(*shape.to_a)
         
     | 
| 
      
 242 
     | 
    
         
            +
                      start_point = shape.to_a
         
     | 
| 
      
 243 
     | 
    
         
            +
                      final_point = disconnected_shape.to_a
         
     | 
| 
      
 244 
     | 
    
         
            +
                      nil
         
     | 
| 
      
 245 
     | 
    
         
            +
                    when Array
         
     | 
| 
      
 246 
     | 
    
         
            +
                      disconnected_shape = Point.new(*shape.map {|n| BigDecimal(n.to_s)})
         
     | 
| 
      
 247 
     | 
    
         
            +
                      start_point = shape.map {|n| BigDecimal(n.to_s)}
         
     | 
| 
      
 248 
     | 
    
         
            +
                      final_point = disconnected_shape.to_a
         
     | 
| 
      
 249 
     | 
    
         
            +
                      nil
         
     | 
| 
      
 250 
     | 
    
         
            +
                    when Line
         
     | 
| 
      
 251 
     | 
    
         
            +
                      disconnected_shape = Line.new(points: [start_point.to_a, shape.points.last])
         
     | 
| 
      
 252 
     | 
    
         
            +
                      start_point = shape.points.last.to_a
         
     | 
| 
      
 253 
     | 
    
         
            +
                      final_point = disconnected_shape.points.last.to_a
         
     | 
| 
      
 254 
     | 
    
         
            +
                      disconnected_shape
         
     | 
| 
      
 255 
     | 
    
         
            +
                    when QuadraticBezierCurve
         
     | 
| 
      
 256 
     | 
    
         
            +
                      disconnected_shape = QuadraticBezierCurve.new(points: [start_point.to_a] + shape.points)
         
     | 
| 
      
 257 
     | 
    
         
            +
                      start_point = shape.points.last.to_a
         
     | 
| 
      
 258 
     | 
    
         
            +
                      final_point = disconnected_shape.points.last.to_a
         
     | 
| 
      
 259 
     | 
    
         
            +
                      disconnected_shape
         
     | 
| 
      
 260 
     | 
    
         
            +
                    when CubicBezierCurve
         
     | 
| 
      
 261 
     | 
    
         
            +
                      disconnected_shape = CubicBezierCurve.new(points: [start_point.to_a] + shape.points)
         
     | 
| 
      
 262 
     | 
    
         
            +
                      start_point = shape.points.last.to_a
         
     | 
| 
      
 263 
     | 
    
         
            +
                      final_point = disconnected_shape.points.last.to_a
         
     | 
| 
      
 264 
     | 
    
         
            +
                      disconnected_shape
         
     | 
| 
      
 265 
     | 
    
         
            +
                    end
         
     | 
| 
      
 266 
     | 
    
         
            +
                  end
         
     | 
| 
      
 267 
     | 
    
         
            +
                  the_disconnected_shapes << Line.new(points: [final_point, initial_point]) if closed?
         
     | 
| 
      
 268 
     | 
    
         
            +
                  the_disconnected_shapes.compact
         
     | 
| 
      
 269 
     | 
    
         
            +
                end
         
     | 
| 
       221 
270 
     | 
    
         
             
              end
         
     | 
| 
       222 
271 
     | 
    
         
             
            end
         
     | 
    
        data/lib/perfect_shape/point.rb
    CHANGED
    
    | 
         @@ -1,4 +1,4 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            # Copyright (c) 2021 Andy Maleh
         
     | 
| 
      
 1 
     | 
    
         
            +
            # Copyright (c) 2021-2022 Andy Maleh
         
     | 
| 
       2 
2 
     | 
    
         
             
            #
         
     | 
| 
       3 
3 
     | 
    
         
             
            # Permission is hereby granted, free of charge, to any person obtaining
         
     | 
| 
       4 
4 
     | 
    
         
             
            # a copy of this software and associated documentation files (the
         
     | 
| 
         @@ -27,12 +27,27 @@ module PerfectShape 
     | 
|
| 
       27 
27 
     | 
    
         
             
              class Point < Shape
         
     | 
| 
       28 
28 
     | 
    
         
             
                class << self
         
     | 
| 
       29 
29 
     | 
    
         
             
                  def point_distance(x, y, px, py)
         
     | 
| 
       30 
     | 
    
         
            -
                    x = BigDecimal(x.to_s)
         
     | 
| 
       31 
     | 
    
         
            -
                    y = BigDecimal(y.to_s)
         
     | 
| 
       32 
     | 
    
         
            -
                    px = BigDecimal(px.to_s)
         
     | 
| 
       33 
     | 
    
         
            -
                    py = BigDecimal(py.to_s)
         
     | 
| 
      
 30 
     | 
    
         
            +
                    x = x.is_a?(BigDecimal) ? x : BigDecimal(x.to_s)
         
     | 
| 
      
 31 
     | 
    
         
            +
                    y = y.is_a?(BigDecimal) ? y : BigDecimal(y.to_s)
         
     | 
| 
      
 32 
     | 
    
         
            +
                    px = px.is_a?(BigDecimal) ? px : BigDecimal(px.to_s)
         
     | 
| 
      
 33 
     | 
    
         
            +
                    py = py.is_a?(BigDecimal) ? py : BigDecimal(py.to_s)
         
     | 
| 
       34 
34 
     | 
    
         
             
                    BigDecimal(Math.sqrt((px - x)**2 + (py - y)**2).to_s)
         
     | 
| 
       35 
35 
     | 
    
         
             
                  end
         
     | 
| 
      
 36 
     | 
    
         
            +
                  
         
     | 
| 
      
 37 
     | 
    
         
            +
                  # Normalizes point args whether two-number Array or x, y args returning
         
     | 
| 
      
 38 
     | 
    
         
            +
                  # normalized point array of two BigDecimal's
         
     | 
| 
      
 39 
     | 
    
         
            +
                  #
         
     | 
| 
      
 40 
     | 
    
         
            +
                  # @param x_or_point The point or X coordinate of the point to test.
         
     | 
| 
      
 41 
     | 
    
         
            +
                  # @param y The Y coordinate of the point to test.
         
     | 
| 
      
 42 
     | 
    
         
            +
                  #
         
     | 
| 
      
 43 
     | 
    
         
            +
                  # @return Array of x and y BigDecimal's representing point
         
     | 
| 
      
 44 
     | 
    
         
            +
                  def normalize_point(x_or_point, y = nil)
         
     | 
| 
      
 45 
     | 
    
         
            +
                    x = x_or_point
         
     | 
| 
      
 46 
     | 
    
         
            +
                    x, y = x if y.nil? && x_or_point.is_a?(Array) && x_or_point.size == 2
         
     | 
| 
      
 47 
     | 
    
         
            +
                    x = x.is_a?(BigDecimal) ? x : BigDecimal(x.to_s)
         
     | 
| 
      
 48 
     | 
    
         
            +
                    y = y.is_a?(BigDecimal) ? y : BigDecimal(y.to_s)
         
     | 
| 
      
 49 
     | 
    
         
            +
                    [x, y]
         
     | 
| 
      
 50 
     | 
    
         
            +
                  end
         
     | 
| 
       36 
51 
     | 
    
         
             
                end
         
     | 
| 
       37 
52 
     | 
    
         | 
| 
       38 
53 
     | 
    
         
             
                include PointLocation
         
     | 
| 
         @@ -67,16 +82,17 @@ module PerfectShape 
     | 
|
| 
       67 
82 
     | 
    
         
             
                #
         
     | 
| 
       68 
83 
     | 
    
         
             
                # @return {@code true} if the point is close enough within distance tolerance,
         
     | 
| 
       69 
84 
     | 
    
         
             
                # {@code false} if the point is too far.
         
     | 
| 
       70 
     | 
    
         
            -
                def contain?(x_or_point, y = nil, outline:  
     | 
| 
       71 
     | 
    
         
            -
                  x, y = normalize_point(x_or_point, y)
         
     | 
| 
      
 85 
     | 
    
         
            +
                def contain?(x_or_point, y = nil, outline: true, distance_tolerance: 0)
         
     | 
| 
      
 86 
     | 
    
         
            +
                  x, y = Point.normalize_point(x_or_point, y)
         
     | 
| 
       72 
87 
     | 
    
         
             
                  return unless x && y
         
     | 
| 
       73 
88 
     | 
    
         
             
                  distance_tolerance = BigDecimal(distance_tolerance.to_s)
         
     | 
| 
       74 
89 
     | 
    
         
             
                  point_distance(x, y) <= distance_tolerance
         
     | 
| 
       75 
90 
     | 
    
         
             
                end
         
     | 
| 
       76 
91 
     | 
    
         | 
| 
       77 
92 
     | 
    
         
             
                def point_distance(x_or_point, y = nil)
         
     | 
| 
       78 
     | 
    
         
            -
                  x, y = normalize_point(x_or_point, y)
         
     | 
| 
      
 93 
     | 
    
         
            +
                  x, y = Point.normalize_point(x_or_point, y)
         
     | 
| 
       79 
94 
     | 
    
         
             
                  return unless x && y
         
     | 
| 
      
 95 
     | 
    
         
            +
                  
         
     | 
| 
       80 
96 
     | 
    
         
             
                  Point.point_distance(self.x, self.y, x, y)
         
     | 
| 
       81 
97 
     | 
    
         
             
                end
         
     | 
| 
       82 
98 
     | 
    
         | 
| 
         @@ -1,4 +1,4 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            # Copyright (c) 2021 Andy Maleh
         
     | 
| 
      
 1 
     | 
    
         
            +
            # Copyright (c) 2021-2022 Andy Maleh
         
     | 
| 
       2 
2 
     | 
    
         
             
            #
         
     | 
| 
       3 
3 
     | 
    
         
             
            # Permission is hereby granted, free of charge, to any person obtaining
         
     | 
| 
       4 
4 
     | 
    
         
             
            # a copy of this software and associated documentation files (the
         
     | 
| 
         @@ -20,10 +20,10 @@ 
     | 
|
| 
       20 
20 
     | 
    
         
             
            # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
         
     | 
| 
       21 
21 
     | 
    
         | 
| 
       22 
22 
     | 
    
         
             
            require 'perfect_shape/shape'
         
     | 
| 
      
 23 
     | 
    
         
            +
            require 'perfect_shape/point'
         
     | 
| 
       23 
24 
     | 
    
         
             
            require 'perfect_shape/multi_point'
         
     | 
| 
       24 
25 
     | 
    
         | 
| 
       25 
26 
     | 
    
         
             
            module PerfectShape
         
     | 
| 
       26 
     | 
    
         
            -
              # Mostly ported from java.awt.geom: https://docs.oracle.com/javase/8/docs/api/java/awt/Polygon.html
         
     | 
| 
       27 
27 
     | 
    
         
             
              class Polygon < Shape
         
     | 
| 
       28 
28 
     | 
    
         
             
                include MultiPoint
         
     | 
| 
       29 
29 
     | 
    
         
             
                include Equalizer.new(:points)
         
     | 
| 
         @@ -38,12 +38,10 @@ module PerfectShape 
     | 
|
| 
       38 
38 
     | 
    
         
             
                # the polygon, {@code false} if the point lies outside of the
         
     | 
| 
       39 
39 
     | 
    
         
             
                # polygon's bounds.
         
     | 
| 
       40 
40 
     | 
    
         
             
                def contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0)
         
     | 
| 
       41 
     | 
    
         
            -
                  x, y = normalize_point(x_or_point, y)
         
     | 
| 
      
 41 
     | 
    
         
            +
                  x, y = Point.normalize_point(x_or_point, y)
         
     | 
| 
       42 
42 
     | 
    
         
             
                  return unless x && y
         
     | 
| 
       43 
43 
     | 
    
         
             
                  if outline
         
     | 
| 
       44 
     | 
    
         
            -
                     
     | 
| 
       45 
     | 
    
         
            -
                      Line.new(points: [[point1.first, point1.last], [point2.first, point2.last]]).contain?(x, y, distance_tolerance: distance_tolerance)
         
     | 
| 
       46 
     | 
    
         
            -
                    end
         
     | 
| 
      
 44 
     | 
    
         
            +
                    edges.any? { |edge| edge.contain?(x, y, distance_tolerance: distance_tolerance) }
         
     | 
| 
       47 
45 
     | 
    
         
             
                  else
         
     | 
| 
       48 
46 
     | 
    
         
             
                    npoints = points.count
         
     | 
| 
       49 
47 
     | 
    
         
             
                    xpoints = points.map(&:first)
         
     | 
| 
         @@ -117,5 +115,11 @@ module PerfectShape 
     | 
|
| 
       117 
115 
     | 
    
         
             
                    (hits & 1) != 0
         
     | 
| 
       118 
116 
     | 
    
         
             
                  end
         
     | 
| 
       119 
117 
     | 
    
         
             
                end
         
     | 
| 
      
 118 
     | 
    
         
            +
                
         
     | 
| 
      
 119 
     | 
    
         
            +
                def edges
         
     | 
| 
      
 120 
     | 
    
         
            +
                  points.zip(points.rotate(1)).map do |point1, point2|
         
     | 
| 
      
 121 
     | 
    
         
            +
                    Line.new(points: [[point1.first, point1.last], [point2.first, point2.last]])
         
     | 
| 
      
 122 
     | 
    
         
            +
                  end
         
     | 
| 
      
 123 
     | 
    
         
            +
                end
         
     | 
| 
       120 
124 
     | 
    
         
             
              end
         
     | 
| 
       121 
125 
     | 
    
         
             
            end
         
     | 
| 
         @@ -1,4 +1,4 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            # Copyright (c) 2021 Andy Maleh
         
     | 
| 
      
 1 
     | 
    
         
            +
            # Copyright (c) 2021-2022 Andy Maleh
         
     | 
| 
       2 
2 
     | 
    
         
             
            #
         
     | 
| 
       3 
3 
     | 
    
         
             
            # Permission is hereby granted, free of charge, to any person obtaining
         
     | 
| 
       4 
4 
     | 
    
         
             
            # a copy of this software and associated documentation files (the
         
     | 
| 
         @@ -20,10 +20,10 @@ 
     | 
|
| 
       20 
20 
     | 
    
         
             
            # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
         
     | 
| 
       21 
21 
     | 
    
         | 
| 
       22 
22 
     | 
    
         
             
            require 'perfect_shape/shape'
         
     | 
| 
      
 23 
     | 
    
         
            +
            require 'perfect_shape/point'
         
     | 
| 
       23 
24 
     | 
    
         
             
            require 'perfect_shape/multi_point'
         
     | 
| 
       24 
25 
     | 
    
         | 
| 
       25 
26 
     | 
    
         
             
            module PerfectShape
         
     | 
| 
       26 
     | 
    
         
            -
              # Mostly ported from java.awt.geom: https://docs.oracle.com/javase/8/docs/api/java/awt/geom/QuadCurve2D.html
         
     | 
| 
       27 
27 
     | 
    
         
             
              class QuadraticBezierCurve < Shape
         
     | 
| 
       28 
28 
     | 
    
         
             
                class << self
         
     | 
| 
       29 
29 
     | 
    
         
             
                  # Calculates the number of times the quadratic bézier curve from (x1,y1) to (x2,y2)
         
     | 
| 
         @@ -69,6 +69,8 @@ module PerfectShape 
     | 
|
| 
       69 
69 
     | 
    
         
             
                include MultiPoint
         
     | 
| 
       70 
70 
     | 
    
         
             
                include Equalizer.new(:points)
         
     | 
| 
       71 
71 
     | 
    
         | 
| 
      
 72 
     | 
    
         
            +
                OUTLINE_MINIMUM_DISTANCE_THRESHOLD = BigDecimal('0.001')
         
     | 
| 
      
 73 
     | 
    
         
            +
                
         
     | 
| 
       72 
74 
     | 
    
         
             
                # Checks if quadratic bézier curve contains point (two-number Array or x, y args)
         
     | 
| 
       73 
75 
     | 
    
         
             
                #
         
     | 
| 
       74 
76 
     | 
    
         
             
                # @param x The X coordinate of the point to test.
         
     | 
| 
         @@ -77,8 +79,8 @@ module PerfectShape 
     | 
|
| 
       77 
79 
     | 
    
         
             
                # @return {@code true} if the point lies within the bound of
         
     | 
| 
       78 
80 
     | 
    
         
             
                # the quadratic bézier curve, {@code false} if the point lies outside of the
         
     | 
| 
       79 
81 
     | 
    
         
             
                # quadratic bézier curve's bounds.
         
     | 
| 
       80 
     | 
    
         
            -
                def contain?(x_or_point, y = nil)
         
     | 
| 
       81 
     | 
    
         
            -
                  x, y = normalize_point(x_or_point, y)
         
     | 
| 
      
 82 
     | 
    
         
            +
                def contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0)
         
     | 
| 
      
 83 
     | 
    
         
            +
                  x, y = Point.normalize_point(x_or_point, y)
         
     | 
| 
       82 
84 
     | 
    
         
             
                  return unless x && y
         
     | 
| 
       83 
85 
     | 
    
         | 
| 
       84 
86 
     | 
    
         
             
                  x1 = points[0][0]
         
     | 
| 
         @@ -87,90 +89,96 @@ module PerfectShape 
     | 
|
| 
       87 
89 
     | 
    
         
             
                  yc = points[1][1]
         
     | 
| 
       88 
90 
     | 
    
         
             
                  x2 = points[2][0]
         
     | 
| 
       89 
91 
     | 
    
         
             
                  y2 = points[2][1]
         
     | 
| 
       90 
     | 
    
         
            -
             
     | 
| 
       91 
     | 
    
         
            -
                   
     | 
| 
       92 
     | 
    
         
            -
             
     | 
| 
       93 
     | 
    
         
            -
             
     | 
| 
       94 
     | 
    
         
            -
             
     | 
| 
       95 
     | 
    
         
            -
                   
     | 
| 
       96 
     | 
    
         
            -
             
     | 
| 
       97 
     | 
    
         
            -
             
     | 
| 
       98 
     | 
    
         
            -
             
     | 
| 
       99 
     | 
    
         
            -
             
     | 
| 
       100 
     | 
    
         
            -
             
     | 
| 
       101 
     | 
    
         
            -
             
     | 
| 
       102 
     | 
    
         
            -
             
     | 
| 
       103 
     | 
    
         
            -
             
     | 
| 
       104 
     | 
    
         
            -
             
     | 
| 
       105 
     | 
    
         
            -
             
     | 
| 
       106 
     | 
    
         
            -
             
     | 
| 
       107 
     | 
    
         
            -
             
     | 
| 
       108 
     | 
    
         
            -
             
     | 
| 
       109 
     | 
    
         
            -
             
     | 
| 
       110 
     | 
    
         
            -
             
     | 
| 
       111 
     | 
    
         
            -
             
     | 
| 
       112 
     | 
    
         
            -
             
     | 
| 
       113 
     | 
    
         
            -
             
     | 
| 
       114 
     | 
    
         
            -
             
     | 
| 
       115 
     | 
    
         
            -
             
     | 
| 
       116 
     | 
    
         
            -
             
     | 
| 
       117 
     | 
    
         
            -
             
     | 
| 
       118 
     | 
    
         
            -
             
     | 
| 
       119 
     | 
    
         
            -
             
     | 
| 
       120 
     | 
    
         
            -
             
     | 
| 
       121 
     | 
    
         
            -
             
     | 
| 
       122 
     | 
    
         
            -
             
     | 
| 
       123 
     | 
    
         
            -
             
     | 
| 
       124 
     | 
    
         
            -
             
     | 
| 
       125 
     | 
    
         
            -
             
     | 
| 
       126 
     | 
    
         
            -
             
     | 
| 
       127 
     | 
    
         
            -
             
     | 
| 
       128 
     | 
    
         
            -
             
     | 
| 
       129 
     | 
    
         
            -
             
     | 
| 
       130 
     | 
    
         
            -
             
     | 
| 
       131 
     | 
    
         
            -
             
     | 
| 
       132 
     | 
    
         
            -
             
     | 
| 
       133 
     | 
    
         
            -
             
     | 
| 
       134 
     | 
    
         
            -
             
     | 
| 
       135 
     | 
    
         
            -
             
     | 
| 
       136 
     | 
    
         
            -
             
     | 
| 
       137 
     | 
    
         
            -
             
     | 
| 
       138 
     | 
    
         
            -
             
     | 
| 
       139 
     | 
    
         
            -
             
     | 
| 
       140 
     | 
    
         
            -
             
     | 
| 
       141 
     | 
    
         
            -
             
     | 
| 
       142 
     | 
    
         
            -
             
     | 
| 
       143 
     | 
    
         
            -
             
     | 
| 
       144 
     | 
    
         
            -
             
     | 
| 
       145 
     | 
    
         
            -
             
     | 
| 
       146 
     | 
    
         
            -
             
     | 
| 
       147 
     | 
    
         
            -
             
     | 
| 
       148 
     | 
    
         
            -
             
     | 
| 
       149 
     | 
    
         
            -
             
     | 
| 
       150 
     | 
    
         
            -
             
     | 
| 
       151 
     | 
    
         
            -
             
     | 
| 
       152 
     | 
    
         
            -
             
     | 
| 
       153 
     | 
    
         
            -
             
     | 
| 
       154 
     | 
    
         
            -
             
     | 
| 
       155 
     | 
    
         
            -
             
     | 
| 
       156 
     | 
    
         
            -
             
     | 
| 
       157 
     | 
    
         
            -
             
     | 
| 
       158 
     | 
    
         
            -
             
     | 
| 
       159 
     | 
    
         
            -
             
     | 
| 
       160 
     | 
    
         
            -
             
     | 
| 
       161 
     | 
    
         
            -
             
     | 
| 
       162 
     | 
    
         
            -
             
     | 
| 
       163 
     | 
    
         
            -
             
     | 
| 
       164 
     | 
    
         
            -
             
     | 
| 
       165 
     | 
    
         
            -
             
     | 
| 
       166 
     | 
    
         
            -
             
     | 
| 
       167 
     | 
    
         
            -
             
     | 
| 
       168 
     | 
    
         
            -
             
     | 
| 
       169 
     | 
    
         
            -
             
     | 
| 
       170 
     | 
    
         
            -
             
     | 
| 
       171 
     | 
    
         
            -
                     
     | 
| 
       172 
     | 
    
         
            -
                     
     | 
| 
       173 
     | 
    
         
            -
                     
     | 
| 
      
 92 
     | 
    
         
            +
                  
         
     | 
| 
      
 93 
     | 
    
         
            +
                  if outline
         
     | 
| 
      
 94 
     | 
    
         
            +
                    distance_tolerance = BigDecimal(distance_tolerance.to_s)
         
     | 
| 
      
 95 
     | 
    
         
            +
                    minimum_distance_threshold = OUTLINE_MINIMUM_DISTANCE_THRESHOLD + distance_tolerance
         
     | 
| 
      
 96 
     | 
    
         
            +
                    point_distance(x, y, minimum_distance_threshold: minimum_distance_threshold) < minimum_distance_threshold
         
     | 
| 
      
 97 
     | 
    
         
            +
                  else
         
     | 
| 
      
 98 
     | 
    
         
            +
                    # We have a convex shape bounded by quad curve Pc(t)
         
     | 
| 
      
 99 
     | 
    
         
            +
                    # and ine Pl(t).
         
     | 
| 
      
 100 
     | 
    
         
            +
                    #
         
     | 
| 
      
 101 
     | 
    
         
            +
                    #     P1 = (x1, y1) - start point of curve
         
     | 
| 
      
 102 
     | 
    
         
            +
                    #     P2 = (x2, y2) - end point of curve
         
     | 
| 
      
 103 
     | 
    
         
            +
                    #     Pc = (xc, yc) - control point
         
     | 
| 
      
 104 
     | 
    
         
            +
                    #
         
     | 
| 
      
 105 
     | 
    
         
            +
                    #     Pq(t) = P1*(1 - t)^2 + 2*Pc*t*(1 - t) + P2*t^2 =
         
     | 
| 
      
 106 
     | 
    
         
            +
                    #           = (P1 - 2*Pc + P2)*t^2 + 2*(Pc - P1)*t + P1
         
     | 
| 
      
 107 
     | 
    
         
            +
                    #     Pl(t) = P1*(1 - t) + P2*t
         
     | 
| 
      
 108 
     | 
    
         
            +
                    #     t = [0:1]
         
     | 
| 
      
 109 
     | 
    
         
            +
                    #
         
     | 
| 
      
 110 
     | 
    
         
            +
                    #     P = (x, y) - point of interest
         
     | 
| 
      
 111 
     | 
    
         
            +
                    #
         
     | 
| 
      
 112 
     | 
    
         
            +
                    # Let's look at second derivative of quad curve equation:
         
     | 
| 
      
 113 
     | 
    
         
            +
                    #
         
     | 
| 
      
 114 
     | 
    
         
            +
                    #     Pq''(t) = 2 * (P1 - 2 * Pc + P2) = Pq''
         
     | 
| 
      
 115 
     | 
    
         
            +
                    #     It's constant vector.
         
     | 
| 
      
 116 
     | 
    
         
            +
                    #
         
     | 
| 
      
 117 
     | 
    
         
            +
                    # Let's draw a line through P to be parallel to this
         
     | 
| 
      
 118 
     | 
    
         
            +
                    # vector and find the intersection of the quad curve
         
     | 
| 
      
 119 
     | 
    
         
            +
                    # and the line.
         
     | 
| 
      
 120 
     | 
    
         
            +
                    #
         
     | 
| 
      
 121 
     | 
    
         
            +
                    # Pq(t) is point of intersection if system of equations
         
     | 
| 
      
 122 
     | 
    
         
            +
                    # below has the solution.
         
     | 
| 
      
 123 
     | 
    
         
            +
                    #
         
     | 
| 
      
 124 
     | 
    
         
            +
                    #     L(s) = P + Pq''*s == Pq(t)
         
     | 
| 
      
 125 
     | 
    
         
            +
                    #     Pq''*s + (P - Pq(t)) == 0
         
     | 
| 
      
 126 
     | 
    
         
            +
                    #
         
     | 
| 
      
 127 
     | 
    
         
            +
                    #     | xq''*s + (x - xq(t)) == 0
         
     | 
| 
      
 128 
     | 
    
         
            +
                    #     | yq''*s + (y - yq(t)) == 0
         
     | 
| 
      
 129 
     | 
    
         
            +
                    #
         
     | 
| 
      
 130 
     | 
    
         
            +
                    # This system has the solution if rank of its matrix equals to 1.
         
     | 
| 
      
 131 
     | 
    
         
            +
                    # That is, determinant of the matrix should be zero.
         
     | 
| 
      
 132 
     | 
    
         
            +
                    #
         
     | 
| 
      
 133 
     | 
    
         
            +
                    #     (y - yq(t))*xq'' == (x - xq(t))*yq''
         
     | 
| 
      
 134 
     | 
    
         
            +
                    #
         
     | 
| 
      
 135 
     | 
    
         
            +
                    # Let's solve this equation with 't' variable.
         
     | 
| 
      
 136 
     | 
    
         
            +
                    # Also let kx = x1 - 2*xc + x2
         
     | 
| 
      
 137 
     | 
    
         
            +
                    #          ky = y1 - 2*yc + y2
         
     | 
| 
      
 138 
     | 
    
         
            +
                    #
         
     | 
| 
      
 139 
     | 
    
         
            +
                    #     t0q = (1/2)*((x - x1)*ky - (y - y1)*kx) /
         
     | 
| 
      
 140 
     | 
    
         
            +
                    #                 ((xc - x1)*ky - (yc - y1)*kx)
         
     | 
| 
      
 141 
     | 
    
         
            +
                    #
         
     | 
| 
      
 142 
     | 
    
         
            +
                    # Let's do the same for our line Pl(t):
         
     | 
| 
      
 143 
     | 
    
         
            +
                    #
         
     | 
| 
      
 144 
     | 
    
         
            +
                    #     t0l = ((x - x1)*ky - (y - y1)*kx) /
         
     | 
| 
      
 145 
     | 
    
         
            +
                    #           ((x2 - x1)*ky - (y2 - y1)*kx)
         
     | 
| 
      
 146 
     | 
    
         
            +
                    #
         
     | 
| 
      
 147 
     | 
    
         
            +
                    # It's easy to check that t0q == t0l. This fact means
         
     | 
| 
      
 148 
     | 
    
         
            +
                    # we can compute t0 only one time.
         
     | 
| 
      
 149 
     | 
    
         
            +
                    #
         
     | 
| 
      
 150 
     | 
    
         
            +
                    # In case t0 < 0 or t0 > 1, we have an intersections outside
         
     | 
| 
      
 151 
     | 
    
         
            +
                    # of shape bounds. So, P is definitely out of shape.
         
     | 
| 
      
 152 
     | 
    
         
            +
                    #
         
     | 
| 
      
 153 
     | 
    
         
            +
                    # In case t0 is inside [0:1], we should calculate Pq(t0)
         
     | 
| 
      
 154 
     | 
    
         
            +
                    # and Pl(t0). We have three points for now, and all of them
         
     | 
| 
      
 155 
     | 
    
         
            +
                    # lie on one line. So, we just need to detect, is our point
         
     | 
| 
      
 156 
     | 
    
         
            +
                    # of interest between points of intersections or not.
         
     | 
| 
      
 157 
     | 
    
         
            +
                    #
         
     | 
| 
      
 158 
     | 
    
         
            +
                    # If the denominator in the t0q and t0l equations is
         
     | 
| 
      
 159 
     | 
    
         
            +
                    # zero, then the points must be collinear and so the
         
     | 
| 
      
 160 
     | 
    
         
            +
                    # curve is degenerate and encloses no area.  Thus the
         
     | 
| 
      
 161 
     | 
    
         
            +
                    # result is false.
         
     | 
| 
      
 162 
     | 
    
         
            +
                    kx = x1 - 2 * xc + x2;
         
     | 
| 
      
 163 
     | 
    
         
            +
                    ky = y1 - 2 * yc + y2;
         
     | 
| 
      
 164 
     | 
    
         
            +
                    dx = x - x1;
         
     | 
| 
      
 165 
     | 
    
         
            +
                    dy = y - y1;
         
     | 
| 
      
 166 
     | 
    
         
            +
                    dxl = x2 - x1;
         
     | 
| 
      
 167 
     | 
    
         
            +
                    dyl = y2 - y1;
         
     | 
| 
      
 168 
     | 
    
         
            +
              
         
     | 
| 
      
 169 
     | 
    
         
            +
                    t0 = (dx * ky - dy * kx) / (dxl * ky - dyl * kx)
         
     | 
| 
      
 170 
     | 
    
         
            +
                    return false if (t0 < 0 || t0 > 1 || t0 != t0)
         
     | 
| 
      
 171 
     | 
    
         
            +
              
         
     | 
| 
      
 172 
     | 
    
         
            +
                    xb = kx * t0 * t0 + 2 * (xc - x1) * t0 + x1;
         
     | 
| 
      
 173 
     | 
    
         
            +
                    yb = ky * t0 * t0 + 2 * (yc - y1) * t0 + y1;
         
     | 
| 
      
 174 
     | 
    
         
            +
                    xl = dxl * t0 + x1;
         
     | 
| 
      
 175 
     | 
    
         
            +
                    yl = dyl * t0 + y1;
         
     | 
| 
      
 176 
     | 
    
         
            +
              
         
     | 
| 
      
 177 
     | 
    
         
            +
                    (x >= xb && x < xl) ||
         
     | 
| 
      
 178 
     | 
    
         
            +
                      (x >= xl && x < xb) ||
         
     | 
| 
      
 179 
     | 
    
         
            +
                      (y >= yb && y < yl) ||
         
     | 
| 
      
 180 
     | 
    
         
            +
                      (y >= yl && y < yb)
         
     | 
| 
      
 181 
     | 
    
         
            +
                  end
         
     | 
| 
       174 
182 
     | 
    
         
             
                end
         
     | 
| 
       175 
183 
     | 
    
         | 
| 
       176 
184 
     | 
    
         
             
                # Calculates the number of times the quad
         
     | 
| 
         @@ -182,9 +190,88 @@ module PerfectShape 
     | 
|
| 
       182 
190 
     | 
    
         
             
                # +1 is added for each crossing where the Y coordinate is increasing
         
     | 
| 
       183 
191 
     | 
    
         
             
                # -1 is added for each crossing where the Y coordinate is decreasing
         
     | 
| 
       184 
192 
     | 
    
         
             
                def point_crossings(x_or_point, y = nil, level = 0)
         
     | 
| 
       185 
     | 
    
         
            -
                  x, y = normalize_point(x_or_point, y)
         
     | 
| 
      
 193 
     | 
    
         
            +
                  x, y = Point.normalize_point(x_or_point, y)
         
     | 
| 
       186 
194 
     | 
    
         
             
                  return unless x && y
         
     | 
| 
       187 
195 
     | 
    
         
             
                  QuadraticBezierCurve.point_crossings(points[0][0], points[0][1], points[1][0], points[1][1], points[2][0], points[2][1], x, y, level)
         
     | 
| 
       188 
196 
     | 
    
         
             
                end
         
     | 
| 
      
 197 
     | 
    
         
            +
                
         
     | 
| 
      
 198 
     | 
    
         
            +
                # The center point on the outline of the curve
         
     | 
| 
      
 199 
     | 
    
         
            +
                # in Array format as pair of (x, y) coordinates
         
     | 
| 
      
 200 
     | 
    
         
            +
                def curve_center_point
         
     | 
| 
      
 201 
     | 
    
         
            +
                  subdivisions.last.points[0]
         
     | 
| 
      
 202 
     | 
    
         
            +
                end
         
     | 
| 
      
 203 
     | 
    
         
            +
                
         
     | 
| 
      
 204 
     | 
    
         
            +
                # The center point x on the outline of the curve
         
     | 
| 
      
 205 
     | 
    
         
            +
                def curve_center_x
         
     | 
| 
      
 206 
     | 
    
         
            +
                  subdivisions.last.points[0][0]
         
     | 
| 
      
 207 
     | 
    
         
            +
                end
         
     | 
| 
      
 208 
     | 
    
         
            +
                
         
     | 
| 
      
 209 
     | 
    
         
            +
                # The center point y on the outline of the curve
         
     | 
| 
      
 210 
     | 
    
         
            +
                def curve_center_y
         
     | 
| 
      
 211 
     | 
    
         
            +
                  subdivisions.last.points[0][1]
         
     | 
| 
      
 212 
     | 
    
         
            +
                end
         
     | 
| 
      
 213 
     | 
    
         
            +
                
         
     | 
| 
      
 214 
     | 
    
         
            +
                # Subdivides QuadraticBezierCurve exactly at its curve center
         
     | 
| 
      
 215 
     | 
    
         
            +
                # returning 2 QuadraticBezierCurve's as a two-element Array by default
         
     | 
| 
      
 216 
     | 
    
         
            +
                #
         
     | 
| 
      
 217 
     | 
    
         
            +
                # Optional `level` parameter specifies the level of recursions to
         
     | 
| 
      
 218 
     | 
    
         
            +
                # perform to get more subdivisions. The number of resulting
         
     | 
| 
      
 219 
     | 
    
         
            +
                # subdivisions is 2 to the power of `level` (e.g. 2 subdivisions
         
     | 
| 
      
 220 
     | 
    
         
            +
                # for level=1, 4 subdivisions for level=2, and 8 subdivisions for level=3)
         
     | 
| 
      
 221 
     | 
    
         
            +
                def subdivisions(level = 1)
         
     | 
| 
      
 222 
     | 
    
         
            +
                  level -= 1 # consume 1 level
         
     | 
| 
      
 223 
     | 
    
         
            +
                  
         
     | 
| 
      
 224 
     | 
    
         
            +
                  x1 = points[0][0]
         
     | 
| 
      
 225 
     | 
    
         
            +
                  y1 = points[0][1]
         
     | 
| 
      
 226 
     | 
    
         
            +
                  ctrlx = points[1][0]
         
     | 
| 
      
 227 
     | 
    
         
            +
                  ctrly = points[1][1]
         
     | 
| 
      
 228 
     | 
    
         
            +
                  x2 = points[2][0]
         
     | 
| 
      
 229 
     | 
    
         
            +
                  y2 = points[2][1]
         
     | 
| 
      
 230 
     | 
    
         
            +
                  ctrlx1 = BigDecimal((x1 + ctrlx).to_s) / 2
         
     | 
| 
      
 231 
     | 
    
         
            +
                  ctrly1 = BigDecimal((y1 + ctrly).to_s) / 2
         
     | 
| 
      
 232 
     | 
    
         
            +
                  ctrlx2 = BigDecimal((x2 + ctrlx).to_s) / 2
         
     | 
| 
      
 233 
     | 
    
         
            +
                  ctrly2 = BigDecimal((y2 + ctrly).to_s) / 2
         
     | 
| 
      
 234 
     | 
    
         
            +
                  centerx = BigDecimal((ctrlx1 + ctrlx2).to_s) / 2
         
     | 
| 
      
 235 
     | 
    
         
            +
                  centery = BigDecimal((ctrly1 + ctrly2).to_s) / 2
         
     | 
| 
      
 236 
     | 
    
         
            +
                  
         
     | 
| 
      
 237 
     | 
    
         
            +
                  default_subdivisions = [
         
     | 
| 
      
 238 
     | 
    
         
            +
                    QuadraticBezierCurve.new(points: [x1, y1, ctrlx1, ctrly1, centerx, centery]),
         
     | 
| 
      
 239 
     | 
    
         
            +
                    QuadraticBezierCurve.new(points: [centerx, centery, ctrlx2, ctrly2, x2, y2])
         
     | 
| 
      
 240 
     | 
    
         
            +
                  ]
         
     | 
| 
      
 241 
     | 
    
         
            +
                  
         
     | 
| 
      
 242 
     | 
    
         
            +
                  if level == 0
         
     | 
| 
      
 243 
     | 
    
         
            +
                    default_subdivisions
         
     | 
| 
      
 244 
     | 
    
         
            +
                  else
         
     | 
| 
      
 245 
     | 
    
         
            +
                    default_subdivisions.map { |curve| curve.subdivisions(level) }.flatten
         
     | 
| 
      
 246 
     | 
    
         
            +
                  end
         
     | 
| 
      
 247 
     | 
    
         
            +
                end
         
     | 
| 
      
 248 
     | 
    
         
            +
                
         
     | 
| 
      
 249 
     | 
    
         
            +
                def point_distance(x_or_point, y = nil, minimum_distance_threshold: OUTLINE_MINIMUM_DISTANCE_THRESHOLD)
         
     | 
| 
      
 250 
     | 
    
         
            +
                  x, y = Point.normalize_point(x_or_point, y)
         
     | 
| 
      
 251 
     | 
    
         
            +
                  return unless x && y
         
     | 
| 
      
 252 
     | 
    
         
            +
                  
         
     | 
| 
      
 253 
     | 
    
         
            +
                  point = Point.new(x, y)
         
     | 
| 
      
 254 
     | 
    
         
            +
                  current_curve = self
         
     | 
| 
      
 255 
     | 
    
         
            +
                  minimum_distance = point.point_distance(curve_center_point)
         
     | 
| 
      
 256 
     | 
    
         
            +
                  last_minimum_distance = minimum_distance + 1 # start bigger to ensure going through loop once at least
         
     | 
| 
      
 257 
     | 
    
         
            +
                  while minimum_distance >= minimum_distance_threshold && minimum_distance < last_minimum_distance
         
     | 
| 
      
 258 
     | 
    
         
            +
                    curve1, curve2 = current_curve.subdivisions
         
     | 
| 
      
 259 
     | 
    
         
            +
                    distance1 = point.point_distance(curve1.curve_center_point)
         
     | 
| 
      
 260 
     | 
    
         
            +
                    distance2 = point.point_distance(curve2.curve_center_point)
         
     | 
| 
      
 261 
     | 
    
         
            +
                    last_minimum_distance = minimum_distance
         
     | 
| 
      
 262 
     | 
    
         
            +
                    if distance1 < distance2
         
     | 
| 
      
 263 
     | 
    
         
            +
                      minimum_distance = distance1
         
     | 
| 
      
 264 
     | 
    
         
            +
                      current_curve = curve1
         
     | 
| 
      
 265 
     | 
    
         
            +
                    else
         
     | 
| 
      
 266 
     | 
    
         
            +
                      minimum_distance = distance2
         
     | 
| 
      
 267 
     | 
    
         
            +
                      current_curve = curve2
         
     | 
| 
      
 268 
     | 
    
         
            +
                    end
         
     | 
| 
      
 269 
     | 
    
         
            +
                  end
         
     | 
| 
      
 270 
     | 
    
         
            +
                  if minimum_distance < minimum_distance_threshold
         
     | 
| 
      
 271 
     | 
    
         
            +
                    minimum_distance
         
     | 
| 
      
 272 
     | 
    
         
            +
                  else
         
     | 
| 
      
 273 
     | 
    
         
            +
                    last_minimum_distance
         
     | 
| 
      
 274 
     | 
    
         
            +
                  end
         
     | 
| 
      
 275 
     | 
    
         
            +
                end
         
     | 
| 
       189 
276 
     | 
    
         
             
              end
         
     | 
| 
       190 
277 
     | 
    
         
             
            end
         
     | 
| 
         @@ -1,4 +1,4 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            # Copyright (c) 2021 Andy Maleh
         
     | 
| 
      
 1 
     | 
    
         
            +
            # Copyright (c) 2021-2022 Andy Maleh
         
     | 
| 
       2 
2 
     | 
    
         
             
            #
         
     | 
| 
       3 
3 
     | 
    
         
             
            # Permission is hereby granted, free of charge, to any person obtaining
         
     | 
| 
       4 
4 
     | 
    
         
             
            # a copy of this software and associated documentation files (the
         
     | 
| 
         @@ -21,10 +21,10 @@ 
     | 
|
| 
       21 
21 
     | 
    
         | 
| 
       22 
22 
     | 
    
         
             
            require 'perfect_shape/shape'
         
     | 
| 
       23 
23 
     | 
    
         
             
            require 'perfect_shape/rectangular_shape'
         
     | 
| 
      
 24 
     | 
    
         
            +
            require 'perfect_shape/point'
         
     | 
| 
       24 
25 
     | 
    
         
             
            require 'perfect_shape/line'
         
     | 
| 
       25 
26 
     | 
    
         | 
| 
       26 
27 
     | 
    
         
             
            module PerfectShape
         
     | 
| 
       27 
     | 
    
         
            -
              # Mostly ported from java.awt.geom: https://docs.oracle.com/javase/8/docs/api/java/awt/geom/Rectangle2D.html
         
     | 
| 
       28 
28 
     | 
    
         
             
              class Rectangle < Shape
         
     | 
| 
       29 
29 
     | 
    
         
             
                include RectangularShape
         
     | 
| 
       30 
30 
     | 
    
         
             
                include Equalizer.new(:x, :y, :width, :height)
         
     | 
| 
         @@ -38,16 +38,23 @@ module PerfectShape 
     | 
|
| 
       38 
38 
     | 
    
         
             
                # the rectangle, {@code false} if the point lies outside of the
         
     | 
| 
       39 
39 
     | 
    
         
             
                # rectangle's bounds.
         
     | 
| 
       40 
40 
     | 
    
         
             
                def contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0)
         
     | 
| 
       41 
     | 
    
         
            -
                  x, y = normalize_point(x_or_point, y)
         
     | 
| 
      
 41 
     | 
    
         
            +
                  x, y = Point.normalize_point(x_or_point, y)
         
     | 
| 
       42 
42 
     | 
    
         
             
                  return unless x && y
         
     | 
| 
      
 43 
     | 
    
         
            +
                  
         
     | 
| 
       43 
44 
     | 
    
         
             
                  if outline
         
     | 
| 
       44 
     | 
    
         
            -
                     
     | 
| 
       45 
     | 
    
         
            -
                      Line.new(points: [[self.x + width, self.y], [self.x + width, self.y + height]]).contain?(x, y, distance_tolerance: distance_tolerance) or
         
     | 
| 
       46 
     | 
    
         
            -
                      Line.new(points: [[self.x + width, self.y + height], [self.x, self.y + height]]).contain?(x, y, distance_tolerance: distance_tolerance) or
         
     | 
| 
       47 
     | 
    
         
            -
                      Line.new(points: [[self.x, self.y + height], [self.x, self.y]]).contain?(x, y, distance_tolerance: distance_tolerance)
         
     | 
| 
      
 45 
     | 
    
         
            +
                    edges.any? { |edge| edge.contain?(x, y, distance_tolerance: distance_tolerance) }
         
     | 
| 
       48 
46 
     | 
    
         
             
                  else
         
     | 
| 
       49 
47 
     | 
    
         
             
                    x.between?(self.x, self.x + width) && y.between?(self.y, self.y + height)
         
     | 
| 
       50 
48 
     | 
    
         
             
                  end
         
     | 
| 
       51 
49 
     | 
    
         
             
                end
         
     | 
| 
      
 50 
     | 
    
         
            +
                
         
     | 
| 
      
 51 
     | 
    
         
            +
                def edges
         
     | 
| 
      
 52 
     | 
    
         
            +
                  [
         
     | 
| 
      
 53 
     | 
    
         
            +
                    Line.new(points: [[self.x, self.y], [self.x + width, self.y]]),
         
     | 
| 
      
 54 
     | 
    
         
            +
                    Line.new(points: [[self.x + width, self.y], [self.x + width, self.y + height]]),
         
     | 
| 
      
 55 
     | 
    
         
            +
                    Line.new(points: [[self.x + width, self.y + height], [self.x, self.y + height]]),
         
     | 
| 
      
 56 
     | 
    
         
            +
                    Line.new(points: [[self.x, self.y + height], [self.x, self.y]])
         
     | 
| 
      
 57 
     | 
    
         
            +
                  ]
         
     | 
| 
      
 58 
     | 
    
         
            +
                end
         
     | 
| 
       52 
59 
     | 
    
         
             
              end
         
     | 
| 
       53 
60 
     | 
    
         
             
            end
         
     | 
    
        data/lib/perfect_shape/shape.rb
    CHANGED
    
    | 
         @@ -1,4 +1,4 @@ 
     | 
|
| 
       1 
     | 
    
         
            -
            # Copyright (c) 2021 Andy Maleh
         
     | 
| 
      
 1 
     | 
    
         
            +
            # Copyright (c) 2021-2022 Andy Maleh
         
     | 
| 
       2 
2 
     | 
    
         
             
            #
         
     | 
| 
       3 
3 
     | 
    
         
             
            # Permission is hereby granted, free of charge, to any person obtaining
         
     | 
| 
       4 
4 
     | 
    
         
             
            # a copy of this software and associated documentation files (the
         
     | 
| 
         @@ -51,6 +51,12 @@ module PerfectShape 
     | 
|
| 
       51 
51 
     | 
    
         
             
                  max_y - min_y if max_y && min_y
         
     | 
| 
       52 
52 
     | 
    
         
             
                end
         
     | 
| 
       53 
53 
     | 
    
         | 
| 
      
 54 
     | 
    
         
            +
                # Center point is `[center_x, center_y]`
         
     | 
| 
      
 55 
     | 
    
         
            +
                # Returns `nil` if either center_x or center_y are `nil`
         
     | 
| 
      
 56 
     | 
    
         
            +
                def center_point
         
     | 
| 
      
 57 
     | 
    
         
            +
                  [center_x, center_y] unless center_x.nil? || center_y.nil?
         
     | 
| 
      
 58 
     | 
    
         
            +
                end
         
     | 
| 
      
 59 
     | 
    
         
            +
                
         
     | 
| 
       54 
60 
     | 
    
         
             
                # center_x is min_x + width/2.0 by default
         
     | 
| 
       55 
61 
     | 
    
         
             
                # Returns nil if min_x or width are nil
         
     | 
| 
       56 
62 
     | 
    
         
             
                def center_x
         
     | 
| 
         @@ -69,21 +75,6 @@ module PerfectShape 
     | 
|
| 
       69 
75 
     | 
    
         
             
                  Rectangle.new(x: min_x, y: min_y, width: width, height: height)
         
     | 
| 
       70 
76 
     | 
    
         
             
                end
         
     | 
| 
       71 
77 
     | 
    
         | 
| 
       72 
     | 
    
         
            -
                # Normalizes point args whether two-number Array or x, y args returning
         
     | 
| 
       73 
     | 
    
         
            -
                # normalized point array of two BigDecimal's
         
     | 
| 
       74 
     | 
    
         
            -
                #
         
     | 
| 
       75 
     | 
    
         
            -
                # @param x_or_point The point or X coordinate of the point to test.
         
     | 
| 
       76 
     | 
    
         
            -
                # @param y The Y coordinate of the point to test.
         
     | 
| 
       77 
     | 
    
         
            -
                #
         
     | 
| 
       78 
     | 
    
         
            -
                # @return Array of x and y BigDecimal's representing point
         
     | 
| 
       79 
     | 
    
         
            -
                def normalize_point(x_or_point, y = nil)
         
     | 
| 
       80 
     | 
    
         
            -
                  x = x_or_point
         
     | 
| 
       81 
     | 
    
         
            -
                  x, y = x if y.nil? && x_or_point.is_a?(Array) && x_or_point.size == 2
         
     | 
| 
       82 
     | 
    
         
            -
                  x = BigDecimal(x.to_s)
         
     | 
| 
       83 
     | 
    
         
            -
                  y = BigDecimal(y.to_s)
         
     | 
| 
       84 
     | 
    
         
            -
                  [x, y]
         
     | 
| 
       85 
     | 
    
         
            -
                end
         
     | 
| 
       86 
     | 
    
         
            -
                
         
     | 
| 
       87 
78 
     | 
    
         
             
                # Subclasses must implement
         
     | 
| 
       88 
79 
     | 
    
         
             
                def contain?(x_or_point, y = nil, outline: false, distance_tolerance: 0)
         
     | 
| 
       89 
80 
     | 
    
         
             
                end
         
     | 
    
        data/lib/perfect_shape/square.rb
    CHANGED