otherinbox-classifier 1.3.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/LICENSE +429 -0
- data/README +88 -0
- data/Rakefile +96 -0
- data/bin/bayes.rb +36 -0
- data/bin/summarize.rb +16 -0
- data/lib/classifier.rb +30 -0
- data/lib/classifier/bayes.rb +172 -0
- data/lib/classifier/extensions/string.rb +16 -0
- data/lib/classifier/extensions/vector.rb +106 -0
- data/lib/classifier/extensions/vector_serialize.rb +20 -0
- data/lib/classifier/extensions/word_hash.rb +154 -0
- data/lib/classifier/lsi.rb +318 -0
- data/lib/classifier/lsi/content_node.rb +72 -0
- data/lib/classifier/lsi/summary.rb +31 -0
- data/lib/classifier/lsi/word_list.rb +36 -0
- data/test/bayes/bayesian_test.rb +33 -0
- data/test/extensions/word_hash_test.rb +14 -0
- data/test/lsi/lsi_test.rb +123 -0
- data/test/test_helper.rb +4 -0
- metadata +85 -0
@@ -0,0 +1,20 @@
|
|
1
|
+
module GSL
|
2
|
+
|
3
|
+
class Vector
|
4
|
+
def _dump(v)
|
5
|
+
Marshal.dump( self.to_a )
|
6
|
+
end
|
7
|
+
|
8
|
+
def self._load(arr)
|
9
|
+
arry = Marshal.load(arr)
|
10
|
+
return GSL::Vector.alloc(arry)
|
11
|
+
end
|
12
|
+
|
13
|
+
end
|
14
|
+
|
15
|
+
class Matrix
|
16
|
+
class <<self
|
17
|
+
alias :diag :diagonal
|
18
|
+
end
|
19
|
+
end
|
20
|
+
end
|
@@ -0,0 +1,154 @@
|
|
1
|
+
# Author:: Lucas Carlson (mailto:lucas@rufy.com)
|
2
|
+
# Copyright:: Copyright (c) 2005 Lucas Carlson
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
# These are extensions to the String class to provide convenience
|
6
|
+
# methods for the Classifier package.
|
7
|
+
class String
|
8
|
+
|
9
|
+
# Removes common punctuation symbols, returning a new string.
|
10
|
+
# E.g.,
|
11
|
+
# "Hello (greeting's), with {braces} < >...?".without_punctuation
|
12
|
+
# => "Hello greetings with braces "
|
13
|
+
def without_punctuation
|
14
|
+
tr( ',?.!;:"@#$%^&*()_=+[]{}\|<>/`~', " " ) .tr( "'\-", "")
|
15
|
+
end
|
16
|
+
|
17
|
+
# Return a Hash of strings => ints. Each word in the string is stemmed,
|
18
|
+
# interned, and indexes to its frequency in the document.
|
19
|
+
def word_hash
|
20
|
+
word_hash_for_words(gsub(/[^\w\s]/,"").split + gsub(/[\w]/," ").split)
|
21
|
+
end
|
22
|
+
|
23
|
+
# Return a word hash without extra punctuation or short symbols, just stemmed words
|
24
|
+
def clean_word_hash
|
25
|
+
word_hash_for_words gsub(/[^\w\s]/,"").split
|
26
|
+
end
|
27
|
+
|
28
|
+
private
|
29
|
+
|
30
|
+
def word_hash_for_words(words)
|
31
|
+
d = Hash.new
|
32
|
+
words.each do |word|
|
33
|
+
word.downcase! if word =~ /[\w]+/
|
34
|
+
# Don't stem words -- most sources I've read say that it's more hurtful than helpful and my tests found the same thing
|
35
|
+
#key = word.stem.intern
|
36
|
+
# Ignore words if they have no word chars, are in the skip list, all numbers or length <= 2
|
37
|
+
if word =~ /\w/ && word !~ /\d+/ && word.length > 2 && !CORPUS_SKIP_WORDS.include?(word)
|
38
|
+
key = word.intern
|
39
|
+
d[key] ||= 0
|
40
|
+
d[key] += 1
|
41
|
+
end
|
42
|
+
end
|
43
|
+
return d
|
44
|
+
end
|
45
|
+
|
46
|
+
CORPUS_SKIP_WORDS = [
|
47
|
+
# Hopefully all of the HTML is gone by this point but because broken HTML is out there
|
48
|
+
# we're not able to easily get rid of it all. This really messes up the classifier
|
49
|
+
# so we're doing a last stand and removing HTML artifacts here.
|
50
|
+
# TODO replace with a definitive and less haphazard list
|
51
|
+
"href",
|
52
|
+
"http",
|
53
|
+
"https",
|
54
|
+
"alt",
|
55
|
+
"coords",
|
56
|
+
"nbsp",
|
57
|
+
"target",
|
58
|
+
"com",
|
59
|
+
"net",
|
60
|
+
"org",
|
61
|
+
"shape",
|
62
|
+
"rect",
|
63
|
+
"apos",
|
64
|
+
"quot",
|
65
|
+
"bull",
|
66
|
+
"html",
|
67
|
+
"www",
|
68
|
+
# These are OI specific but are still showing up as a result of broken HTML
|
69
|
+
"otherinbox",
|
70
|
+
"beta",
|
71
|
+
"blank",
|
72
|
+
|
73
|
+
"a",
|
74
|
+
"again",
|
75
|
+
"all",
|
76
|
+
"along",
|
77
|
+
"are",
|
78
|
+
"also",
|
79
|
+
"an",
|
80
|
+
"and",
|
81
|
+
"as",
|
82
|
+
"at",
|
83
|
+
"but",
|
84
|
+
"by",
|
85
|
+
"came",
|
86
|
+
"can",
|
87
|
+
"cant",
|
88
|
+
"couldnt",
|
89
|
+
"did",
|
90
|
+
"didn",
|
91
|
+
"didnt",
|
92
|
+
"do",
|
93
|
+
"doesnt",
|
94
|
+
"dont",
|
95
|
+
"ever",
|
96
|
+
"first",
|
97
|
+
"from",
|
98
|
+
"have",
|
99
|
+
"her",
|
100
|
+
"here",
|
101
|
+
"him",
|
102
|
+
"how",
|
103
|
+
"i",
|
104
|
+
"if",
|
105
|
+
"in",
|
106
|
+
"into",
|
107
|
+
"is",
|
108
|
+
"isnt",
|
109
|
+
"it",
|
110
|
+
"itll",
|
111
|
+
"just",
|
112
|
+
"last",
|
113
|
+
"least",
|
114
|
+
"like",
|
115
|
+
"most",
|
116
|
+
"my",
|
117
|
+
"new",
|
118
|
+
"no",
|
119
|
+
"not",
|
120
|
+
"now",
|
121
|
+
"of",
|
122
|
+
"on",
|
123
|
+
"or",
|
124
|
+
"should",
|
125
|
+
"sinc",
|
126
|
+
"so",
|
127
|
+
"some",
|
128
|
+
"th",
|
129
|
+
"than",
|
130
|
+
"this",
|
131
|
+
"that",
|
132
|
+
"the",
|
133
|
+
"their",
|
134
|
+
"then",
|
135
|
+
"those",
|
136
|
+
"to",
|
137
|
+
"told",
|
138
|
+
"too",
|
139
|
+
"true",
|
140
|
+
"try",
|
141
|
+
"until",
|
142
|
+
"url",
|
143
|
+
"us",
|
144
|
+
"were",
|
145
|
+
"when",
|
146
|
+
"whether",
|
147
|
+
"while",
|
148
|
+
"with",
|
149
|
+
"within",
|
150
|
+
"yes",
|
151
|
+
"you",
|
152
|
+
"youll",
|
153
|
+
].to_set
|
154
|
+
end
|
@@ -0,0 +1,318 @@
|
|
1
|
+
# Author:: David Fayram (mailto:dfayram@lensmen.net)
|
2
|
+
# Copyright:: Copyright (c) 2005 David Fayram II
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
begin
|
6
|
+
raise LoadError if ENV['NATIVE_VECTOR'] == "true" # to test the native vector class, try `rake test NATIVE_VECTOR=true`
|
7
|
+
|
8
|
+
require 'gsl' # requires http://rb-gsl.rubyforge.org/
|
9
|
+
require 'classifier/extensions/vector_serialize'
|
10
|
+
$GSL = true
|
11
|
+
|
12
|
+
rescue LoadError
|
13
|
+
warn "Notice: for 10x faster LSI support, please install http://rb-gsl.rubyforge.org/"
|
14
|
+
require 'classifier/extensions/vector'
|
15
|
+
end
|
16
|
+
|
17
|
+
require 'classifier/lsi/word_list'
|
18
|
+
require 'classifier/lsi/content_node'
|
19
|
+
require 'classifier/lsi/summary'
|
20
|
+
|
21
|
+
module Classifier
|
22
|
+
|
23
|
+
# This class implements a Latent Semantic Indexer, which can search, classify and cluster
|
24
|
+
# data based on underlying semantic relations. For more information on the algorithms used,
|
25
|
+
# please consult Wikipedia[http://en.wikipedia.org/wiki/Latent_Semantic_Indexing].
|
26
|
+
class LSI
|
27
|
+
|
28
|
+
attr_reader :word_list
|
29
|
+
attr_accessor :auto_rebuild
|
30
|
+
|
31
|
+
# Create a fresh index.
|
32
|
+
# If you want to call #build_index manually, use
|
33
|
+
# Classifier::LSI.new :auto_rebuild => false
|
34
|
+
#
|
35
|
+
def initialize(options = {})
|
36
|
+
@auto_rebuild = true unless options[:auto_rebuild] == false
|
37
|
+
@word_list, @items = WordList.new, {}
|
38
|
+
@version, @built_at_version = 0, -1
|
39
|
+
end
|
40
|
+
|
41
|
+
# Returns true if the index needs to be rebuilt. The index needs
|
42
|
+
# to be built after all informaton is added, but before you start
|
43
|
+
# using it for search, classification and cluster detection.
|
44
|
+
def needs_rebuild?
|
45
|
+
(@items.keys.size > 1) && (@version != @built_at_version)
|
46
|
+
end
|
47
|
+
|
48
|
+
# Adds an item to the index. item is assumed to be a string, but
|
49
|
+
# any item may be indexed so long as it responds to #to_s or if
|
50
|
+
# you provide an optional block explaining how the indexer can
|
51
|
+
# fetch fresh string data. This optional block is passed the item,
|
52
|
+
# so the item may only be a reference to a URL or file name.
|
53
|
+
#
|
54
|
+
# For example:
|
55
|
+
# lsi = Classifier::LSI.new
|
56
|
+
# lsi.add_item "This is just plain text"
|
57
|
+
# lsi.add_item "/home/me/filename.txt" { |x| File.read x }
|
58
|
+
# ar = ActiveRecordObject.find( :all )
|
59
|
+
# lsi.add_item ar, *ar.categories { |x| ar.content }
|
60
|
+
#
|
61
|
+
def add_item( item, *categories, &block )
|
62
|
+
clean_word_hash = block ? block.call(item).clean_word_hash : item.to_s.clean_word_hash
|
63
|
+
@items[item] = ContentNode.new(clean_word_hash, *categories)
|
64
|
+
@version += 1
|
65
|
+
build_index if @auto_rebuild
|
66
|
+
end
|
67
|
+
|
68
|
+
# A less flexible shorthand for add_item that assumes
|
69
|
+
# you are passing in a string with no categorries. item
|
70
|
+
# will be duck typed via to_s .
|
71
|
+
#
|
72
|
+
def <<( item )
|
73
|
+
add_item item
|
74
|
+
end
|
75
|
+
|
76
|
+
# Returns the categories for a given indexed items. You are free to add and remove
|
77
|
+
# items from this as you see fit. It does not invalide an index to change its categories.
|
78
|
+
def categories_for(item)
|
79
|
+
return [] unless @items[item]
|
80
|
+
return @items[item].categories
|
81
|
+
end
|
82
|
+
|
83
|
+
# Removes an item from the database, if it is indexed.
|
84
|
+
#
|
85
|
+
def remove_item( item )
|
86
|
+
if @items.keys.contain? item
|
87
|
+
@items.remove item
|
88
|
+
@version += 1
|
89
|
+
end
|
90
|
+
end
|
91
|
+
|
92
|
+
# Returns an array of items that are indexed.
|
93
|
+
def items
|
94
|
+
@items.keys
|
95
|
+
end
|
96
|
+
|
97
|
+
# Returns the categories for a given indexed items. You are free to add and remove
|
98
|
+
# items from this as you see fit. It does not invalide an index to change its categories.
|
99
|
+
def categories_for(item)
|
100
|
+
return [] unless @items[item]
|
101
|
+
return @items[item].categories
|
102
|
+
end
|
103
|
+
|
104
|
+
# This function rebuilds the index if needs_rebuild? returns true.
|
105
|
+
# For very large document spaces, this indexing operation may take some
|
106
|
+
# time to complete, so it may be wise to place the operation in another
|
107
|
+
# thread.
|
108
|
+
#
|
109
|
+
# As a rule, indexing will be fairly swift on modern machines until
|
110
|
+
# you have well over 500 documents indexed, or have an incredibly diverse
|
111
|
+
# vocabulary for your documents.
|
112
|
+
#
|
113
|
+
# The optional parameter "cutoff" is a tuning parameter. When the index is
|
114
|
+
# built, a certain number of s-values are discarded from the system. The
|
115
|
+
# cutoff parameter tells the indexer how many of these values to keep.
|
116
|
+
# A value of 1 for cutoff means that no semantic analysis will take place,
|
117
|
+
# turning the LSI class into a simple vector search engine.
|
118
|
+
def build_index( cutoff=0.75 )
|
119
|
+
return unless needs_rebuild?
|
120
|
+
make_word_list
|
121
|
+
|
122
|
+
doc_list = @items.values
|
123
|
+
tda = doc_list.collect { |node| node.raw_vector_with( @word_list ) }
|
124
|
+
|
125
|
+
if $GSL
|
126
|
+
tdm = GSL::Matrix.alloc(*tda).trans
|
127
|
+
ntdm = build_reduced_matrix(tdm, cutoff)
|
128
|
+
|
129
|
+
ntdm.size[1].times do |col|
|
130
|
+
vec = GSL::Vector.alloc( ntdm.column(col) ).row
|
131
|
+
doc_list[col].lsi_vector = vec
|
132
|
+
doc_list[col].lsi_norm = vec.normalize
|
133
|
+
end
|
134
|
+
else
|
135
|
+
tdm = Matrix.rows(tda).trans
|
136
|
+
ntdm = build_reduced_matrix(tdm, cutoff)
|
137
|
+
|
138
|
+
ntdm.row_size.times do |col|
|
139
|
+
doc_list[col].lsi_vector = ntdm.column(col) if doc_list[col]
|
140
|
+
doc_list[col].lsi_norm = ntdm.column(col).normalize if doc_list[col]
|
141
|
+
end
|
142
|
+
end
|
143
|
+
|
144
|
+
@built_at_version = @version
|
145
|
+
end
|
146
|
+
|
147
|
+
# This method returns max_chunks entries, ordered by their average semantic rating.
|
148
|
+
# Essentially, the average distance of each entry from all other entries is calculated,
|
149
|
+
# the highest are returned.
|
150
|
+
#
|
151
|
+
# This can be used to build a summary service, or to provide more information about
|
152
|
+
# your dataset's general content. For example, if you were to use categorize on the
|
153
|
+
# results of this data, you could gather information on what your dataset is generally
|
154
|
+
# about.
|
155
|
+
def highest_relative_content( max_chunks=10 )
|
156
|
+
return [] if needs_rebuild?
|
157
|
+
|
158
|
+
avg_density = Hash.new
|
159
|
+
@items.each_key { |x| avg_density[x] = proximity_array_for_content(x).inject(0.0) { |x,y| x + y[1]} }
|
160
|
+
|
161
|
+
avg_density.keys.sort_by { |x| avg_density[x] }.reverse[0..max_chunks-1].map
|
162
|
+
end
|
163
|
+
|
164
|
+
# This function is the primitive that find_related and classify
|
165
|
+
# build upon. It returns an array of 2-element arrays. The first element
|
166
|
+
# of this array is a document, and the second is its "score", defining
|
167
|
+
# how "close" it is to other indexed items.
|
168
|
+
#
|
169
|
+
# These values are somewhat arbitrary, having to do with the vector space
|
170
|
+
# created by your content, so the magnitude is interpretable but not always
|
171
|
+
# meaningful between indexes.
|
172
|
+
#
|
173
|
+
# The parameter doc is the content to compare. If that content is not
|
174
|
+
# indexed, you can pass an optional block to define how to create the
|
175
|
+
# text data. See add_item for examples of how this works.
|
176
|
+
def proximity_array_for_content( doc, &block )
|
177
|
+
return [] if needs_rebuild?
|
178
|
+
|
179
|
+
content_node = node_for_content( doc, &block )
|
180
|
+
result =
|
181
|
+
@items.keys.collect do |item|
|
182
|
+
if $GSL
|
183
|
+
val = content_node.search_vector * @items[item].search_vector.col
|
184
|
+
else
|
185
|
+
val = (Matrix[content_node.search_vector] * @items[item].search_vector)[0]
|
186
|
+
end
|
187
|
+
[item, val]
|
188
|
+
end
|
189
|
+
result.sort_by { |x| x[1] }.reverse
|
190
|
+
end
|
191
|
+
|
192
|
+
# Similar to proximity_array_for_content, this function takes similar
|
193
|
+
# arguments and returns a similar array. However, it uses the normalized
|
194
|
+
# calculated vectors instead of their full versions. This is useful when
|
195
|
+
# you're trying to perform operations on content that is much smaller than
|
196
|
+
# the text you're working with. search uses this primitive.
|
197
|
+
def proximity_norms_for_content( doc, &block )
|
198
|
+
return [] if needs_rebuild?
|
199
|
+
|
200
|
+
content_node = node_for_content( doc, &block )
|
201
|
+
result =
|
202
|
+
@items.keys.collect do |item|
|
203
|
+
if $GSL
|
204
|
+
val = content_node.search_norm * @items[item].search_norm.col
|
205
|
+
else
|
206
|
+
val = (Matrix[content_node.search_norm] * @items[item].search_norm)[0]
|
207
|
+
end
|
208
|
+
[item, val]
|
209
|
+
end
|
210
|
+
result.sort_by { |x| x[1] }.reverse
|
211
|
+
end
|
212
|
+
|
213
|
+
# This function allows for text-based search of your index. Unlike other functions
|
214
|
+
# like find_related and classify, search only takes short strings. It will also ignore
|
215
|
+
# factors like repeated words. It is best for short, google-like search terms.
|
216
|
+
# A search will first priortize lexical relationships, then semantic ones.
|
217
|
+
#
|
218
|
+
# While this may seem backwards compared to the other functions that LSI supports,
|
219
|
+
# it is actually the same algorithm, just applied on a smaller document.
|
220
|
+
def search( string, max_nearest=3 )
|
221
|
+
return [] if needs_rebuild?
|
222
|
+
carry = proximity_norms_for_content( string )
|
223
|
+
result = carry.collect { |x| x[0] }
|
224
|
+
return result[0..max_nearest-1]
|
225
|
+
end
|
226
|
+
|
227
|
+
# This function takes content and finds other documents
|
228
|
+
# that are semantically "close", returning an array of documents sorted
|
229
|
+
# from most to least relavant.
|
230
|
+
# max_nearest specifies the number of documents to return. A value of
|
231
|
+
# 0 means that it returns all the indexed documents, sorted by relavence.
|
232
|
+
#
|
233
|
+
# This is particularly useful for identifing clusters in your document space.
|
234
|
+
# For example you may want to identify several "What's Related" items for weblog
|
235
|
+
# articles, or find paragraphs that relate to each other in an essay.
|
236
|
+
def find_related( doc, max_nearest=3, &block )
|
237
|
+
carry =
|
238
|
+
proximity_array_for_content( doc, &block ).reject { |pair| pair[0] == doc }
|
239
|
+
result = carry.collect { |x| x[0] }
|
240
|
+
return result[0..max_nearest-1]
|
241
|
+
end
|
242
|
+
|
243
|
+
# This function uses a voting system to categorize documents, based on
|
244
|
+
# the categories of other documents. It uses the same logic as the
|
245
|
+
# find_related function to find related documents, then returns the
|
246
|
+
# most obvious category from this list.
|
247
|
+
#
|
248
|
+
# cutoff signifies the number of documents to consider when clasifying
|
249
|
+
# text. A cutoff of 1 means that every document in the index votes on
|
250
|
+
# what category the document is in. This may not always make sense.
|
251
|
+
#
|
252
|
+
def classify( doc, cutoff=0.30, &block )
|
253
|
+
icutoff = (@items.size * cutoff).round
|
254
|
+
carry = proximity_array_for_content( doc, &block )
|
255
|
+
carry = carry[0..icutoff-1]
|
256
|
+
votes = {}
|
257
|
+
carry.each do |pair|
|
258
|
+
categories = @items[pair[0]].categories
|
259
|
+
categories.each do |category|
|
260
|
+
votes[category] ||= 0.0
|
261
|
+
votes[category] += pair[1]
|
262
|
+
end
|
263
|
+
end
|
264
|
+
|
265
|
+
ranking = votes.keys.sort_by { |x| votes[x] }
|
266
|
+
return ranking[-1]
|
267
|
+
end
|
268
|
+
|
269
|
+
# Prototype, only works on indexed documents.
|
270
|
+
# I have no clue if this is going to work, but in theory
|
271
|
+
# it's supposed to.
|
272
|
+
def highest_ranked_stems( doc, count=3 )
|
273
|
+
raise "Requested stem ranking on non-indexed content!" unless @items[doc]
|
274
|
+
arr = node_for_content(doc).lsi_vector.to_a
|
275
|
+
top_n = arr.sort.reverse[0..count-1]
|
276
|
+
return top_n.collect { |x| @word_list.word_for_index(arr.index(x))}
|
277
|
+
end
|
278
|
+
|
279
|
+
private
|
280
|
+
def build_reduced_matrix( matrix, cutoff=0.75 )
|
281
|
+
# TODO: Check that M>=N on these dimensions! Transpose helps assure this
|
282
|
+
u, v, s = matrix.SV_decomp
|
283
|
+
|
284
|
+
# TODO: Better than 75% term, please. :\
|
285
|
+
s_cutoff = s.sort.reverse[(s.size * cutoff).round - 1]
|
286
|
+
s.size.times do |ord|
|
287
|
+
s[ord] = 0.0 if s[ord] < s_cutoff
|
288
|
+
end
|
289
|
+
# Reconstruct the term document matrix, only with reduced rank
|
290
|
+
u * Matrix.diag( s ) * v.trans
|
291
|
+
end
|
292
|
+
|
293
|
+
def node_for_content(item, &block)
|
294
|
+
if @items[item]
|
295
|
+
return @items[item]
|
296
|
+
else
|
297
|
+
clean_word_hash = block ? block.call(item).clean_word_hash : item.to_s.clean_word_hash
|
298
|
+
|
299
|
+
cn = ContentNode.new(clean_word_hash, &block) # make the node and extract the data
|
300
|
+
|
301
|
+
unless needs_rebuild?
|
302
|
+
cn.raw_vector_with( @word_list ) # make the lsi raw and norm vectors
|
303
|
+
end
|
304
|
+
end
|
305
|
+
|
306
|
+
return cn
|
307
|
+
end
|
308
|
+
|
309
|
+
def make_word_list
|
310
|
+
@word_list = WordList.new
|
311
|
+
@items.each_value do |node|
|
312
|
+
node.word_hash.each_key { |key| @word_list.add_word key }
|
313
|
+
end
|
314
|
+
end
|
315
|
+
|
316
|
+
end
|
317
|
+
end
|
318
|
+
|