parquet 0.0.5 → 0.2.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/Cargo.lock +50 -0
- data/README.md +92 -2
- data/ext/parquet/Cargo.toml +1 -0
- data/ext/parquet/src/lib.rs +5 -3
- data/ext/parquet/src/{reader.rs → reader/mod.rs} +5 -2
- data/ext/parquet/src/types/core_types.rs +73 -0
- data/ext/parquet/src/types/mod.rs +30 -0
- data/ext/parquet/src/types/parquet_value.rs +462 -0
- data/ext/parquet/src/types/record_types.rs +204 -0
- data/ext/parquet/src/types/timestamp.rs +85 -0
- data/ext/parquet/src/types/type_conversion.rs +753 -0
- data/ext/parquet/src/types/writer_types.rs +275 -0
- data/ext/parquet/src/utils.rs +16 -5
- data/ext/parquet/src/writer/mod.rs +403 -0
- data/lib/parquet/version.rb +1 -1
- data/lib/parquet.rbi +33 -2
- metadata +13 -6
- data/ext/parquet/src/types.rs +0 -763
- /data/ext/parquet/src/{parquet_column_reader.rs → reader/parquet_column_reader.rs} +0 -0
- /data/ext/parquet/src/{parquet_row_reader.rs → reader/parquet_row_reader.rs} +0 -0
@@ -0,0 +1,403 @@
|
|
1
|
+
use std::{
|
2
|
+
fs::File,
|
3
|
+
io::{self, BufReader, BufWriter},
|
4
|
+
sync::Arc,
|
5
|
+
};
|
6
|
+
|
7
|
+
use arrow_array::{Array, RecordBatch};
|
8
|
+
use arrow_schema::{DataType, Field, Schema, TimeUnit};
|
9
|
+
use magnus::{
|
10
|
+
scan_args::{get_kwargs, scan_args},
|
11
|
+
value::ReprValue,
|
12
|
+
Error as MagnusError, RArray, Ruby, TryConvert, Value,
|
13
|
+
};
|
14
|
+
use parquet::arrow::ArrowWriter;
|
15
|
+
use tempfile::NamedTempFile;
|
16
|
+
|
17
|
+
use crate::{
|
18
|
+
convert_ruby_array_to_arrow,
|
19
|
+
types::{ColumnCollector, ParquetErrorWrapper, WriterOutput},
|
20
|
+
IoLikeValue, ParquetSchemaType, ParquetWriteArgs, SchemaField, SendableWrite,
|
21
|
+
};
|
22
|
+
|
23
|
+
const DEFAULT_BATCH_SIZE: usize = 1000;
|
24
|
+
|
25
|
+
/// Parse arguments for Parquet writing
|
26
|
+
pub fn parse_parquet_write_args(args: &[Value]) -> Result<ParquetWriteArgs, MagnusError> {
|
27
|
+
let ruby = unsafe { Ruby::get_unchecked() };
|
28
|
+
let parsed_args = scan_args::<(Value,), (), (), (), _, ()>(args)?;
|
29
|
+
let (read_from,) = parsed_args.required;
|
30
|
+
|
31
|
+
let kwargs = get_kwargs::<_, (Value, Value), (Option<Option<usize>>,), ()>(
|
32
|
+
parsed_args.keywords,
|
33
|
+
&["schema", "write_to"],
|
34
|
+
&["batch_size"],
|
35
|
+
)?;
|
36
|
+
|
37
|
+
let schema_array = RArray::from_value(kwargs.required.0).ok_or_else(|| {
|
38
|
+
MagnusError::new(
|
39
|
+
magnus::exception::type_error(),
|
40
|
+
"schema must be an array of hashes",
|
41
|
+
)
|
42
|
+
})?;
|
43
|
+
|
44
|
+
let mut schema = Vec::with_capacity(schema_array.len());
|
45
|
+
|
46
|
+
for (idx, field_hash) in schema_array.into_iter().enumerate() {
|
47
|
+
if !field_hash.is_kind_of(ruby.class_hash()) {
|
48
|
+
return Err(MagnusError::new(
|
49
|
+
magnus::exception::type_error(),
|
50
|
+
format!("schema[{}] must be a hash", idx),
|
51
|
+
));
|
52
|
+
}
|
53
|
+
|
54
|
+
let entries: Vec<(Value, Value)> = field_hash.funcall("to_a", ())?;
|
55
|
+
if entries.len() != 1 {
|
56
|
+
return Err(MagnusError::new(
|
57
|
+
magnus::exception::type_error(),
|
58
|
+
format!("schema[{}] must contain exactly one key-value pair", idx),
|
59
|
+
));
|
60
|
+
}
|
61
|
+
|
62
|
+
let (name, type_str) = &entries[0];
|
63
|
+
let name = String::try_convert(name.clone())?;
|
64
|
+
let type_ = ParquetSchemaType::try_convert(type_str.clone())?;
|
65
|
+
|
66
|
+
schema.push(SchemaField { name, type_ });
|
67
|
+
}
|
68
|
+
|
69
|
+
Ok(ParquetWriteArgs {
|
70
|
+
read_from,
|
71
|
+
write_to: kwargs.required.1,
|
72
|
+
schema,
|
73
|
+
batch_size: kwargs.optional.0.flatten(),
|
74
|
+
})
|
75
|
+
}
|
76
|
+
|
77
|
+
#[inline]
|
78
|
+
pub fn write_rows(args: &[Value]) -> Result<(), MagnusError> {
|
79
|
+
let ruby = unsafe { Ruby::get_unchecked() };
|
80
|
+
|
81
|
+
let ParquetWriteArgs {
|
82
|
+
read_from,
|
83
|
+
write_to,
|
84
|
+
schema,
|
85
|
+
batch_size,
|
86
|
+
} = parse_parquet_write_args(args)?;
|
87
|
+
|
88
|
+
let batch_size = batch_size.unwrap_or(DEFAULT_BATCH_SIZE);
|
89
|
+
|
90
|
+
// Convert schema to Arrow schema
|
91
|
+
let arrow_fields: Vec<Field> = schema
|
92
|
+
.iter()
|
93
|
+
.map(|field| {
|
94
|
+
Field::new(
|
95
|
+
&field.name,
|
96
|
+
match field.type_ {
|
97
|
+
ParquetSchemaType::Int8 => DataType::Int8,
|
98
|
+
ParquetSchemaType::Int16 => DataType::Int16,
|
99
|
+
ParquetSchemaType::Int32 => DataType::Int32,
|
100
|
+
ParquetSchemaType::Int64 => DataType::Int64,
|
101
|
+
ParquetSchemaType::UInt8 => DataType::UInt8,
|
102
|
+
ParquetSchemaType::UInt16 => DataType::UInt16,
|
103
|
+
ParquetSchemaType::UInt32 => DataType::UInt32,
|
104
|
+
ParquetSchemaType::UInt64 => DataType::UInt64,
|
105
|
+
ParquetSchemaType::Float => DataType::Float32,
|
106
|
+
ParquetSchemaType::Double => DataType::Float64,
|
107
|
+
ParquetSchemaType::String => DataType::Utf8,
|
108
|
+
ParquetSchemaType::Binary => DataType::Binary,
|
109
|
+
ParquetSchemaType::Boolean => DataType::Boolean,
|
110
|
+
ParquetSchemaType::Date32 => DataType::Date32,
|
111
|
+
ParquetSchemaType::TimestampMillis => {
|
112
|
+
DataType::Timestamp(TimeUnit::Millisecond, None)
|
113
|
+
}
|
114
|
+
ParquetSchemaType::TimestampMicros => {
|
115
|
+
DataType::Timestamp(TimeUnit::Microsecond, None)
|
116
|
+
}
|
117
|
+
ParquetSchemaType::List(_) => unimplemented!("List type not yet supported"),
|
118
|
+
ParquetSchemaType::Map(_) => unimplemented!("Map type not yet supported"),
|
119
|
+
},
|
120
|
+
true,
|
121
|
+
)
|
122
|
+
})
|
123
|
+
.collect();
|
124
|
+
let arrow_schema = Arc::new(Schema::new(arrow_fields));
|
125
|
+
|
126
|
+
// Create the writer
|
127
|
+
let mut writer = create_writer(&ruby, &write_to, arrow_schema.clone())?;
|
128
|
+
|
129
|
+
if read_from.is_kind_of(ruby.class_enumerator()) {
|
130
|
+
// Create collectors for each column
|
131
|
+
let mut column_collectors: Vec<ColumnCollector> = schema
|
132
|
+
.into_iter()
|
133
|
+
.map(|field| ColumnCollector::new(field.name, field.type_))
|
134
|
+
.collect();
|
135
|
+
|
136
|
+
let mut rows_in_batch = 0;
|
137
|
+
|
138
|
+
loop {
|
139
|
+
match read_from.funcall::<_, _, Value>("next", ()) {
|
140
|
+
Ok(row) => {
|
141
|
+
let row_array = RArray::from_value(row).ok_or_else(|| {
|
142
|
+
MagnusError::new(ruby.exception_type_error(), "Row must be an array")
|
143
|
+
})?;
|
144
|
+
|
145
|
+
// Validate row length matches schema
|
146
|
+
if row_array.len() != column_collectors.len() {
|
147
|
+
return Err(MagnusError::new(
|
148
|
+
magnus::exception::type_error(),
|
149
|
+
format!(
|
150
|
+
"Row length ({}) does not match schema length ({}). Schema expects columns: {:?}",
|
151
|
+
row_array.len(),
|
152
|
+
column_collectors.len(),
|
153
|
+
column_collectors.iter().map(|c| c.name.as_str()).collect::<Vec<_>>()
|
154
|
+
),
|
155
|
+
));
|
156
|
+
}
|
157
|
+
|
158
|
+
// Process each value in the row immediately
|
159
|
+
for (collector, value) in column_collectors.iter_mut().zip(row_array) {
|
160
|
+
collector.push_value(value)?;
|
161
|
+
}
|
162
|
+
|
163
|
+
rows_in_batch += 1;
|
164
|
+
|
165
|
+
// When we reach batch size, write the batch
|
166
|
+
if rows_in_batch >= batch_size {
|
167
|
+
write_batch(&mut writer, &mut column_collectors)?;
|
168
|
+
rows_in_batch = 0;
|
169
|
+
}
|
170
|
+
}
|
171
|
+
Err(e) => {
|
172
|
+
if e.is_kind_of(ruby.exception_stop_iteration()) {
|
173
|
+
// Write any remaining rows
|
174
|
+
if rows_in_batch > 0 {
|
175
|
+
write_batch(&mut writer, &mut column_collectors)?;
|
176
|
+
}
|
177
|
+
break;
|
178
|
+
}
|
179
|
+
return Err(e);
|
180
|
+
}
|
181
|
+
}
|
182
|
+
}
|
183
|
+
} else {
|
184
|
+
return Err(MagnusError::new(
|
185
|
+
magnus::exception::type_error(),
|
186
|
+
"read_from must be an Enumerator",
|
187
|
+
));
|
188
|
+
}
|
189
|
+
|
190
|
+
// Ensure everything is written and get the temp file if it exists
|
191
|
+
if let Some(temp_file) = writer.close().map_err(|e| ParquetErrorWrapper(e))? {
|
192
|
+
// If we got a temp file back, we need to copy its contents to the IO-like object
|
193
|
+
copy_temp_file_to_io_like(temp_file, IoLikeValue(write_to))?;
|
194
|
+
}
|
195
|
+
|
196
|
+
Ok(())
|
197
|
+
}
|
198
|
+
|
199
|
+
#[inline]
|
200
|
+
pub fn write_columns(args: &[Value]) -> Result<(), MagnusError> {
|
201
|
+
let ruby = unsafe { Ruby::get_unchecked() };
|
202
|
+
|
203
|
+
let ParquetWriteArgs {
|
204
|
+
read_from,
|
205
|
+
write_to,
|
206
|
+
schema,
|
207
|
+
batch_size: _, // Batch size is determined by the input
|
208
|
+
} = parse_parquet_write_args(args)?;
|
209
|
+
|
210
|
+
// Convert schema to Arrow schema
|
211
|
+
let arrow_fields: Vec<Field> = schema
|
212
|
+
.iter()
|
213
|
+
.map(|field| {
|
214
|
+
Field::new(
|
215
|
+
&field.name,
|
216
|
+
match field.type_ {
|
217
|
+
ParquetSchemaType::Int8 => DataType::Int8,
|
218
|
+
ParquetSchemaType::Int16 => DataType::Int16,
|
219
|
+
ParquetSchemaType::Int32 => DataType::Int32,
|
220
|
+
ParquetSchemaType::Int64 => DataType::Int64,
|
221
|
+
ParquetSchemaType::UInt8 => DataType::UInt8,
|
222
|
+
ParquetSchemaType::UInt16 => DataType::UInt16,
|
223
|
+
ParquetSchemaType::UInt32 => DataType::UInt32,
|
224
|
+
ParquetSchemaType::UInt64 => DataType::UInt64,
|
225
|
+
ParquetSchemaType::Float => DataType::Float32,
|
226
|
+
ParquetSchemaType::Double => DataType::Float64,
|
227
|
+
ParquetSchemaType::String => DataType::Utf8,
|
228
|
+
ParquetSchemaType::Binary => DataType::Binary,
|
229
|
+
ParquetSchemaType::Boolean => DataType::Boolean,
|
230
|
+
ParquetSchemaType::Date32 => DataType::Date32,
|
231
|
+
ParquetSchemaType::TimestampMillis => {
|
232
|
+
DataType::Timestamp(TimeUnit::Millisecond, None)
|
233
|
+
}
|
234
|
+
ParquetSchemaType::TimestampMicros => {
|
235
|
+
DataType::Timestamp(TimeUnit::Microsecond, None)
|
236
|
+
}
|
237
|
+
ParquetSchemaType::List(_) => unimplemented!("List type not yet supported"),
|
238
|
+
ParquetSchemaType::Map(_) => unimplemented!("Map type not yet supported"),
|
239
|
+
},
|
240
|
+
true,
|
241
|
+
)
|
242
|
+
})
|
243
|
+
.collect();
|
244
|
+
let arrow_schema = Arc::new(Schema::new(arrow_fields));
|
245
|
+
|
246
|
+
// Create the writer
|
247
|
+
let mut writer = create_writer(&ruby, &write_to, arrow_schema.clone())?;
|
248
|
+
|
249
|
+
if read_from.is_kind_of(ruby.class_enumerator()) {
|
250
|
+
loop {
|
251
|
+
match read_from.funcall::<_, _, Value>("next", ()) {
|
252
|
+
Ok(batch) => {
|
253
|
+
let batch_array = RArray::from_value(batch).ok_or_else(|| {
|
254
|
+
MagnusError::new(ruby.exception_type_error(), "Batch must be an array")
|
255
|
+
})?;
|
256
|
+
|
257
|
+
// Validate batch length matches schema
|
258
|
+
if batch_array.len() != schema.len() {
|
259
|
+
return Err(MagnusError::new(
|
260
|
+
magnus::exception::type_error(),
|
261
|
+
format!(
|
262
|
+
"Batch column count ({}) does not match schema length ({}). Schema expects columns: {:?}",
|
263
|
+
batch_array.len(),
|
264
|
+
schema.len(),
|
265
|
+
schema.iter().map(|f| f.name.as_str()).collect::<Vec<_>>()
|
266
|
+
),
|
267
|
+
));
|
268
|
+
}
|
269
|
+
|
270
|
+
// Convert each column in the batch to Arrow arrays
|
271
|
+
let arrow_arrays: Vec<(String, Arc<dyn Array>)> = schema
|
272
|
+
.iter()
|
273
|
+
.zip(batch_array)
|
274
|
+
.map(|(field, column)| {
|
275
|
+
let column_array = RArray::from_value(column).ok_or_else(|| {
|
276
|
+
MagnusError::new(
|
277
|
+
magnus::exception::type_error(),
|
278
|
+
format!("Column '{}' must be an array", field.name),
|
279
|
+
)
|
280
|
+
})?;
|
281
|
+
|
282
|
+
Ok((
|
283
|
+
field.name.clone(),
|
284
|
+
convert_ruby_array_to_arrow(column_array, &field.type_)?,
|
285
|
+
))
|
286
|
+
})
|
287
|
+
.collect::<Result<_, MagnusError>>()?;
|
288
|
+
|
289
|
+
// Create and write record batch
|
290
|
+
let record_batch = RecordBatch::try_from_iter(arrow_arrays).map_err(|e| {
|
291
|
+
MagnusError::new(
|
292
|
+
magnus::exception::runtime_error(),
|
293
|
+
format!("Failed to create record batch: {}", e),
|
294
|
+
)
|
295
|
+
})?;
|
296
|
+
|
297
|
+
writer
|
298
|
+
.write(&record_batch)
|
299
|
+
.map_err(|e| ParquetErrorWrapper(e))?;
|
300
|
+
}
|
301
|
+
Err(e) => {
|
302
|
+
if e.is_kind_of(ruby.exception_stop_iteration()) {
|
303
|
+
break;
|
304
|
+
}
|
305
|
+
return Err(e);
|
306
|
+
}
|
307
|
+
}
|
308
|
+
}
|
309
|
+
} else {
|
310
|
+
return Err(MagnusError::new(
|
311
|
+
magnus::exception::type_error(),
|
312
|
+
"read_from must be an Enumerator",
|
313
|
+
));
|
314
|
+
}
|
315
|
+
|
316
|
+
// Ensure everything is written and get the temp file if it exists
|
317
|
+
if let Some(temp_file) = writer.close().map_err(|e| ParquetErrorWrapper(e))? {
|
318
|
+
// If we got a temp file back, we need to copy its contents to the IO-like object
|
319
|
+
copy_temp_file_to_io_like(temp_file, IoLikeValue(write_to))?;
|
320
|
+
}
|
321
|
+
|
322
|
+
Ok(())
|
323
|
+
}
|
324
|
+
|
325
|
+
fn create_writer(
|
326
|
+
ruby: &Ruby,
|
327
|
+
write_to: &Value,
|
328
|
+
schema: Arc<Schema>,
|
329
|
+
) -> Result<WriterOutput, MagnusError> {
|
330
|
+
if write_to.is_kind_of(ruby.class_string()) {
|
331
|
+
let path = write_to.to_r_string()?.to_string()?;
|
332
|
+
let file: Box<dyn SendableWrite> = Box::new(File::create(path).unwrap());
|
333
|
+
let writer =
|
334
|
+
ArrowWriter::try_new(file, schema, None).map_err(|e| ParquetErrorWrapper(e))?;
|
335
|
+
Ok(WriterOutput::File(writer))
|
336
|
+
} else {
|
337
|
+
// Create a temporary file to write to instead of directly to the IoLikeValue
|
338
|
+
let temp_file = NamedTempFile::new().map_err(|e| {
|
339
|
+
MagnusError::new(
|
340
|
+
magnus::exception::runtime_error(),
|
341
|
+
format!("Failed to create temporary file: {}", e),
|
342
|
+
)
|
343
|
+
})?;
|
344
|
+
let file: Box<dyn SendableWrite> = Box::new(temp_file.reopen().map_err(|e| {
|
345
|
+
MagnusError::new(
|
346
|
+
magnus::exception::runtime_error(),
|
347
|
+
format!("Failed to reopen temporary file: {}", e),
|
348
|
+
)
|
349
|
+
})?);
|
350
|
+
let writer =
|
351
|
+
ArrowWriter::try_new(file, schema, None).map_err(|e| ParquetErrorWrapper(e))?;
|
352
|
+
Ok(WriterOutput::TempFile(writer, temp_file))
|
353
|
+
}
|
354
|
+
}
|
355
|
+
|
356
|
+
// Helper function to copy temp file contents to IoLikeValue
|
357
|
+
fn copy_temp_file_to_io_like(
|
358
|
+
temp_file: NamedTempFile,
|
359
|
+
io_like: IoLikeValue,
|
360
|
+
) -> Result<(), MagnusError> {
|
361
|
+
let file = temp_file.reopen().map_err(|e| {
|
362
|
+
MagnusError::new(
|
363
|
+
magnus::exception::runtime_error(),
|
364
|
+
format!("Failed to reopen temporary file: {}", e),
|
365
|
+
)
|
366
|
+
})?;
|
367
|
+
let mut buf_reader = BufReader::new(file);
|
368
|
+
let mut buf_writer = BufWriter::new(io_like);
|
369
|
+
|
370
|
+
io::copy(&mut buf_reader, &mut buf_writer).map_err(|e| {
|
371
|
+
MagnusError::new(
|
372
|
+
magnus::exception::runtime_error(),
|
373
|
+
format!("Failed to copy temp file to io_like: {}", e),
|
374
|
+
)
|
375
|
+
})?;
|
376
|
+
|
377
|
+
Ok(())
|
378
|
+
}
|
379
|
+
|
380
|
+
fn write_batch(
|
381
|
+
writer: &mut WriterOutput,
|
382
|
+
collectors: &mut [ColumnCollector],
|
383
|
+
) -> Result<(), MagnusError> {
|
384
|
+
// Convert columns to Arrow arrays
|
385
|
+
let arrow_arrays: Vec<(String, Arc<dyn Array>)> = collectors
|
386
|
+
.iter_mut()
|
387
|
+
.map(|collector| Ok((collector.name.clone(), collector.take_array()?)))
|
388
|
+
.collect::<Result<_, MagnusError>>()?;
|
389
|
+
|
390
|
+
// Create and write record batch
|
391
|
+
let record_batch = RecordBatch::try_from_iter(arrow_arrays).map_err(|e| {
|
392
|
+
MagnusError::new(
|
393
|
+
magnus::exception::runtime_error(),
|
394
|
+
format!("Failed to create record batch: {}", e),
|
395
|
+
)
|
396
|
+
})?;
|
397
|
+
|
398
|
+
writer
|
399
|
+
.write(&record_batch)
|
400
|
+
.map_err(|e| ParquetErrorWrapper(e))?;
|
401
|
+
|
402
|
+
Ok(())
|
403
|
+
}
|
data/lib/parquet/version.rb
CHANGED
data/lib/parquet.rbi
CHANGED
@@ -1,4 +1,5 @@
|
|
1
1
|
# typed: strict
|
2
|
+
|
2
3
|
module Parquet
|
3
4
|
# Options:
|
4
5
|
# - `input`: String, File, or IO object containing parquet data
|
@@ -12,7 +13,7 @@ module Parquet
|
|
12
13
|
result_type: T.nilable(T.any(String, Symbol)),
|
13
14
|
columns: T.nilable(T::Array[String]),
|
14
15
|
blk: T.nilable(T.proc.params(row: T.any(T::Hash[String, T.untyped], T::Array[T.untyped])).void)
|
15
|
-
).returns(T.any(Enumerator, NilClass))
|
16
|
+
).returns(T.any(T::Enumerator[T.any(T::Hash[String, T.untyped], T::Array[T.untyped])], NilClass))
|
16
17
|
end
|
17
18
|
def self.each_row(input, result_type: nil, columns: nil, &blk)
|
18
19
|
end
|
@@ -31,8 +32,38 @@ module Parquet
|
|
31
32
|
batch_size: T.nilable(Integer),
|
32
33
|
blk:
|
33
34
|
T.nilable(T.proc.params(batch: T.any(T::Hash[String, T::Array[T.untyped]], T::Array[T::Array[T.untyped]])).void)
|
34
|
-
).returns(T.any(Enumerator, NilClass))
|
35
|
+
).returns(T.any(T::Enumerator[T.any(T::Hash[String, T.untyped], T::Array[T.untyped])], NilClass))
|
35
36
|
end
|
36
37
|
def self.each_column(input, result_type: nil, columns: nil, batch_size: nil, &blk)
|
37
38
|
end
|
39
|
+
|
40
|
+
# Options:
|
41
|
+
# - `read_from`: An Enumerator yielding arrays of values representing each row
|
42
|
+
# - `schema`: Array of hashes specifying column names and types
|
43
|
+
# - `write_to`: String path or IO object to write the parquet file to
|
44
|
+
# - `batch_size`: Optional batch size for writing (defaults to 1000)
|
45
|
+
sig do
|
46
|
+
params(
|
47
|
+
read_from: T::Enumerator[T::Array[T.untyped]],
|
48
|
+
schema: T::Array[T::Hash[String, String]],
|
49
|
+
write_to: T.any(String, IO),
|
50
|
+
batch_size: T.nilable(Integer)
|
51
|
+
).void
|
52
|
+
end
|
53
|
+
def self.write_rows(read_from, schema:, write_to:, batch_size: nil)
|
54
|
+
end
|
55
|
+
|
56
|
+
# Options:
|
57
|
+
# - `read_from`: An Enumerator yielding arrays of column batches
|
58
|
+
# - `schema`: Array of hashes specifying column names and types
|
59
|
+
# - `write_to`: String path or IO object to write the parquet file to
|
60
|
+
sig do
|
61
|
+
params(
|
62
|
+
read_from: T::Enumerator[T::Array[T::Array[T.untyped]]],
|
63
|
+
schema: T::Array[T::Hash[String, String]],
|
64
|
+
write_to: T.any(String, IO)
|
65
|
+
).void
|
66
|
+
end
|
67
|
+
def self.write_columns(read_from, schema:, write_to:)
|
68
|
+
end
|
38
69
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: parquet
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.2.6
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Nathan Jaremko
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2025-01-
|
11
|
+
date: 2025-01-13 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rb_sys
|
@@ -60,13 +60,20 @@ files:
|
|
60
60
|
- ext/parquet/src/enumerator.rs
|
61
61
|
- ext/parquet/src/header_cache.rs
|
62
62
|
- ext/parquet/src/lib.rs
|
63
|
-
- ext/parquet/src/
|
64
|
-
- ext/parquet/src/
|
65
|
-
- ext/parquet/src/reader.rs
|
63
|
+
- ext/parquet/src/reader/mod.rs
|
64
|
+
- ext/parquet/src/reader/parquet_column_reader.rs
|
65
|
+
- ext/parquet/src/reader/parquet_row_reader.rs
|
66
66
|
- ext/parquet/src/ruby_integration.rs
|
67
67
|
- ext/parquet/src/ruby_reader.rs
|
68
|
-
- ext/parquet/src/types.rs
|
68
|
+
- ext/parquet/src/types/core_types.rs
|
69
|
+
- ext/parquet/src/types/mod.rs
|
70
|
+
- ext/parquet/src/types/parquet_value.rs
|
71
|
+
- ext/parquet/src/types/record_types.rs
|
72
|
+
- ext/parquet/src/types/timestamp.rs
|
73
|
+
- ext/parquet/src/types/type_conversion.rs
|
74
|
+
- ext/parquet/src/types/writer_types.rs
|
69
75
|
- ext/parquet/src/utils.rs
|
76
|
+
- ext/parquet/src/writer/mod.rs
|
70
77
|
- lib/parquet.rb
|
71
78
|
- lib/parquet.rbi
|
72
79
|
- lib/parquet/version.rb
|