or-tools 0.3.4 → 0.5.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,7 +2,7 @@ require "mkmf-rice"
2
2
 
3
3
  raise "Missing stdc++" unless have_library("stdc++")
4
4
 
5
- $CXXFLAGS << " -std=c++11 -DUSE_CBC"
5
+ $CXXFLAGS << " -std=c++17 -DUSE_CBC"
6
6
 
7
7
  # or-tools warnings
8
8
  $CXXFLAGS << " -Wno-sign-compare -Wno-shorten-64-to-32 -Wno-ignored-qualifiers"
@@ -0,0 +1,212 @@
1
+ #include <ortools/linear_solver/linear_solver.h>
2
+
3
+ #include <rice/Array.hpp>
4
+ #include <rice/Class.hpp>
5
+ #include <rice/Constructor.hpp>
6
+ #include <rice/Module.hpp>
7
+ #include <rice/String.hpp>
8
+ #include <rice/Symbol.hpp>
9
+
10
+ using operations_research::LinearExpr;
11
+ using operations_research::LinearRange;
12
+ using operations_research::MPConstraint;
13
+ using operations_research::MPObjective;
14
+ using operations_research::MPSolver;
15
+ using operations_research::MPVariable;
16
+
17
+ using Rice::Array;
18
+ using Rice::Class;
19
+ using Rice::Module;
20
+ using Rice::Object;
21
+ using Rice::String;
22
+ using Rice::Symbol;
23
+
24
+ template<>
25
+ inline
26
+ MPSolver::OptimizationProblemType from_ruby<MPSolver::OptimizationProblemType>(Object x)
27
+ {
28
+ std::string s = Symbol(x).str();
29
+ if (s == "glop") {
30
+ return MPSolver::OptimizationProblemType::GLOP_LINEAR_PROGRAMMING;
31
+ } else if (s == "cbc") {
32
+ return MPSolver::OptimizationProblemType::CBC_MIXED_INTEGER_PROGRAMMING;
33
+ } else {
34
+ throw std::runtime_error("Unknown optimization problem type: " + s);
35
+ }
36
+ }
37
+
38
+ Class rb_cMPVariable;
39
+ Class rb_cMPConstraint;
40
+ Class rb_cMPObjective;
41
+
42
+ template<>
43
+ inline
44
+ Object to_ruby<MPVariable*>(MPVariable* const &x)
45
+ {
46
+ return Rice::Data_Object<MPVariable>(x, rb_cMPVariable, nullptr, nullptr);
47
+ }
48
+
49
+ template<>
50
+ inline
51
+ Object to_ruby<MPConstraint*>(MPConstraint* const &x)
52
+ {
53
+ return Rice::Data_Object<MPConstraint>(x, rb_cMPConstraint, nullptr, nullptr);
54
+ }
55
+
56
+ template<>
57
+ inline
58
+ Object to_ruby<MPObjective*>(MPObjective* const &x)
59
+ {
60
+ return Rice::Data_Object<MPObjective>(x, rb_cMPObjective, nullptr, nullptr);
61
+ }
62
+
63
+ void init_linear(Rice::Module& m) {
64
+ rb_cMPVariable = Rice::define_class_under<MPVariable>(m, "MPVariable")
65
+ .define_method("name", &MPVariable::name)
66
+ .define_method("solution_value", &MPVariable::solution_value)
67
+ .define_method(
68
+ "+",
69
+ *[](MPVariable& self, LinearExpr& other) {
70
+ LinearExpr s(&self);
71
+ return s + other;
72
+ })
73
+ .define_method(
74
+ "-",
75
+ *[](MPVariable& self, LinearExpr& other) {
76
+ LinearExpr s(&self);
77
+ return s - other;
78
+ })
79
+ .define_method(
80
+ "*",
81
+ *[](MPVariable& self, double other) {
82
+ LinearExpr s(&self);
83
+ return s * other;
84
+ })
85
+ .define_method(
86
+ "inspect",
87
+ *[](MPVariable& self) {
88
+ return "#<ORTools::MPVariable @name=\"" + self.name() + "\">";
89
+ });
90
+
91
+ Rice::define_class_under<LinearExpr>(m, "LinearExpr")
92
+ .define_constructor(Rice::Constructor<LinearExpr>())
93
+ .define_method(
94
+ "_add_linear_expr",
95
+ *[](LinearExpr& self, LinearExpr& other) {
96
+ return self + other;
97
+ })
98
+ .define_method(
99
+ "_add_mp_variable",
100
+ *[](LinearExpr& self, MPVariable &other) {
101
+ LinearExpr o(&other);
102
+ return self + o;
103
+ })
104
+ .define_method(
105
+ "_gte_double",
106
+ *[](LinearExpr& self, double other) {
107
+ LinearExpr o(other);
108
+ return self >= o;
109
+ })
110
+ .define_method(
111
+ "_gte_linear_expr",
112
+ *[](LinearExpr& self, LinearExpr& other) {
113
+ return self >= other;
114
+ })
115
+ .define_method(
116
+ "_lte_double",
117
+ *[](LinearExpr& self, double other) {
118
+ LinearExpr o(other);
119
+ return self <= o;
120
+ })
121
+ .define_method(
122
+ "_lte_linear_expr",
123
+ *[](LinearExpr& self, LinearExpr& other) {
124
+ return self <= other;
125
+ })
126
+ .define_method(
127
+ "==",
128
+ *[](LinearExpr& self, double other) {
129
+ LinearExpr o(other);
130
+ return self == o;
131
+ })
132
+ .define_method(
133
+ "to_s",
134
+ *[](LinearExpr& self) {
135
+ return self.ToString();
136
+ })
137
+ .define_method(
138
+ "inspect",
139
+ *[](LinearExpr& self) {
140
+ return "#<ORTools::LinearExpr \"" + self.ToString() + "\">";
141
+ });
142
+
143
+ Rice::define_class_under<LinearRange>(m, "LinearRange");
144
+
145
+ rb_cMPConstraint = Rice::define_class_under<MPConstraint>(m, "MPConstraint")
146
+ .define_method("set_coefficient", &MPConstraint::SetCoefficient);
147
+
148
+ rb_cMPObjective = Rice::define_class_under<MPObjective>(m, "MPObjective")
149
+ .define_method("value", &MPObjective::Value)
150
+ .define_method("set_coefficient", &MPObjective::SetCoefficient)
151
+ .define_method("set_maximization", &MPObjective::SetMaximization);
152
+
153
+ Rice::define_class_under<MPSolver>(m, "Solver")
154
+ .define_constructor(Rice::Constructor<MPSolver, std::string, MPSolver::OptimizationProblemType>())
155
+ .define_method("infinity", &MPSolver::infinity)
156
+ .define_method(
157
+ "int_var",
158
+ *[](MPSolver& self, double min, double max, const std::string& name) {
159
+ return self.MakeIntVar(min, max, name);
160
+ })
161
+ .define_method("num_var", &MPSolver::MakeNumVar)
162
+ .define_method("bool_var", &MPSolver::MakeBoolVar)
163
+ .define_method("num_variables", &MPSolver::NumVariables)
164
+ .define_method("num_constraints", &MPSolver::NumConstraints)
165
+ .define_method("wall_time", &MPSolver::wall_time)
166
+ .define_method("iterations", &MPSolver::iterations)
167
+ .define_method("nodes", &MPSolver::nodes)
168
+ .define_method("objective", &MPSolver::MutableObjective)
169
+ .define_method(
170
+ "maximize",
171
+ *[](MPSolver& self, LinearExpr& expr) {
172
+ return self.MutableObjective()->MaximizeLinearExpr(expr);
173
+ })
174
+ .define_method(
175
+ "minimize",
176
+ *[](MPSolver& self, LinearExpr& expr) {
177
+ return self.MutableObjective()->MinimizeLinearExpr(expr);
178
+ })
179
+ .define_method(
180
+ "add",
181
+ *[](MPSolver& self, const LinearRange& range) {
182
+ return self.MakeRowConstraint(range);
183
+ })
184
+ .define_method(
185
+ "constraint",
186
+ *[](MPSolver& self, double lb, double ub) {
187
+ return self.MakeRowConstraint(lb, ub);
188
+ })
189
+ .define_method(
190
+ "solve",
191
+ *[](MPSolver& self) {
192
+ auto status = self.Solve();
193
+
194
+ if (status == MPSolver::ResultStatus::OPTIMAL) {
195
+ return Symbol("optimal");
196
+ } else if (status == MPSolver::ResultStatus::FEASIBLE) {
197
+ return Symbol("feasible");
198
+ } else if (status == MPSolver::ResultStatus::INFEASIBLE) {
199
+ return Symbol("infeasible");
200
+ } else if (status == MPSolver::ResultStatus::UNBOUNDED) {
201
+ return Symbol("unbounded");
202
+ } else if (status == MPSolver::ResultStatus::ABNORMAL) {
203
+ return Symbol("abnormal");
204
+ } else if (status == MPSolver::ResultStatus::MODEL_INVALID) {
205
+ return Symbol("model_invalid");
206
+ } else if (status == MPSolver::ResultStatus::NOT_SOLVED) {
207
+ return Symbol("not_solved");
208
+ } else {
209
+ throw std::runtime_error("Unknown status");
210
+ }
211
+ });
212
+ }
@@ -0,0 +1,105 @@
1
+ #include <ortools/graph/max_flow.h>
2
+ #include <ortools/graph/min_cost_flow.h>
3
+
4
+ #include <rice/Array.hpp>
5
+ #include <rice/Constructor.hpp>
6
+ #include <rice/Module.hpp>
7
+
8
+ using operations_research::NodeIndex;
9
+ using operations_research::SimpleMaxFlow;
10
+ using operations_research::SimpleMinCostFlow;
11
+
12
+ using Rice::Array;
13
+ using Rice::Symbol;
14
+
15
+ void init_network_flows(Rice::Module& m) {
16
+ Rice::define_class_under<SimpleMaxFlow>(m, "SimpleMaxFlow")
17
+ .define_constructor(Rice::Constructor<SimpleMaxFlow>())
18
+ .define_method("add_arc_with_capacity", &SimpleMaxFlow::AddArcWithCapacity)
19
+ .define_method("num_nodes", &SimpleMaxFlow::NumNodes)
20
+ .define_method("num_arcs", &SimpleMaxFlow::NumArcs)
21
+ .define_method("tail", &SimpleMaxFlow::Tail)
22
+ .define_method("head", &SimpleMaxFlow::Head)
23
+ .define_method("capacity", &SimpleMaxFlow::Capacity)
24
+ .define_method("optimal_flow", &SimpleMaxFlow::OptimalFlow)
25
+ .define_method("flow", &SimpleMaxFlow::Flow)
26
+ .define_method(
27
+ "solve",
28
+ *[](SimpleMaxFlow& self, NodeIndex source, NodeIndex sink) {
29
+ auto status = self.Solve(source, sink);
30
+
31
+ if (status == SimpleMaxFlow::Status::OPTIMAL) {
32
+ return Symbol("optimal");
33
+ } else if (status == SimpleMaxFlow::Status::POSSIBLE_OVERFLOW) {
34
+ return Symbol("possible_overflow");
35
+ } else if (status == SimpleMaxFlow::Status::BAD_INPUT) {
36
+ return Symbol("bad_input");
37
+ } else if (status == SimpleMaxFlow::Status::BAD_RESULT) {
38
+ return Symbol("bad_result");
39
+ } else {
40
+ throw std::runtime_error("Unknown status");
41
+ }
42
+ })
43
+ .define_method(
44
+ "source_side_min_cut",
45
+ *[](SimpleMaxFlow& self) {
46
+ std::vector<NodeIndex> result;
47
+ self.GetSourceSideMinCut(&result);
48
+
49
+ Array ret;
50
+ for (auto const& it: result) {
51
+ ret.push(it);
52
+ }
53
+ return ret;
54
+ })
55
+ .define_method(
56
+ "sink_side_min_cut",
57
+ *[](SimpleMaxFlow& self) {
58
+ std::vector<NodeIndex> result;
59
+ self.GetSinkSideMinCut(&result);
60
+
61
+ Array ret;
62
+ for (auto const& it: result) {
63
+ ret.push(it);
64
+ }
65
+ return ret;
66
+ });
67
+
68
+ Rice::define_class_under<SimpleMinCostFlow>(m, "SimpleMinCostFlow")
69
+ .define_constructor(Rice::Constructor<SimpleMinCostFlow>())
70
+ .define_method("add_arc_with_capacity_and_unit_cost", &SimpleMinCostFlow::AddArcWithCapacityAndUnitCost)
71
+ .define_method("set_node_supply", &SimpleMinCostFlow::SetNodeSupply)
72
+ .define_method("optimal_cost", &SimpleMinCostFlow::OptimalCost)
73
+ .define_method("maximum_flow", &SimpleMinCostFlow::MaximumFlow)
74
+ .define_method("flow", &SimpleMinCostFlow::Flow)
75
+ .define_method("num_nodes", &SimpleMinCostFlow::NumNodes)
76
+ .define_method("num_arcs", &SimpleMinCostFlow::NumArcs)
77
+ .define_method("tail", &SimpleMinCostFlow::Tail)
78
+ .define_method("head", &SimpleMinCostFlow::Head)
79
+ .define_method("capacity", &SimpleMinCostFlow::Capacity)
80
+ .define_method("supply", &SimpleMinCostFlow::Supply)
81
+ .define_method("unit_cost", &SimpleMinCostFlow::UnitCost)
82
+ .define_method(
83
+ "solve",
84
+ *[](SimpleMinCostFlow& self) {
85
+ auto status = self.Solve();
86
+
87
+ if (status == SimpleMinCostFlow::Status::NOT_SOLVED) {
88
+ return Symbol("not_solved");
89
+ } else if (status == SimpleMinCostFlow::Status::OPTIMAL) {
90
+ return Symbol("optimal");
91
+ } else if (status == SimpleMinCostFlow::Status::FEASIBLE) {
92
+ return Symbol("feasible");
93
+ } else if (status == SimpleMinCostFlow::Status::INFEASIBLE) {
94
+ return Symbol("infeasible");
95
+ } else if (status == SimpleMinCostFlow::Status::UNBALANCED) {
96
+ return Symbol("unbalanced");
97
+ } else if (status == SimpleMinCostFlow::Status::BAD_RESULT) {
98
+ return Symbol("bad_result");
99
+ } else if (status == SimpleMinCostFlow::Status::BAD_COST_RANGE) {
100
+ return Symbol("bad_cost_range");
101
+ } else {
102
+ throw std::runtime_error("Unknown status");
103
+ }
104
+ });
105
+ }
@@ -0,0 +1,368 @@
1
+ #include <ortools/constraint_solver/routing.h>
2
+ #include <ortools/constraint_solver/routing_parameters.h>
3
+
4
+ #include <rice/Array.hpp>
5
+ #include <rice/Class.hpp>
6
+ #include <rice/Constructor.hpp>
7
+ #include <rice/Module.hpp>
8
+ #include <rice/String.hpp>
9
+ #include <rice/Symbol.hpp>
10
+
11
+ using operations_research::DefaultRoutingSearchParameters;
12
+ using operations_research::FirstSolutionStrategy;
13
+ using operations_research::LocalSearchMetaheuristic;
14
+ using operations_research::RoutingDimension;
15
+ using operations_research::RoutingIndexManager;
16
+ using operations_research::RoutingModel;
17
+ using operations_research::RoutingNodeIndex;
18
+ using operations_research::RoutingSearchParameters;
19
+
20
+ using Rice::Array;
21
+ using Rice::Class;
22
+ using Rice::Module;
23
+ using Rice::Object;
24
+ using Rice::String;
25
+ using Rice::Symbol;
26
+
27
+ template<>
28
+ inline
29
+ RoutingNodeIndex from_ruby<RoutingNodeIndex>(Object x)
30
+ {
31
+ const RoutingNodeIndex index{from_ruby<int>(x)};
32
+ return index;
33
+ }
34
+
35
+ template<>
36
+ inline
37
+ Object to_ruby<RoutingNodeIndex>(RoutingNodeIndex const &x)
38
+ {
39
+ return to_ruby<int>(x.value());
40
+ }
41
+
42
+ std::vector<RoutingNodeIndex> nodeIndexVector(Array x) {
43
+ std::vector<RoutingNodeIndex> res;
44
+ for (auto const& v : x) {
45
+ res.push_back(from_ruby<RoutingNodeIndex>(v));
46
+ }
47
+ return res;
48
+ }
49
+
50
+ // need a wrapper class due to const
51
+ class Assignment {
52
+ const operations_research::Assignment* self;
53
+ public:
54
+ Assignment(const operations_research::Assignment* v) {
55
+ self = v;
56
+ }
57
+ int64_t ObjectiveValue() {
58
+ return self->ObjectiveValue();
59
+ }
60
+ int64_t Value(const operations_research::IntVar* const var) const {
61
+ return self->Value(var);
62
+ }
63
+ int64_t Min(const operations_research::IntVar* const var) const {
64
+ return self->Min(var);
65
+ }
66
+ int64_t Max(const operations_research::IntVar* const var) const {
67
+ return self->Max(var);
68
+ }
69
+ };
70
+
71
+ Class rb_cIntVar;
72
+ Class rb_cIntervalVar;
73
+ Class rb_cRoutingDimension;
74
+ Class rb_cConstraint;
75
+ Class rb_cSolver2;
76
+
77
+ template<>
78
+ inline
79
+ Object to_ruby<operations_research::IntVar*>(operations_research::IntVar* const &x)
80
+ {
81
+ return Rice::Data_Object<operations_research::IntVar>(x, rb_cIntVar, nullptr, nullptr);
82
+ }
83
+
84
+ template<>
85
+ inline
86
+ Object to_ruby<operations_research::IntervalVar*>(operations_research::IntervalVar* const &x)
87
+ {
88
+ return Rice::Data_Object<operations_research::IntervalVar>(x, rb_cIntervalVar, nullptr, nullptr);
89
+ }
90
+
91
+ template<>
92
+ inline
93
+ Object to_ruby<RoutingDimension*>(RoutingDimension* const &x)
94
+ {
95
+ return Rice::Data_Object<RoutingDimension>(x, rb_cRoutingDimension, nullptr, nullptr);
96
+ }
97
+
98
+ template<>
99
+ inline
100
+ Object to_ruby<operations_research::Constraint*>(operations_research::Constraint* const &x)
101
+ {
102
+ return Rice::Data_Object<operations_research::Constraint>(x, rb_cConstraint, nullptr, nullptr);
103
+ }
104
+
105
+ template<>
106
+ inline
107
+ Object to_ruby<operations_research::Solver*>(operations_research::Solver* const &x)
108
+ {
109
+ return Rice::Data_Object<operations_research::Solver>(x, rb_cSolver2, nullptr, nullptr);
110
+ }
111
+
112
+ void init_routing(Rice::Module& m) {
113
+ m.define_singleton_method("default_routing_search_parameters", &DefaultRoutingSearchParameters);
114
+
115
+ Rice::define_class_under<RoutingSearchParameters>(m, "RoutingSearchParameters")
116
+ .define_method(
117
+ "first_solution_strategy=",
118
+ *[](RoutingSearchParameters& self, Symbol value) {
119
+ std::string s = Symbol(value).str();
120
+
121
+ FirstSolutionStrategy::Value v;
122
+ if (s == "path_cheapest_arc") {
123
+ v = FirstSolutionStrategy::PATH_CHEAPEST_ARC;
124
+ } else if (s == "path_most_constrained_arc") {
125
+ v = FirstSolutionStrategy::PATH_MOST_CONSTRAINED_ARC;
126
+ } else if (s == "evaluator_strategy") {
127
+ v = FirstSolutionStrategy::EVALUATOR_STRATEGY;
128
+ } else if (s == "savings") {
129
+ v = FirstSolutionStrategy::SAVINGS;
130
+ } else if (s == "sweep") {
131
+ v = FirstSolutionStrategy::SWEEP;
132
+ } else if (s == "christofides") {
133
+ v = FirstSolutionStrategy::CHRISTOFIDES;
134
+ } else if (s == "all_unperformed") {
135
+ v = FirstSolutionStrategy::ALL_UNPERFORMED;
136
+ } else if (s == "best_insertion") {
137
+ v = FirstSolutionStrategy::BEST_INSERTION;
138
+ } else if (s == "parallel_cheapest_insertion") {
139
+ v = FirstSolutionStrategy::PARALLEL_CHEAPEST_INSERTION;
140
+ } else if (s == "sequential_cheapest_insertion") {
141
+ v = FirstSolutionStrategy::SEQUENTIAL_CHEAPEST_INSERTION;
142
+ } else if (s == "local_cheapest_insertion") {
143
+ v = FirstSolutionStrategy::LOCAL_CHEAPEST_INSERTION;
144
+ } else if (s == "global_cheapest_arc") {
145
+ v = FirstSolutionStrategy::GLOBAL_CHEAPEST_ARC;
146
+ } else if (s == "local_cheapest_arc") {
147
+ v = FirstSolutionStrategy::LOCAL_CHEAPEST_ARC;
148
+ } else if (s == "first_unbound_min_value") {
149
+ v = FirstSolutionStrategy::FIRST_UNBOUND_MIN_VALUE;
150
+ } else {
151
+ throw std::runtime_error("Unknown first solution strategy: " + s);
152
+ }
153
+
154
+ return self.set_first_solution_strategy(v);
155
+ })
156
+ .define_method(
157
+ "local_search_metaheuristic=",
158
+ *[](RoutingSearchParameters& self, Symbol value) {
159
+ std::string s = Symbol(value).str();
160
+
161
+ LocalSearchMetaheuristic::Value v;
162
+ if (s == "guided_local_search") {
163
+ v = LocalSearchMetaheuristic::GUIDED_LOCAL_SEARCH;
164
+ } else if (s == "tabu_search") {
165
+ v = LocalSearchMetaheuristic::TABU_SEARCH;
166
+ } else if (s == "generic_tabu_search") {
167
+ v = LocalSearchMetaheuristic::GENERIC_TABU_SEARCH;
168
+ } else if (s == "simulated_annealing") {
169
+ v = LocalSearchMetaheuristic::SIMULATED_ANNEALING;
170
+ } else {
171
+ throw std::runtime_error("Unknown local search metaheuristic: " + s);
172
+ }
173
+
174
+ return self.set_local_search_metaheuristic(v);
175
+ })
176
+ .define_method(
177
+ "log_search=",
178
+ *[](RoutingSearchParameters& self, bool value) {
179
+ self.set_log_search(value);
180
+ })
181
+ .define_method(
182
+ "solution_limit=",
183
+ *[](RoutingSearchParameters& self, int64_t value) {
184
+ self.set_solution_limit(value);
185
+ })
186
+ .define_method(
187
+ "time_limit=",
188
+ *[](RoutingSearchParameters& self, int64_t value) {
189
+ self.mutable_time_limit()->set_seconds(value);
190
+ })
191
+ .define_method(
192
+ "lns_time_limit=",
193
+ *[](RoutingSearchParameters& self, int64_t value) {
194
+ self.mutable_lns_time_limit()->set_seconds(value);
195
+ });
196
+
197
+ Rice::define_class_under<RoutingIndexManager>(m, "RoutingIndexManager")
198
+ .define_singleton_method(
199
+ "_new_depot",
200
+ *[](int num_nodes, int num_vehicles, RoutingNodeIndex depot) {
201
+ return RoutingIndexManager(num_nodes, num_vehicles, depot);
202
+ })
203
+ .define_singleton_method(
204
+ "_new_starts_ends",
205
+ *[](int num_nodes, int num_vehicles, Array starts, Array ends) {
206
+ return RoutingIndexManager(num_nodes, num_vehicles, nodeIndexVector(starts), nodeIndexVector(ends));
207
+ })
208
+ .define_method("index_to_node", &RoutingIndexManager::IndexToNode)
209
+ .define_method("node_to_index", &RoutingIndexManager::NodeToIndex);
210
+
211
+ Rice::define_class_under<Assignment>(m, "Assignment")
212
+ .define_method("objective_value", &Assignment::ObjectiveValue)
213
+ .define_method("value", &Assignment::Value)
214
+ .define_method("min", &Assignment::Min)
215
+ .define_method("max", &Assignment::Max);
216
+
217
+ // not to be confused with operations_research::sat::IntVar
218
+ rb_cIntVar = Rice::define_class_under<operations_research::IntVar>(m, "IntVar")
219
+ .define_method(
220
+ "set_range",
221
+ *[](operations_research::IntVar& self, int64_t new_min, int64_t new_max) {
222
+ self.SetRange(new_min, new_max);
223
+ });
224
+
225
+ rb_cIntervalVar = Rice::define_class_under<operations_research::IntervalVar>(m, "IntervalVar");
226
+
227
+ rb_cRoutingDimension = Rice::define_class_under<RoutingDimension>(m, "RoutingDimension")
228
+ .define_method("global_span_cost_coefficient=", &RoutingDimension::SetGlobalSpanCostCoefficient)
229
+ .define_method("cumul_var", &RoutingDimension::CumulVar);
230
+
231
+ rb_cConstraint = Rice::define_class_under<operations_research::Constraint>(m, "Constraint");
232
+
233
+ rb_cSolver2 = Rice::define_class_under<operations_research::Solver>(m, "Solver2")
234
+ .define_method(
235
+ "add",
236
+ *[](operations_research::Solver& self, Object o) {
237
+ operations_research::Constraint* constraint;
238
+ if (o.respond_to("left")) {
239
+ operations_research::IntExpr* left(from_ruby<operations_research::IntVar*>(o.call("left")));
240
+ operations_research::IntExpr* right(from_ruby<operations_research::IntVar*>(o.call("right")));
241
+ auto op = o.call("operator").to_s().str();
242
+ if (op == "==") {
243
+ constraint = self.MakeEquality(left, right);
244
+ } else if (op == "<=") {
245
+ constraint = self.MakeLessOrEqual(left, right);
246
+ } else {
247
+ throw std::runtime_error("Unknown operator");
248
+ }
249
+ } else {
250
+ constraint = from_ruby<operations_research::Constraint*>(o);
251
+ }
252
+ self.AddConstraint(constraint);
253
+ })
254
+ .define_method(
255
+ "fixed_duration_interval_var",
256
+ *[](operations_research::Solver& self, operations_research::IntVar* const start_variable, int64_t duration, const std::string& name) {
257
+ return self.MakeFixedDurationIntervalVar(start_variable, duration, name);
258
+ })
259
+ .define_method(
260
+ "cumulative",
261
+ *[](operations_research::Solver& self, Array rb_intervals, Array rb_demands, int64_t capacity, const std::string& name) {
262
+ std::vector<operations_research::IntervalVar*> intervals;
263
+ for (std::size_t i = 0; i < rb_intervals.size(); ++i) {
264
+ intervals.push_back(from_ruby<operations_research::IntervalVar*>(rb_intervals[i]));
265
+ }
266
+
267
+ std::vector<int64_t> demands;
268
+ for (std::size_t i = 0; i < rb_demands.size(); ++i) {
269
+ demands.push_back(from_ruby<int64_t>(rb_demands[i]));
270
+ }
271
+
272
+ return self.MakeCumulative(intervals, demands, capacity, name);
273
+ });
274
+
275
+ Rice::define_class_under<RoutingModel>(m, "RoutingModel")
276
+ .define_constructor(Rice::Constructor<RoutingModel, RoutingIndexManager>())
277
+ .define_method(
278
+ "register_transit_callback",
279
+ *[](RoutingModel& self, Object callback) {
280
+ return self.RegisterTransitCallback(
281
+ [callback](int64_t from_index, int64_t to_index) -> int64_t {
282
+ return from_ruby<int64_t>(callback.call("call", from_index, to_index));
283
+ }
284
+ );
285
+ })
286
+ .define_method(
287
+ "register_unary_transit_callback",
288
+ *[](RoutingModel& self, Object callback) {
289
+ return self.RegisterUnaryTransitCallback(
290
+ [callback](int64_t from_index) -> int64_t {
291
+ return from_ruby<int64_t>(callback.call("call", from_index));
292
+ }
293
+ );
294
+ })
295
+ .define_method("depot", &RoutingModel::GetDepot)
296
+ .define_method("size", &RoutingModel::Size)
297
+ .define_method("status", *[](RoutingModel& self) {
298
+ auto status = self.status();
299
+
300
+ if (status == RoutingModel::ROUTING_NOT_SOLVED) {
301
+ return Symbol("not_solved");
302
+ } else if (status == RoutingModel::ROUTING_SUCCESS) {
303
+ return Symbol("success");
304
+ } else if (status == RoutingModel::ROUTING_FAIL) {
305
+ return Symbol("fail");
306
+ } else if (status == RoutingModel::ROUTING_FAIL_TIMEOUT) {
307
+ return Symbol("fail_timeout");
308
+ } else if (status == RoutingModel::ROUTING_INVALID) {
309
+ return Symbol("invalid");
310
+ } else {
311
+ throw std::runtime_error("Unknown solver status");
312
+ }
313
+ })
314
+ .define_method("vehicle_var", &RoutingModel::VehicleVar)
315
+ .define_method("set_arc_cost_evaluator_of_all_vehicles", &RoutingModel::SetArcCostEvaluatorOfAllVehicles)
316
+ .define_method("set_arc_cost_evaluator_of_vehicle", &RoutingModel::SetArcCostEvaluatorOfVehicle)
317
+ .define_method("set_fixed_cost_of_all_vehicles", &RoutingModel::SetFixedCostOfAllVehicles)
318
+ .define_method("set_fixed_cost_of_vehicle", &RoutingModel::SetFixedCostOfVehicle)
319
+ .define_method("fixed_cost_of_vehicle", &RoutingModel::GetFixedCostOfVehicle)
320
+ .define_method("add_dimension", &RoutingModel::AddDimension)
321
+ .define_method(
322
+ "add_dimension_with_vehicle_capacity",
323
+ *[](RoutingModel& self, int evaluator_index, int64_t slack_max, Array vc, bool fix_start_cumul_to_zero, const std::string& name) {
324
+ std::vector<int64_t> vehicle_capacities;
325
+ for (std::size_t i = 0; i < vc.size(); ++i) {
326
+ vehicle_capacities.push_back(from_ruby<int64_t>(vc[i]));
327
+ }
328
+ self.AddDimensionWithVehicleCapacity(evaluator_index, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name);
329
+ })
330
+ .define_method(
331
+ "add_dimension_with_vehicle_transits",
332
+ *[](RoutingModel& self, Array rb_indices, int64_t slack_max, int64_t capacity, bool fix_start_cumul_to_zero, const std::string& name) {
333
+ std::vector<int> evaluator_indices;
334
+ for (std::size_t i = 0; i < rb_indices.size(); ++i) {
335
+ evaluator_indices.push_back(from_ruby<int>(rb_indices[i]));
336
+ }
337
+ self.AddDimensionWithVehicleTransits(evaluator_indices, slack_max, capacity, fix_start_cumul_to_zero, name);
338
+ })
339
+ .define_method(
340
+ "add_disjunction",
341
+ *[](RoutingModel& self, Array rb_indices, int64_t penalty) {
342
+ std::vector<int64_t> indices;
343
+ for (std::size_t i = 0; i < rb_indices.size(); ++i) {
344
+ indices.push_back(from_ruby<int64_t>(rb_indices[i]));
345
+ }
346
+ self.AddDisjunction(indices, penalty);
347
+ })
348
+ .define_method("add_pickup_and_delivery", &RoutingModel::AddPickupAndDelivery)
349
+ .define_method("solver", &RoutingModel::solver)
350
+ .define_method("start", &RoutingModel::Start)
351
+ .define_method("end", &RoutingModel::End)
352
+ .define_method("start?", &RoutingModel::IsStart)
353
+ .define_method("end?", &RoutingModel::IsEnd)
354
+ .define_method("vehicle_index", &RoutingModel::VehicleIndex)
355
+ .define_method("next", &RoutingModel::Next)
356
+ .define_method("vehicle_used?", &RoutingModel::IsVehicleUsed)
357
+ .define_method("next_var", &RoutingModel::NextVar)
358
+ .define_method("arc_cost_for_vehicle", &RoutingModel::GetArcCostForVehicle)
359
+ .define_method("mutable_dimension", &RoutingModel::GetMutableDimension)
360
+ .define_method("add_variable_minimized_by_finalizer", &RoutingModel::AddVariableMinimizedByFinalizer)
361
+ .define_method(
362
+ "solve_with_parameters",
363
+ *[](RoutingModel& self, const RoutingSearchParameters& search_parameters) {
364
+ auto assignment = self.SolveWithParameters(search_parameters);
365
+ // std::cout << assignment->DebugString();
366
+ return (Assignment) assignment;
367
+ });
368
+ }