or-tools 0.4.0 → 0.4.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,212 @@
1
+ #include <ortools/linear_solver/linear_solver.h>
2
+
3
+ #include <rice/Array.hpp>
4
+ #include <rice/Class.hpp>
5
+ #include <rice/Constructor.hpp>
6
+ #include <rice/Module.hpp>
7
+ #include <rice/String.hpp>
8
+ #include <rice/Symbol.hpp>
9
+
10
+ using operations_research::LinearExpr;
11
+ using operations_research::LinearRange;
12
+ using operations_research::MPConstraint;
13
+ using operations_research::MPObjective;
14
+ using operations_research::MPSolver;
15
+ using operations_research::MPVariable;
16
+
17
+ using Rice::Array;
18
+ using Rice::Class;
19
+ using Rice::Module;
20
+ using Rice::Object;
21
+ using Rice::String;
22
+ using Rice::Symbol;
23
+
24
+ template<>
25
+ inline
26
+ MPSolver::OptimizationProblemType from_ruby<MPSolver::OptimizationProblemType>(Object x)
27
+ {
28
+ std::string s = Symbol(x).str();
29
+ if (s == "glop") {
30
+ return MPSolver::OptimizationProblemType::GLOP_LINEAR_PROGRAMMING;
31
+ } else if (s == "cbc") {
32
+ return MPSolver::OptimizationProblemType::CBC_MIXED_INTEGER_PROGRAMMING;
33
+ } else {
34
+ throw std::runtime_error("Unknown optimization problem type: " + s);
35
+ }
36
+ }
37
+
38
+ Class rb_cMPVariable;
39
+ Class rb_cMPConstraint;
40
+ Class rb_cMPObjective;
41
+
42
+ template<>
43
+ inline
44
+ Object to_ruby<MPVariable*>(MPVariable* const &x)
45
+ {
46
+ return Rice::Data_Object<MPVariable>(x, rb_cMPVariable, nullptr, nullptr);
47
+ }
48
+
49
+ template<>
50
+ inline
51
+ Object to_ruby<MPConstraint*>(MPConstraint* const &x)
52
+ {
53
+ return Rice::Data_Object<MPConstraint>(x, rb_cMPConstraint, nullptr, nullptr);
54
+ }
55
+
56
+ template<>
57
+ inline
58
+ Object to_ruby<MPObjective*>(MPObjective* const &x)
59
+ {
60
+ return Rice::Data_Object<MPObjective>(x, rb_cMPObjective, nullptr, nullptr);
61
+ }
62
+
63
+ void init_linear(Rice::Module& m) {
64
+ rb_cMPVariable = Rice::define_class_under<MPVariable>(m, "MPVariable")
65
+ .define_method("name", &MPVariable::name)
66
+ .define_method("solution_value", &MPVariable::solution_value)
67
+ .define_method(
68
+ "+",
69
+ *[](MPVariable& self, LinearExpr& other) {
70
+ LinearExpr s(&self);
71
+ return s + other;
72
+ })
73
+ .define_method(
74
+ "-",
75
+ *[](MPVariable& self, LinearExpr& other) {
76
+ LinearExpr s(&self);
77
+ return s - other;
78
+ })
79
+ .define_method(
80
+ "*",
81
+ *[](MPVariable& self, double other) {
82
+ LinearExpr s(&self);
83
+ return s * other;
84
+ })
85
+ .define_method(
86
+ "inspect",
87
+ *[](MPVariable& self) {
88
+ return "#<ORTools::MPVariable @name=\"" + self.name() + "\">";
89
+ });
90
+
91
+ Rice::define_class_under<LinearExpr>(m, "LinearExpr")
92
+ .define_constructor(Rice::Constructor<LinearExpr>())
93
+ .define_method(
94
+ "_add_linear_expr",
95
+ *[](LinearExpr& self, LinearExpr& other) {
96
+ return self + other;
97
+ })
98
+ .define_method(
99
+ "_add_mp_variable",
100
+ *[](LinearExpr& self, MPVariable &other) {
101
+ LinearExpr o(&other);
102
+ return self + o;
103
+ })
104
+ .define_method(
105
+ "_gte_double",
106
+ *[](LinearExpr& self, double other) {
107
+ LinearExpr o(other);
108
+ return self >= o;
109
+ })
110
+ .define_method(
111
+ "_gte_linear_expr",
112
+ *[](LinearExpr& self, LinearExpr& other) {
113
+ return self >= other;
114
+ })
115
+ .define_method(
116
+ "_lte_double",
117
+ *[](LinearExpr& self, double other) {
118
+ LinearExpr o(other);
119
+ return self <= o;
120
+ })
121
+ .define_method(
122
+ "_lte_linear_expr",
123
+ *[](LinearExpr& self, LinearExpr& other) {
124
+ return self <= other;
125
+ })
126
+ .define_method(
127
+ "==",
128
+ *[](LinearExpr& self, double other) {
129
+ LinearExpr o(other);
130
+ return self == o;
131
+ })
132
+ .define_method(
133
+ "to_s",
134
+ *[](LinearExpr& self) {
135
+ return self.ToString();
136
+ })
137
+ .define_method(
138
+ "inspect",
139
+ *[](LinearExpr& self) {
140
+ return "#<ORTools::LinearExpr \"" + self.ToString() + "\">";
141
+ });
142
+
143
+ Rice::define_class_under<LinearRange>(m, "LinearRange");
144
+
145
+ rb_cMPConstraint = Rice::define_class_under<MPConstraint>(m, "MPConstraint")
146
+ .define_method("set_coefficient", &MPConstraint::SetCoefficient);
147
+
148
+ rb_cMPObjective = Rice::define_class_under<MPObjective>(m, "MPObjective")
149
+ .define_method("value", &MPObjective::Value)
150
+ .define_method("set_coefficient", &MPObjective::SetCoefficient)
151
+ .define_method("set_maximization", &MPObjective::SetMaximization);
152
+
153
+ Rice::define_class_under<MPSolver>(m, "Solver")
154
+ .define_constructor(Rice::Constructor<MPSolver, std::string, MPSolver::OptimizationProblemType>())
155
+ .define_method("infinity", &MPSolver::infinity)
156
+ .define_method(
157
+ "int_var",
158
+ *[](MPSolver& self, double min, double max, const std::string& name) {
159
+ return self.MakeIntVar(min, max, name);
160
+ })
161
+ .define_method("num_var", &MPSolver::MakeNumVar)
162
+ .define_method("bool_var", &MPSolver::MakeBoolVar)
163
+ .define_method("num_variables", &MPSolver::NumVariables)
164
+ .define_method("num_constraints", &MPSolver::NumConstraints)
165
+ .define_method("wall_time", &MPSolver::wall_time)
166
+ .define_method("iterations", &MPSolver::iterations)
167
+ .define_method("nodes", &MPSolver::nodes)
168
+ .define_method("objective", &MPSolver::MutableObjective)
169
+ .define_method(
170
+ "maximize",
171
+ *[](MPSolver& self, LinearExpr& expr) {
172
+ return self.MutableObjective()->MaximizeLinearExpr(expr);
173
+ })
174
+ .define_method(
175
+ "minimize",
176
+ *[](MPSolver& self, LinearExpr& expr) {
177
+ return self.MutableObjective()->MinimizeLinearExpr(expr);
178
+ })
179
+ .define_method(
180
+ "add",
181
+ *[](MPSolver& self, const LinearRange& range) {
182
+ return self.MakeRowConstraint(range);
183
+ })
184
+ .define_method(
185
+ "constraint",
186
+ *[](MPSolver& self, double lb, double ub) {
187
+ return self.MakeRowConstraint(lb, ub);
188
+ })
189
+ .define_method(
190
+ "solve",
191
+ *[](MPSolver& self) {
192
+ auto status = self.Solve();
193
+
194
+ if (status == MPSolver::ResultStatus::OPTIMAL) {
195
+ return Symbol("optimal");
196
+ } else if (status == MPSolver::ResultStatus::FEASIBLE) {
197
+ return Symbol("feasible");
198
+ } else if (status == MPSolver::ResultStatus::INFEASIBLE) {
199
+ return Symbol("infeasible");
200
+ } else if (status == MPSolver::ResultStatus::UNBOUNDED) {
201
+ return Symbol("unbounded");
202
+ } else if (status == MPSolver::ResultStatus::ABNORMAL) {
203
+ return Symbol("abnormal");
204
+ } else if (status == MPSolver::ResultStatus::MODEL_INVALID) {
205
+ return Symbol("model_invalid");
206
+ } else if (status == MPSolver::ResultStatus::NOT_SOLVED) {
207
+ return Symbol("not_solved");
208
+ } else {
209
+ throw std::runtime_error("Unknown status");
210
+ }
211
+ });
212
+ }
@@ -0,0 +1,105 @@
1
+ #include <ortools/graph/max_flow.h>
2
+ #include <ortools/graph/min_cost_flow.h>
3
+
4
+ #include <rice/Array.hpp>
5
+ #include <rice/Constructor.hpp>
6
+ #include <rice/Module.hpp>
7
+
8
+ using operations_research::NodeIndex;
9
+ using operations_research::SimpleMaxFlow;
10
+ using operations_research::SimpleMinCostFlow;
11
+
12
+ using Rice::Array;
13
+ using Rice::Symbol;
14
+
15
+ void init_network_flows(Rice::Module& m) {
16
+ Rice::define_class_under<SimpleMaxFlow>(m, "SimpleMaxFlow")
17
+ .define_constructor(Rice::Constructor<SimpleMaxFlow>())
18
+ .define_method("add_arc_with_capacity", &SimpleMaxFlow::AddArcWithCapacity)
19
+ .define_method("num_nodes", &SimpleMaxFlow::NumNodes)
20
+ .define_method("num_arcs", &SimpleMaxFlow::NumArcs)
21
+ .define_method("tail", &SimpleMaxFlow::Tail)
22
+ .define_method("head", &SimpleMaxFlow::Head)
23
+ .define_method("capacity", &SimpleMaxFlow::Capacity)
24
+ .define_method("optimal_flow", &SimpleMaxFlow::OptimalFlow)
25
+ .define_method("flow", &SimpleMaxFlow::Flow)
26
+ .define_method(
27
+ "solve",
28
+ *[](SimpleMaxFlow& self, NodeIndex source, NodeIndex sink) {
29
+ auto status = self.Solve(source, sink);
30
+
31
+ if (status == SimpleMaxFlow::Status::OPTIMAL) {
32
+ return Symbol("optimal");
33
+ } else if (status == SimpleMaxFlow::Status::POSSIBLE_OVERFLOW) {
34
+ return Symbol("possible_overflow");
35
+ } else if (status == SimpleMaxFlow::Status::BAD_INPUT) {
36
+ return Symbol("bad_input");
37
+ } else if (status == SimpleMaxFlow::Status::BAD_RESULT) {
38
+ return Symbol("bad_result");
39
+ } else {
40
+ throw std::runtime_error("Unknown status");
41
+ }
42
+ })
43
+ .define_method(
44
+ "source_side_min_cut",
45
+ *[](SimpleMaxFlow& self) {
46
+ std::vector<NodeIndex> result;
47
+ self.GetSourceSideMinCut(&result);
48
+
49
+ Array ret;
50
+ for(auto const& it: result) {
51
+ ret.push(it);
52
+ }
53
+ return ret;
54
+ })
55
+ .define_method(
56
+ "sink_side_min_cut",
57
+ *[](SimpleMaxFlow& self) {
58
+ std::vector<NodeIndex> result;
59
+ self.GetSinkSideMinCut(&result);
60
+
61
+ Array ret;
62
+ for(auto const& it: result) {
63
+ ret.push(it);
64
+ }
65
+ return ret;
66
+ });
67
+
68
+ Rice::define_class_under<SimpleMinCostFlow>(m, "SimpleMinCostFlow")
69
+ .define_constructor(Rice::Constructor<SimpleMinCostFlow>())
70
+ .define_method("add_arc_with_capacity_and_unit_cost", &SimpleMinCostFlow::AddArcWithCapacityAndUnitCost)
71
+ .define_method("set_node_supply", &SimpleMinCostFlow::SetNodeSupply)
72
+ .define_method("optimal_cost", &SimpleMinCostFlow::OptimalCost)
73
+ .define_method("maximum_flow", &SimpleMinCostFlow::MaximumFlow)
74
+ .define_method("flow", &SimpleMinCostFlow::Flow)
75
+ .define_method("num_nodes", &SimpleMinCostFlow::NumNodes)
76
+ .define_method("num_arcs", &SimpleMinCostFlow::NumArcs)
77
+ .define_method("tail", &SimpleMinCostFlow::Tail)
78
+ .define_method("head", &SimpleMinCostFlow::Head)
79
+ .define_method("capacity", &SimpleMinCostFlow::Capacity)
80
+ .define_method("supply", &SimpleMinCostFlow::Supply)
81
+ .define_method("unit_cost", &SimpleMinCostFlow::UnitCost)
82
+ .define_method(
83
+ "solve",
84
+ *[](SimpleMinCostFlow& self) {
85
+ auto status = self.Solve();
86
+
87
+ if (status == SimpleMinCostFlow::Status::NOT_SOLVED) {
88
+ return Symbol("not_solved");
89
+ } else if (status == SimpleMinCostFlow::Status::OPTIMAL) {
90
+ return Symbol("optimal");
91
+ } else if (status == SimpleMinCostFlow::Status::FEASIBLE) {
92
+ return Symbol("feasible");
93
+ } else if (status == SimpleMinCostFlow::Status::INFEASIBLE) {
94
+ return Symbol("infeasible");
95
+ } else if (status == SimpleMinCostFlow::Status::UNBALANCED) {
96
+ return Symbol("unbalanced");
97
+ } else if (status == SimpleMinCostFlow::Status::BAD_RESULT) {
98
+ return Symbol("bad_result");
99
+ } else if (status == SimpleMinCostFlow::Status::BAD_COST_RANGE) {
100
+ return Symbol("bad_cost_range");
101
+ } else {
102
+ throw std::runtime_error("Unknown status");
103
+ }
104
+ });
105
+ }
@@ -0,0 +1,368 @@
1
+ #include <ortools/constraint_solver/routing.h>
2
+ #include <ortools/constraint_solver/routing_parameters.h>
3
+
4
+ #include <rice/Array.hpp>
5
+ #include <rice/Class.hpp>
6
+ #include <rice/Constructor.hpp>
7
+ #include <rice/Module.hpp>
8
+ #include <rice/String.hpp>
9
+ #include <rice/Symbol.hpp>
10
+
11
+ using operations_research::DefaultRoutingSearchParameters;
12
+ using operations_research::FirstSolutionStrategy;
13
+ using operations_research::LocalSearchMetaheuristic;
14
+ using operations_research::RoutingDimension;
15
+ using operations_research::RoutingIndexManager;
16
+ using operations_research::RoutingModel;
17
+ using operations_research::RoutingNodeIndex;
18
+ using operations_research::RoutingSearchParameters;
19
+
20
+ using Rice::Array;
21
+ using Rice::Class;
22
+ using Rice::Module;
23
+ using Rice::Object;
24
+ using Rice::String;
25
+ using Rice::Symbol;
26
+
27
+ template<>
28
+ inline
29
+ RoutingNodeIndex from_ruby<RoutingNodeIndex>(Object x)
30
+ {
31
+ const RoutingNodeIndex index{from_ruby<int>(x)};
32
+ return index;
33
+ }
34
+
35
+ template<>
36
+ inline
37
+ Object to_ruby<RoutingNodeIndex>(RoutingNodeIndex const &x)
38
+ {
39
+ return to_ruby<int>(x.value());
40
+ }
41
+
42
+ std::vector<RoutingNodeIndex> nodeIndexVector(Array x) {
43
+ std::vector<RoutingNodeIndex> res;
44
+ for (auto const& v : x) {
45
+ res.push_back(from_ruby<RoutingNodeIndex>(v));
46
+ }
47
+ return res;
48
+ }
49
+
50
+ // need a wrapper class due to const
51
+ class Assignment {
52
+ const operations_research::Assignment* self;
53
+ public:
54
+ Assignment(const operations_research::Assignment* v) {
55
+ self = v;
56
+ }
57
+ int64 ObjectiveValue() {
58
+ return self->ObjectiveValue();
59
+ }
60
+ int64 Value(const operations_research::IntVar* const var) const {
61
+ return self->Value(var);
62
+ }
63
+ int64 Min(const operations_research::IntVar* const var) const {
64
+ return self->Min(var);
65
+ }
66
+ int64 Max(const operations_research::IntVar* const var) const {
67
+ return self->Max(var);
68
+ }
69
+ };
70
+
71
+ Class rb_cIntVar;
72
+ Class rb_cIntervalVar;
73
+ Class rb_cRoutingDimension;
74
+ Class rb_cConstraint;
75
+ Class rb_cSolver2;
76
+
77
+ template<>
78
+ inline
79
+ Object to_ruby<operations_research::IntVar*>(operations_research::IntVar* const &x)
80
+ {
81
+ return Rice::Data_Object<operations_research::IntVar>(x, rb_cIntVar, nullptr, nullptr);
82
+ }
83
+
84
+ template<>
85
+ inline
86
+ Object to_ruby<operations_research::IntervalVar*>(operations_research::IntervalVar* const &x)
87
+ {
88
+ return Rice::Data_Object<operations_research::IntervalVar>(x, rb_cIntervalVar, nullptr, nullptr);
89
+ }
90
+
91
+ template<>
92
+ inline
93
+ Object to_ruby<RoutingDimension*>(RoutingDimension* const &x)
94
+ {
95
+ return Rice::Data_Object<RoutingDimension>(x, rb_cRoutingDimension, nullptr, nullptr);
96
+ }
97
+
98
+ template<>
99
+ inline
100
+ Object to_ruby<operations_research::Constraint*>(operations_research::Constraint* const &x)
101
+ {
102
+ return Rice::Data_Object<operations_research::Constraint>(x, rb_cConstraint, nullptr, nullptr);
103
+ }
104
+
105
+ template<>
106
+ inline
107
+ Object to_ruby<operations_research::Solver*>(operations_research::Solver* const &x)
108
+ {
109
+ return Rice::Data_Object<operations_research::Solver>(x, rb_cSolver2, nullptr, nullptr);
110
+ }
111
+
112
+ void init_routing(Rice::Module& m) {
113
+ m.define_singleton_method("default_routing_search_parameters", &DefaultRoutingSearchParameters);
114
+
115
+ Rice::define_class_under<RoutingSearchParameters>(m, "RoutingSearchParameters")
116
+ .define_method(
117
+ "first_solution_strategy=",
118
+ *[](RoutingSearchParameters& self, Symbol value) {
119
+ std::string s = Symbol(value).str();
120
+
121
+ FirstSolutionStrategy::Value v;
122
+ if (s == "path_cheapest_arc") {
123
+ v = FirstSolutionStrategy::PATH_CHEAPEST_ARC;
124
+ } else if (s == "path_most_constrained_arc") {
125
+ v = FirstSolutionStrategy::PATH_MOST_CONSTRAINED_ARC;
126
+ } else if (s == "evaluator_strategy") {
127
+ v = FirstSolutionStrategy::EVALUATOR_STRATEGY;
128
+ } else if (s == "savings") {
129
+ v = FirstSolutionStrategy::SAVINGS;
130
+ } else if (s == "sweep") {
131
+ v = FirstSolutionStrategy::SWEEP;
132
+ } else if (s == "christofides") {
133
+ v = FirstSolutionStrategy::CHRISTOFIDES;
134
+ } else if (s == "all_unperformed") {
135
+ v = FirstSolutionStrategy::ALL_UNPERFORMED;
136
+ } else if (s == "best_insertion") {
137
+ v = FirstSolutionStrategy::BEST_INSERTION;
138
+ } else if (s == "parallel_cheapest_insertion") {
139
+ v = FirstSolutionStrategy::PARALLEL_CHEAPEST_INSERTION;
140
+ } else if (s == "sequential_cheapest_insertion") {
141
+ v = FirstSolutionStrategy::SEQUENTIAL_CHEAPEST_INSERTION;
142
+ } else if (s == "local_cheapest_insertion") {
143
+ v = FirstSolutionStrategy::LOCAL_CHEAPEST_INSERTION;
144
+ } else if (s == "global_cheapest_arc") {
145
+ v = FirstSolutionStrategy::GLOBAL_CHEAPEST_ARC;
146
+ } else if (s == "local_cheapest_arc") {
147
+ v = FirstSolutionStrategy::LOCAL_CHEAPEST_ARC;
148
+ } else if (s == "first_unbound_min_value") {
149
+ v = FirstSolutionStrategy::FIRST_UNBOUND_MIN_VALUE;
150
+ } else {
151
+ throw std::runtime_error("Unknown first solution strategy: " + s);
152
+ }
153
+
154
+ return self.set_first_solution_strategy(v);
155
+ })
156
+ .define_method(
157
+ "local_search_metaheuristic=",
158
+ *[](RoutingSearchParameters& self, Symbol value) {
159
+ std::string s = Symbol(value).str();
160
+
161
+ LocalSearchMetaheuristic::Value v;
162
+ if (s == "guided_local_search") {
163
+ v = LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH;
164
+ } else if (s == "tabu_search") {
165
+ v = LocalSearchMetaheuristic::TABU_SEARCH;
166
+ } else if (s == "generic_tabu_search") {
167
+ v = LocalSearchMetaheuristic::GENERIC_TABU_SEARCH;
168
+ } else if (s == "simulated_annealing") {
169
+ v = LocalSearchMetaheuristic::SIMULATED_ANNEALING;
170
+ } else {
171
+ throw std::runtime_error("Unknown local search metaheuristic: " + s);
172
+ }
173
+
174
+ return self.set_local_search_metaheuristic(v);
175
+ })
176
+ .define_method(
177
+ "log_search=",
178
+ *[](RoutingSearchParameters& self, bool value) {
179
+ self.set_log_search(value);
180
+ })
181
+ .define_method(
182
+ "solution_limit=",
183
+ *[](RoutingSearchParameters& self, int64 value) {
184
+ self.set_solution_limit(value);
185
+ })
186
+ .define_method(
187
+ "time_limit=",
188
+ *[](RoutingSearchParameters& self, int64 value) {
189
+ self.mutable_time_limit()->set_seconds(value);
190
+ })
191
+ .define_method(
192
+ "lns_time_limit=",
193
+ *[](RoutingSearchParameters& self, int64 value) {
194
+ self.mutable_lns_time_limit()->set_seconds(value);
195
+ });
196
+
197
+ Rice::define_class_under<RoutingIndexManager>(m, "RoutingIndexManager")
198
+ .define_singleton_method(
199
+ "_new_depot",
200
+ *[](int num_nodes, int num_vehicles, RoutingNodeIndex depot) {
201
+ return RoutingIndexManager(num_nodes, num_vehicles, depot);
202
+ })
203
+ .define_singleton_method(
204
+ "_new_starts_ends",
205
+ *[](int num_nodes, int num_vehicles, Array starts, Array ends) {
206
+ return RoutingIndexManager(num_nodes, num_vehicles, nodeIndexVector(starts), nodeIndexVector(ends));
207
+ })
208
+ .define_method("index_to_node", &RoutingIndexManager::IndexToNode)
209
+ .define_method("node_to_index", &RoutingIndexManager::NodeToIndex);
210
+
211
+ Rice::define_class_under<Assignment>(m, "Assignment")
212
+ .define_method("objective_value", &Assignment::ObjectiveValue)
213
+ .define_method("value", &Assignment::Value)
214
+ .define_method("min", &Assignment::Min)
215
+ .define_method("max", &Assignment::Max);
216
+
217
+ // not to be confused with operations_research::sat::IntVar
218
+ rb_cIntVar = Rice::define_class_under<operations_research::IntVar>(m, "IntVar")
219
+ .define_method(
220
+ "set_range",
221
+ *[](operations_research::IntVar& self, int64 new_min, int64 new_max) {
222
+ self.SetRange(new_min, new_max);
223
+ });
224
+
225
+ rb_cIntervalVar = Rice::define_class_under<operations_research::IntervalVar>(m, "IntervalVar");
226
+
227
+ rb_cRoutingDimension = Rice::define_class_under<RoutingDimension>(m, "RoutingDimension")
228
+ .define_method("global_span_cost_coefficient=", &RoutingDimension::SetGlobalSpanCostCoefficient)
229
+ .define_method("cumul_var", &RoutingDimension::CumulVar);
230
+
231
+ rb_cConstraint = Rice::define_class_under<operations_research::Constraint>(m, "Constraint");
232
+
233
+ rb_cSolver2 = Rice::define_class_under<operations_research::Solver>(m, "Solver2")
234
+ .define_method(
235
+ "add",
236
+ *[](operations_research::Solver& self, Object o) {
237
+ operations_research::Constraint* constraint;
238
+ if (o.respond_to("left")) {
239
+ operations_research::IntExpr* left(from_ruby<operations_research::IntVar*>(o.call("left")));
240
+ operations_research::IntExpr* right(from_ruby<operations_research::IntVar*>(o.call("right")));
241
+ auto op = o.call("operator").to_s().str();
242
+ if (op == "==") {
243
+ constraint = self.MakeEquality(left, right);
244
+ } else if (op == "<=") {
245
+ constraint = self.MakeLessOrEqual(left, right);
246
+ } else {
247
+ throw std::runtime_error("Unknown operator");
248
+ }
249
+ } else {
250
+ constraint = from_ruby<operations_research::Constraint*>(o);
251
+ }
252
+ self.AddConstraint(constraint);
253
+ })
254
+ .define_method(
255
+ "fixed_duration_interval_var",
256
+ *[](operations_research::Solver& self, operations_research::IntVar* const start_variable, int64 duration, const std::string& name) {
257
+ return self.MakeFixedDurationIntervalVar(start_variable, duration, name);
258
+ })
259
+ .define_method(
260
+ "cumulative",
261
+ *[](operations_research::Solver& self, Array rb_intervals, Array rb_demands, int64 capacity, const std::string& name) {
262
+ std::vector<operations_research::IntervalVar*> intervals;
263
+ for (std::size_t i = 0; i < rb_intervals.size(); ++i) {
264
+ intervals.push_back(from_ruby<operations_research::IntervalVar*>(rb_intervals[i]));
265
+ }
266
+
267
+ std::vector<int64> demands;
268
+ for (std::size_t i = 0; i < rb_demands.size(); ++i) {
269
+ demands.push_back(from_ruby<int64>(rb_demands[i]));
270
+ }
271
+
272
+ return self.MakeCumulative(intervals, demands, capacity, name);
273
+ });
274
+
275
+ Rice::define_class_under<RoutingModel>(m, "RoutingModel")
276
+ .define_constructor(Rice::Constructor<RoutingModel, RoutingIndexManager>())
277
+ .define_method(
278
+ "register_transit_callback",
279
+ *[](RoutingModel& self, Object callback) {
280
+ return self.RegisterTransitCallback(
281
+ [callback](int64 from_index, int64 to_index) -> int64 {
282
+ return from_ruby<int64>(callback.call("call", from_index, to_index));
283
+ }
284
+ );
285
+ })
286
+ .define_method(
287
+ "register_unary_transit_callback",
288
+ *[](RoutingModel& self, Object callback) {
289
+ return self.RegisterUnaryTransitCallback(
290
+ [callback](int64 from_index) -> int64 {
291
+ return from_ruby<int64>(callback.call("call", from_index));
292
+ }
293
+ );
294
+ })
295
+ .define_method("depot", &RoutingModel::GetDepot)
296
+ .define_method("size", &RoutingModel::Size)
297
+ .define_method("status", *[](RoutingModel& self) {
298
+ auto status = self.status();
299
+
300
+ if (status == RoutingModel::ROUTING_NOT_SOLVED) {
301
+ return Symbol("not_solved");
302
+ } else if (status == RoutingModel::ROUTING_SUCCESS) {
303
+ return Symbol("success");
304
+ } else if (status == RoutingModel::ROUTING_FAIL) {
305
+ return Symbol("fail");
306
+ } else if (status == RoutingModel::ROUTING_FAIL_TIMEOUT) {
307
+ return Symbol("fail_timeout");
308
+ } else if (status == RoutingModel::ROUTING_INVALID) {
309
+ return Symbol("invalid");
310
+ } else {
311
+ throw std::runtime_error("Unknown solver status");
312
+ }
313
+ })
314
+ .define_method("vehicle_var", &RoutingModel::VehicleVar)
315
+ .define_method("set_arc_cost_evaluator_of_all_vehicles", &RoutingModel::SetArcCostEvaluatorOfAllVehicles)
316
+ .define_method("set_arc_cost_evaluator_of_vehicle", &RoutingModel::SetArcCostEvaluatorOfVehicle)
317
+ .define_method("set_fixed_cost_of_all_vehicles", &RoutingModel::SetFixedCostOfAllVehicles)
318
+ .define_method("set_fixed_cost_of_vehicle", &RoutingModel::SetFixedCostOfVehicle)
319
+ .define_method("fixed_cost_of_vehicle", &RoutingModel::GetFixedCostOfVehicle)
320
+ .define_method("add_dimension", &RoutingModel::AddDimension)
321
+ .define_method(
322
+ "add_dimension_with_vehicle_capacity",
323
+ *[](RoutingModel& self, int evaluator_index, int64 slack_max, Array vc, bool fix_start_cumul_to_zero, const std::string& name) {
324
+ std::vector<int64> vehicle_capacities;
325
+ for (std::size_t i = 0; i < vc.size(); ++i) {
326
+ vehicle_capacities.push_back(from_ruby<int64>(vc[i]));
327
+ }
328
+ self.AddDimensionWithVehicleCapacity(evaluator_index, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name);
329
+ })
330
+ .define_method(
331
+ "add_dimension_with_vehicle_transits",
332
+ *[](RoutingModel& self, Array rb_indices, int64 slack_max, int64 capacity, bool fix_start_cumul_to_zero, const std::string& name) {
333
+ std::vector<int> evaluator_indices;
334
+ for (std::size_t i = 0; i < rb_indices.size(); ++i) {
335
+ evaluator_indices.push_back(from_ruby<int>(rb_indices[i]));
336
+ }
337
+ self.AddDimensionWithVehicleTransits(evaluator_indices, slack_max, capacity, fix_start_cumul_to_zero, name);
338
+ })
339
+ .define_method(
340
+ "add_disjunction",
341
+ *[](RoutingModel& self, Array rb_indices, int64 penalty) {
342
+ std::vector<int64> indices;
343
+ for (std::size_t i = 0; i < rb_indices.size(); ++i) {
344
+ indices.push_back(from_ruby<int64>(rb_indices[i]));
345
+ }
346
+ self.AddDisjunction(indices, penalty);
347
+ })
348
+ .define_method("add_pickup_and_delivery", &RoutingModel::AddPickupAndDelivery)
349
+ .define_method("solver", &RoutingModel::solver)
350
+ .define_method("start", &RoutingModel::Start)
351
+ .define_method("end", &RoutingModel::End)
352
+ .define_method("start?", &RoutingModel::IsStart)
353
+ .define_method("end?", &RoutingModel::IsEnd)
354
+ .define_method("vehicle_index", &RoutingModel::VehicleIndex)
355
+ .define_method("next", &RoutingModel::Next)
356
+ .define_method("vehicle_used?", &RoutingModel::IsVehicleUsed)
357
+ .define_method("next_var", &RoutingModel::NextVar)
358
+ .define_method("arc_cost_for_vehicle", &RoutingModel::GetArcCostForVehicle)
359
+ .define_method("mutable_dimension", &RoutingModel::GetMutableDimension)
360
+ .define_method("add_variable_minimized_by_finalizer", &RoutingModel::AddVariableMinimizedByFinalizer)
361
+ .define_method(
362
+ "solve_with_parameters",
363
+ *[](RoutingModel& self, const RoutingSearchParameters& search_parameters) {
364
+ auto assignment = self.SolveWithParameters(search_parameters);
365
+ // std::cout << assignment->DebugString();
366
+ return (Assignment) assignment;
367
+ });
368
+ }