ooura_fft 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +17 -0
- data/CODE_OF_CONDUCT.md +132 -0
- data/LICENSE +21 -0
- data/LICENSE.txt +21 -0
- data/README.md +82 -0
- data/Rakefile +19 -0
- data/ext/ooura_fft/abi/fftsg/fftsg.c +3528 -0
- data/ext/ooura_fft/abi/fftsg/fftsg.h +307 -0
- data/ext/ooura_fft/abi/fftsg/readme.txt +167 -0
- data/ext/ooura_fft/extconf.rb +18 -0
- data/ext/ooura_fft/fft.c +307 -0
- data/ext/ooura_fft/internal/setting/ooura_fft.h +17 -0
- data/ext/ooura_fft/internal/solver/ooura_fft/cdft.h +52 -0
- data/ext/ooura_fft/internal/solver/ooura_fft/ddct.h +47 -0
- data/ext/ooura_fft/internal/solver/ooura_fft/ddst.h +47 -0
- data/ext/ooura_fft/internal/solver/ooura_fft/dfct.h +55 -0
- data/ext/ooura_fft/internal/solver/ooura_fft/dfst.h +52 -0
- data/ext/ooura_fft/internal/solver/ooura_fft/rdft.h +47 -0
- data/ext/ooura_fft/missing/ispow2l.c +9 -0
- data/ext/ooura_fft/missing/missing.h +21 -0
- data/ext/ooura_fft/ooura_fft/api.h +13 -0
- data/ext/ooura_fft/ooura_fft/ext_extern.h +18 -0
- data/ext/ooura_fft/ooura_fft/globals.h +9 -0
- data/ext/ooura_fft/ooura_fft.c +56 -0
- data/lib/ooura_fft/version.rb +6 -0
- data/lib/ooura_fft.rb +6 -0
- data/sig/ooura_fft.rbs +4 -0
- metadata +116 -0
data/ext/ooura_fft/fft.c
ADDED
@@ -0,0 +1,307 @@
|
|
1
|
+
/*******************************************************************************
|
2
|
+
fft.c -- FFT
|
3
|
+
|
4
|
+
$author$
|
5
|
+
*******************************************************************************/
|
6
|
+
#include <ruby.h>
|
7
|
+
#include "ooura_fft/globals.h"
|
8
|
+
#include "ooura_fft/api.h"
|
9
|
+
#include "internal/setting/ooura_fft.h"
|
10
|
+
#include "missing/missing.h"
|
11
|
+
#include "abi/fftsg/fftsg.h"
|
12
|
+
|
13
|
+
|
14
|
+
static void InitVM_FFTMain(void);
|
15
|
+
void
|
16
|
+
InitVM_FFT(void)
|
17
|
+
{
|
18
|
+
InitVM(FFTMain);
|
19
|
+
}
|
20
|
+
|
21
|
+
int
|
22
|
+
opts_inversion_p(VALUE opts)
|
23
|
+
{
|
24
|
+
static ID kwds[1];
|
25
|
+
VALUE inversion;
|
26
|
+
if (!kwds[0]) {
|
27
|
+
kwds[0] = rb_intern_const("inversion");
|
28
|
+
}
|
29
|
+
rb_get_kwargs(opts, kwds, 0, 1, &inversion);
|
30
|
+
switch (inversion) {
|
31
|
+
case Qtrue: case Qfalse:
|
32
|
+
break;
|
33
|
+
case Qundef:
|
34
|
+
return 0;
|
35
|
+
default:
|
36
|
+
rb_raise(rb_eArgError, "true or false is expected as inversion: %+"PRIsVALUE,
|
37
|
+
inversion);
|
38
|
+
}
|
39
|
+
|
40
|
+
return inversion == Qtrue;
|
41
|
+
}
|
42
|
+
|
43
|
+
static VALUE
|
44
|
+
fft_callback(int argc, VALUE *argv, VALUE (*callback_func)(VALUE, int))
|
45
|
+
{
|
46
|
+
VALUE ary, opts = Qnil;
|
47
|
+
rb_scan_args(argc, argv, "11", &ary, &opts);
|
48
|
+
int invertible = opts_inversion_p(opts) ? -1 : 1;
|
49
|
+
|
50
|
+
Check_Type(ary, T_ARRAY);
|
51
|
+
|
52
|
+
return callback_func(ary, invertible);
|
53
|
+
}
|
54
|
+
|
55
|
+
|
56
|
+
#include "internal/solver/ooura_fft/cdft.h" // fft_cdft_inline()
|
57
|
+
/*
|
58
|
+
*
|
59
|
+
* Document-method: cdft
|
60
|
+
*
|
61
|
+
* call-seq:
|
62
|
+
* OouraFFT.cdft(ary) -> [*Complex]
|
63
|
+
* OouraFFT.cdft(ary, inversion: true) -> [*Complex]
|
64
|
+
*
|
65
|
+
* Perform FFT with the first argument +ary+ as a numerical sequence.<br>
|
66
|
+
* If the keyword argument +inversion+ is +true+, perform an inverse FFT.
|
67
|
+
*
|
68
|
+
* [Function type] Complex Discrete Fourier Transform
|
69
|
+
* [Definition]
|
70
|
+
* [case1] <tt>X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n</tt>
|
71
|
+
* [case2] <tt>X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n</tt>
|
72
|
+
* notes:: <tt>sum_j=0^n-1 is a summation from j=0 to n-1</tt>
|
73
|
+
* [+ary+ sequence type] All +Complex+
|
74
|
+
* [Array size requirement] n >= 1, n = power of 2
|
75
|
+
*
|
76
|
+
* def sinewave(amp, f0, fs, n)
|
77
|
+
* amp * Math.sin(2 * Math::PI * f0 * n / fs)
|
78
|
+
* end
|
79
|
+
*
|
80
|
+
* OouraFFT.cdft(Array.new(8){|n| sinewave(0.25, 250.0, 8000, n)})
|
81
|
+
* #=> [(1.1441462984511075+0.0i),
|
82
|
+
* #=> (-0.21410561232180816-0.3229641637954819i),
|
83
|
+
* #=> (-0.14986404592245728-0.12744889477603982i),
|
84
|
+
* #=> (-0.13944777827146557-0.05236611372238342i),
|
85
|
+
* #=> (-0.13731142541964547+0.0i),
|
86
|
+
* #=> (-0.13944777827146557+0.05236611372238342i),
|
87
|
+
* #=> (-0.14986404592245728+0.12744889477603982i),
|
88
|
+
* #=> (-0.21410561232180816+0.3229641637954819i)]
|
89
|
+
*/
|
90
|
+
static VALUE
|
91
|
+
fft_cdft(int argc, VALUE *argv, VALUE unused_obj)
|
92
|
+
{
|
93
|
+
return fft_callback(argc, argv, fft_cdft_inline);
|
94
|
+
}
|
95
|
+
|
96
|
+
|
97
|
+
#include "internal/solver/ooura_fft/rdft.h" // fft_rdft_inline()
|
98
|
+
/*
|
99
|
+
* Document-method: rdft
|
100
|
+
*
|
101
|
+
* call-seq:
|
102
|
+
* OouraFFT.rdft(ary) -> [*Float]
|
103
|
+
* OouraFFT.rdft(ary, inversion: true) -> [*Float]
|
104
|
+
*
|
105
|
+
* Perform FFT with the first argument +ary+ as a numerical sequence.<br>
|
106
|
+
* If the keyword argument +inversion+ is +true+, perform an inverse FFT.
|
107
|
+
*
|
108
|
+
* [Function type] Real Discrete Fourier Transform
|
109
|
+
* [Definition]
|
110
|
+
* case1:: RDFT
|
111
|
+
* :: <tt>R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2</tt>
|
112
|
+
* :: <tt>I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2</tt>
|
113
|
+
* case2:: IRDFT (excluding scale)
|
114
|
+
* :: <tt>a[k] = (R[0] + R[n/2]*cos(pi*k))/2 + sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) + sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n</tt>
|
115
|
+
* [+ary+ sequence type] All +Float+
|
116
|
+
* [Array size requirement] n >= 2, n = power of 2
|
117
|
+
*
|
118
|
+
* def sinewave(amp, f0, fs, n)
|
119
|
+
* amp * Math.sin(2 * Math::PI * f0 * n / fs)
|
120
|
+
* end
|
121
|
+
*
|
122
|
+
* OouraFFT.rdft(Array.new(8){|n| sinewave(0.25, 250.0, 8000, n)})
|
123
|
+
* # => [1.1441462984511075,
|
124
|
+
* # => -0.13731142541964547,
|
125
|
+
* # => -0.21410561232180816,
|
126
|
+
* # => -0.3229641637954819,
|
127
|
+
* # => -0.14986404592245728,
|
128
|
+
* # => -0.12744889477603982,
|
129
|
+
* # => -0.13944777827146557,
|
130
|
+
* # => -0.052366113722383416]
|
131
|
+
*/
|
132
|
+
static VALUE
|
133
|
+
fft_rdft(int argc, VALUE *argv, VALUE unused_obj)
|
134
|
+
{
|
135
|
+
return fft_callback(argc, argv, fft_rdft_inline);
|
136
|
+
}
|
137
|
+
|
138
|
+
|
139
|
+
#include "internal/solver/ooura_fft/ddct.h" // fft_ddct_inline()
|
140
|
+
/*
|
141
|
+
* Document-method: ddct
|
142
|
+
*
|
143
|
+
* call-seq:
|
144
|
+
* OouraFFT.ddct(ary) -> [*Float]
|
145
|
+
* OouraFFT.ddct(ary, inversion: true) -> [*Float]
|
146
|
+
*
|
147
|
+
* Perform FFT with the first argument +ary+ as a numerical sequence.<br>
|
148
|
+
* If the keyword argument +inversion+ is +true+, perform an inverse FFT.
|
149
|
+
*
|
150
|
+
* [Function type] Discrete Cosine Transform
|
151
|
+
* [Definition]
|
152
|
+
* case1:: IDCT (excluding scale)
|
153
|
+
* :: <tt>C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n</tt>
|
154
|
+
* case2:: DCT
|
155
|
+
* :: <tt>C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n</tt>
|
156
|
+
* [+ary+ sequence type] All +Float+
|
157
|
+
* [Array size requirement] n >= 2, n = power of 2
|
158
|
+
*
|
159
|
+
* def sinewave(amp, f0, fs, n)
|
160
|
+
* amp * Math.sin(2 * Math::PI * f0 * n / fs)
|
161
|
+
* end
|
162
|
+
*
|
163
|
+
* OouraFFT.ddct(Array.new(8){|n| sinewave(0.25, 250.0, 8000, n)})
|
164
|
+
* #=> [0.6284174365157309,
|
165
|
+
* #=> -0.6284174365157309,
|
166
|
+
* #=> 0.18707572033318604,
|
167
|
+
* #=> -0.18707572033318612,
|
168
|
+
* #=> 0.08352232973991239,
|
169
|
+
* #=> -0.08352232973991236,
|
170
|
+
* #=> 0.02486404592245728,
|
171
|
+
* #=> -0.024864045922457167]
|
172
|
+
*/
|
173
|
+
static VALUE
|
174
|
+
fft_ddct(int argc, VALUE *argv, VALUE unused_obj)
|
175
|
+
{
|
176
|
+
return fft_callback(argc, argv, fft_ddct_inline);
|
177
|
+
}
|
178
|
+
|
179
|
+
|
180
|
+
#include "internal/solver/ooura_fft/ddst.h" // fft_ddst_inline()
|
181
|
+
/*
|
182
|
+
* Document-method: ddst
|
183
|
+
*
|
184
|
+
* call-seq:
|
185
|
+
* OouraFFT.ddst(ary) -> [*Float]
|
186
|
+
* OouraFFT.ddst(ary, inversion: true) -> [*Float]
|
187
|
+
*
|
188
|
+
* Perform FFT with the first argument +ary+ as a numerical sequence.<br>
|
189
|
+
* If the keyword argument +inversion+ is +true+, perform an inverse FFT.
|
190
|
+
*
|
191
|
+
* [Function type] Discrete Sine Transform
|
192
|
+
* [Definition]
|
193
|
+
* case1:: IDST (excluding scale)
|
194
|
+
* :: <tt>S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n</tt>
|
195
|
+
* case2:: DST
|
196
|
+
* :: <tt>S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n</tt>
|
197
|
+
* [+ary+ sequence type] All +Float+
|
198
|
+
* [Array size requirement] n >= 2, n = power of 2
|
199
|
+
*
|
200
|
+
* def sinewave(amp, f0, fs, n)
|
201
|
+
* amp * Math.sin(2 * Math::PI * f0 * n / fs)
|
202
|
+
* end
|
203
|
+
*
|
204
|
+
* OouraFFT.ddst(Array.new(8){|n| sinewave(0.25, 250.0, 8000, n)})
|
205
|
+
* #=> [0.875,
|
206
|
+
* #=> 0.12500000000000003,
|
207
|
+
* #=> -0.12499999999999997,
|
208
|
+
* #=> 0.125,
|
209
|
+
* #=> -0.125,
|
210
|
+
* #=> 0.12500000000000006,
|
211
|
+
* #=> -0.12499999999999994,
|
212
|
+
* #=> 0.12499999999999994]
|
213
|
+
|
214
|
+
*/
|
215
|
+
static VALUE
|
216
|
+
fft_ddst(int argc, VALUE *argv, VALUE unused_obj)
|
217
|
+
{
|
218
|
+
return fft_callback(argc, argv, fft_ddst_inline);
|
219
|
+
}
|
220
|
+
|
221
|
+
|
222
|
+
#include "internal/solver/ooura_fft/dfct.h" // fft_dfct_inline()
|
223
|
+
/*
|
224
|
+
* Document-method: dfct
|
225
|
+
*
|
226
|
+
* call-seq:
|
227
|
+
* OouraFFT.dfct(ary) -> [*Float]
|
228
|
+
* OouraFFT.dfct(ary, inversion: true) -> [*Float]
|
229
|
+
*
|
230
|
+
* Perform FFT with the first argument +ary+ as a numerical sequence.<br>
|
231
|
+
* If the keyword argument +inversion+ is +true+, perform an inverse FFT.
|
232
|
+
*
|
233
|
+
* [Function type] Cosine Transform of RDFT (Real Symmetric DFT)
|
234
|
+
* [Definition] <tt>C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n</tt>
|
235
|
+
* [+ary+ sequence type] All +Float+
|
236
|
+
* [Array size requirement] n >= 2, n = power of 2
|
237
|
+
*
|
238
|
+
* def sinewave(amp, f0, fs, n)
|
239
|
+
* amp * Math.sin(2 * Math::PI * f0 * n / fs)
|
240
|
+
* end
|
241
|
+
*
|
242
|
+
* OouraFFT.dfct(Array.new(8){|n| sinewave(0.25, 250.0, 8000, n)})
|
243
|
+
* #=> [1.1441462984511075,
|
244
|
+
* #=> -0.30353826116690874,
|
245
|
+
* #=> -0.21410561232180816,
|
246
|
+
* #=> 0.08422719461241164,
|
247
|
+
* #=> -0.14986404592245728,
|
248
|
+
* #=> 0.10711452157013322,
|
249
|
+
* #=> -0.13944777827146557,
|
250
|
+
* #=> 0.11219654498436385]
|
251
|
+
*/
|
252
|
+
static VALUE
|
253
|
+
fft_dfct(int argc, VALUE *argv, VALUE unused_obj)
|
254
|
+
{
|
255
|
+
return fft_callback(argc, argv, fft_dfct_inline);
|
256
|
+
}
|
257
|
+
|
258
|
+
|
259
|
+
#include "internal/solver/ooura_fft/dfst.h" // fft_dfst_inline()
|
260
|
+
/*
|
261
|
+
* Document-method: dfst
|
262
|
+
*
|
263
|
+
* call-seq:
|
264
|
+
* OouraFFT.dfst(ary) -> [*Float]
|
265
|
+
* OouraFFT.dfst(ary, inversion: true) -> [*Float]
|
266
|
+
*
|
267
|
+
* Perform FFT with the first argument +ary+ as a numerical sequence.<br>
|
268
|
+
* If the keyword argument +inversion+ is +true+, perform an inverse FFT.
|
269
|
+
*
|
270
|
+
* [Function type] Sine Transform of RDFT (Real Anti-symmetric DFT)
|
271
|
+
* [Definition] <tt>S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0<k<n</tt>
|
272
|
+
* [+ary+ sequence type] All +Float+
|
273
|
+
* [Array size requirement] n >= 2, n = power of 2
|
274
|
+
*
|
275
|
+
* def sinewave(amp, f0, fs, n)
|
276
|
+
* amp * Math.sin(2 * Math::PI * f0 * n / fs)
|
277
|
+
* end
|
278
|
+
*
|
279
|
+
* OouraFFT.dfst(Array.new(8){|n| sinewave(0.25, 250.0, 8000, n)})
|
280
|
+
* #=> [0.0,
|
281
|
+
* #=> 0.8406080372841989,
|
282
|
+
* #=> -0.3229641637954819,
|
283
|
+
* #=> 0.19308574608608534,
|
284
|
+
* #=> -0.12744889477603982,
|
285
|
+
* #=> 0.08469937042371564,
|
286
|
+
* #=> -0.05236611372238342,
|
287
|
+
* #=> 0.025114880435281595]
|
288
|
+
*/
|
289
|
+
static VALUE
|
290
|
+
fft_dfst(int argc, VALUE *argv, VALUE unused_obj)
|
291
|
+
{
|
292
|
+
return fft_callback(argc, argv, fft_dfst_inline);
|
293
|
+
|
294
|
+
}
|
295
|
+
|
296
|
+
static void
|
297
|
+
InitVM_FFTMain(void)
|
298
|
+
{
|
299
|
+
rb_define_module_function(rb_mOouraFFT, "cdft", fft_cdft, -1);
|
300
|
+
rb_define_module_function(rb_mOouraFFT, "rdft", fft_rdft, -1);
|
301
|
+
rb_define_module_function(rb_mOouraFFT, "ddct", fft_ddct, -1);
|
302
|
+
rb_define_module_function(rb_mOouraFFT, "ddst", fft_ddst, -1);
|
303
|
+
rb_define_module_function(rb_mOouraFFT, "dfct", fft_dfct, -1);
|
304
|
+
rb_define_module_function(rb_mOouraFFT, "dfst", fft_dfst, -1);
|
305
|
+
/* The using thread model name. Supports in Windows and POSIX. */
|
306
|
+
rb_define_const(rb_mOouraFFT, "USING_THREAD", rb_str_new_cstr((const char *)USING_THREAD));
|
307
|
+
}
|
@@ -0,0 +1,17 @@
|
|
1
|
+
#ifndef INTERNAL_SETTING_OOURAFFT_H
|
2
|
+
#define INTERNAL_SETTING_OOURAFFT_H
|
3
|
+
|
4
|
+
// Ooura's FFT Thread Use Setting
|
5
|
+
#if defined(HAVE_CREATETHREAD) && \
|
6
|
+
defined(HAVE_WAITFORSINGLEOBJECT) && \
|
7
|
+
defined(HAVE_CLOSEHANDLE)
|
8
|
+
# define USE_CDFT_WINTHREADS
|
9
|
+
# define USING_THREAD "Windows"
|
10
|
+
#elif defined(HAVE_PTHREAD_CREATE) && defined(HAVE_PTHREAD_JOIN)
|
11
|
+
# define USE_CDFT_PTHREADS
|
12
|
+
# define USING_THREAD "POSIX"
|
13
|
+
#else
|
14
|
+
# define USING_THREAD NULL
|
15
|
+
#endif
|
16
|
+
|
17
|
+
#endif /* INTERNAL_SETTING_OOURAFFT_H */
|
@@ -0,0 +1,52 @@
|
|
1
|
+
#ifndef INTERNAL_SOLVER_FFT_CDFT_H
|
2
|
+
#define INTERNAL_SOLVER_FFT_CDFT_H
|
3
|
+
|
4
|
+
static inline VALUE
|
5
|
+
fft_cdft_inline(VALUE ary, int invertible)
|
6
|
+
{
|
7
|
+
VALUE retval;
|
8
|
+
long sz = RARRAY_LEN(ary);
|
9
|
+
int *ip;
|
10
|
+
double *a, *w;
|
11
|
+
|
12
|
+
if ((INT_MAX / 2) < sz)
|
13
|
+
rb_raise(rb_eRangeError, "biggest array size");
|
14
|
+
else if (sz < 1)
|
15
|
+
rb_raise(rb_eRangeError, "unavailable array size (n >= 1, was %ld)", sz);
|
16
|
+
else if (!ispow2l(sz))
|
17
|
+
rb_raise(rb_eRangeError, "size must be 2^m");
|
18
|
+
|
19
|
+
a = ALLOC_N(double, sz*2);
|
20
|
+
ip = ALLOC_N(int, (int)(2+sqrt(sz)));
|
21
|
+
w = ALLOC_N(double, sz/2);
|
22
|
+
|
23
|
+
for (volatile long i = 0; i < sz; i++)
|
24
|
+
{
|
25
|
+
VALUE elem = rb_ary_entry(ary, i);
|
26
|
+
if (TYPE(elem) != T_COMPLEX)
|
27
|
+
elem = rb_Complex1(elem);
|
28
|
+
const double real = NUM2DBL(rb_complex_real(elem));
|
29
|
+
const double imag = NUM2DBL(rb_complex_imag(elem));
|
30
|
+
a[2*i] = real;
|
31
|
+
a[2*i+1] = imag;
|
32
|
+
}
|
33
|
+
|
34
|
+
ip[0] = 0;
|
35
|
+
|
36
|
+
cdft(2*sz, invertible, a, ip, w);
|
37
|
+
|
38
|
+
retval = rb_ary_new2(sz);
|
39
|
+
|
40
|
+
for (volatile long i = 0; i < sz; i++)
|
41
|
+
{
|
42
|
+
rb_ary_store(retval, i, rb_dbl_complex_new(a[2*i], a[2*i+1]));
|
43
|
+
}
|
44
|
+
|
45
|
+
xfree(a);
|
46
|
+
xfree(ip);
|
47
|
+
xfree(w);
|
48
|
+
|
49
|
+
return retval;
|
50
|
+
}
|
51
|
+
|
52
|
+
#endif /* INTERNAL_SOLVER_FFT_CDFT */
|
@@ -0,0 +1,47 @@
|
|
1
|
+
#ifndef INTERNAL_SOLVER_FFT_DDCT_H
|
2
|
+
#define INTERNAL_SOLVER_FFT_DDCT_H
|
3
|
+
|
4
|
+
static inline VALUE
|
5
|
+
fft_ddct_inline(VALUE ary, int invertible)
|
6
|
+
{
|
7
|
+
VALUE retval;
|
8
|
+
long sz = RARRAY_LEN(ary);
|
9
|
+
int *ip;
|
10
|
+
double *a, *w;
|
11
|
+
|
12
|
+
if (INT_MAX < sz)
|
13
|
+
rb_raise(rb_eRangeError, "biggest array size");
|
14
|
+
else if (sz < 2)
|
15
|
+
rb_raise(rb_eRangeError, "unavailable array size (n >= 2, was %ld)", sz);
|
16
|
+
else if (!ispow2l(sz))
|
17
|
+
rb_raise(rb_eRangeError, "size must be 2^m");
|
18
|
+
|
19
|
+
a = ALLOC_N(double, sz);
|
20
|
+
ip = ALLOC_N(int, (int)(2+sqrt(sz/2)));
|
21
|
+
w = ALLOC_N(double, sz*5/4);
|
22
|
+
|
23
|
+
for (volatile long i = 0; i < sz; i++)
|
24
|
+
{
|
25
|
+
VALUE elem = rb_ary_entry(ary, i);
|
26
|
+
a[i] = NUM2DBL(elem);
|
27
|
+
}
|
28
|
+
|
29
|
+
ip[0] = 0;
|
30
|
+
|
31
|
+
ddct(sz, invertible, a, ip, w);
|
32
|
+
|
33
|
+
retval = rb_ary_new2(sz);
|
34
|
+
|
35
|
+
for (volatile long i = 0; i < sz; i++)
|
36
|
+
{
|
37
|
+
rb_ary_store(retval, i, DBL2NUM(a[i]));
|
38
|
+
}
|
39
|
+
|
40
|
+
xfree(a);
|
41
|
+
xfree(ip);
|
42
|
+
xfree(w);
|
43
|
+
|
44
|
+
return retval;
|
45
|
+
}
|
46
|
+
|
47
|
+
#endif /* INTERNAL_SOLVER_FFT_DDCT */
|
@@ -0,0 +1,47 @@
|
|
1
|
+
#ifndef INTERNAL_SOLVER_FFT_DDST_H
|
2
|
+
#define INTERNAL_SOLVER_FFT_DDST_H
|
3
|
+
|
4
|
+
static inline VALUE
|
5
|
+
fft_ddst_inline(VALUE ary, int invertible)
|
6
|
+
{
|
7
|
+
VALUE retval;
|
8
|
+
long sz = RARRAY_LEN(ary);
|
9
|
+
int *ip;
|
10
|
+
double *a, *w;
|
11
|
+
|
12
|
+
if (INT_MAX < sz)
|
13
|
+
rb_raise(rb_eRangeError, "biggest array size");
|
14
|
+
else if (sz < 2)
|
15
|
+
rb_raise(rb_eRangeError, "unavailable array size (n >= 2, was %ld)", sz);
|
16
|
+
else if (!ispow2l(sz))
|
17
|
+
rb_raise(rb_eRangeError, "size must be 2^m");
|
18
|
+
|
19
|
+
a = ALLOC_N(double, sz);
|
20
|
+
ip = ALLOC_N(int, (int)(2+sqrt(sz/2)));
|
21
|
+
w = ALLOC_N(double, sz*5/4);
|
22
|
+
|
23
|
+
for (volatile long i = 0; i < sz; i++)
|
24
|
+
{
|
25
|
+
VALUE elem = rb_ary_entry(ary, i);
|
26
|
+
a[i] = NUM2DBL(elem);
|
27
|
+
}
|
28
|
+
|
29
|
+
ip[0] = 0;
|
30
|
+
|
31
|
+
ddst(sz, invertible, a, ip, w);
|
32
|
+
|
33
|
+
retval = rb_ary_new2(sz);
|
34
|
+
|
35
|
+
for (volatile long i = 0; i < sz; i++)
|
36
|
+
{
|
37
|
+
rb_ary_store(retval, i, DBL2NUM(a[i]));
|
38
|
+
}
|
39
|
+
|
40
|
+
xfree(a);
|
41
|
+
xfree(ip);
|
42
|
+
xfree(w);
|
43
|
+
|
44
|
+
return retval;
|
45
|
+
}
|
46
|
+
|
47
|
+
#endif /* INTERNAL_SOLVER_FFT_DDST */
|
@@ -0,0 +1,55 @@
|
|
1
|
+
#ifndef INTERNAL_SOLVER_FFT_DFCT_H
|
2
|
+
#define INTERNAL_SOLVER_FFT_DFCT_H
|
3
|
+
|
4
|
+
static inline VALUE
|
5
|
+
fft_dfct_inline(VALUE ary, int invertible)
|
6
|
+
{
|
7
|
+
VALUE retval;
|
8
|
+
long n = RARRAY_LEN(ary), sz = n + 1;
|
9
|
+
int *ip;
|
10
|
+
double *a, *w, *t;
|
11
|
+
|
12
|
+
if (INT_MAX < n)
|
13
|
+
rb_raise(rb_eRangeError, "biggest array size");
|
14
|
+
else if (n < 2)
|
15
|
+
rb_raise(rb_eRangeError, "unavailable array size (n >= 2, was %ld)", n);
|
16
|
+
else if (!ispow2l(n))
|
17
|
+
rb_raise(rb_eRangeError, "size must be 2^m");
|
18
|
+
|
19
|
+
a = ALLOC_N(double, sz);
|
20
|
+
ip = ALLOC_N(int, (int)(2+sqrt(n/4)));
|
21
|
+
t = ALLOC_N(double, sz/2);
|
22
|
+
w = ALLOC_N(double, n*5/8);
|
23
|
+
|
24
|
+
for (volatile long i = 0; i < n; i++)
|
25
|
+
{
|
26
|
+
VALUE elem = rb_ary_entry(ary, i);
|
27
|
+
if (invertible == -1)
|
28
|
+
a[i] = NUM2DBL(elem) * 0.5;
|
29
|
+
else
|
30
|
+
a[i] = NUM2DBL(elem);
|
31
|
+
}
|
32
|
+
|
33
|
+
ip[0] = 0;
|
34
|
+
|
35
|
+
dfct(n, a, t, ip, w);
|
36
|
+
|
37
|
+
retval = rb_ary_new2(n);
|
38
|
+
|
39
|
+
for (volatile long i = 0; i < n; i++)
|
40
|
+
{
|
41
|
+
if (invertible == -1)
|
42
|
+
rb_ary_store(retval, i, DBL2NUM(a[i] * 2.0 / n));
|
43
|
+
else
|
44
|
+
rb_ary_store(retval, i, DBL2NUM(a[i]));
|
45
|
+
}
|
46
|
+
|
47
|
+
xfree(a);
|
48
|
+
xfree(ip);
|
49
|
+
xfree(t);
|
50
|
+
xfree(w);
|
51
|
+
|
52
|
+
return retval;
|
53
|
+
}
|
54
|
+
|
55
|
+
#endif /* INTERNAL_SOLVER_FFT_DFCT */
|
@@ -0,0 +1,52 @@
|
|
1
|
+
#ifndef INTERNAL_SOLVER_FFT_DFST_H
|
2
|
+
#define INTERNAL_SOLVER_FFT_DFST_H
|
3
|
+
|
4
|
+
static inline VALUE
|
5
|
+
fft_dfst_inline(VALUE ary, int invertible)
|
6
|
+
{
|
7
|
+
VALUE retval;
|
8
|
+
long n = RARRAY_LEN(ary);
|
9
|
+
int *ip;
|
10
|
+
double *a, *w, *t;
|
11
|
+
|
12
|
+
if (INT_MAX < n)
|
13
|
+
rb_raise(rb_eRangeError, "biggest array size");
|
14
|
+
else if (n < 2)
|
15
|
+
rb_raise(rb_eRangeError, "unavailable array size (n >= 2, was %ld)", n);
|
16
|
+
else if (!ispow2l(n))
|
17
|
+
rb_raise(rb_eRangeError, "size must be 2^m");
|
18
|
+
|
19
|
+
a = ALLOC_N(double, n);
|
20
|
+
ip = ALLOC_N(int, (int)(2+sqrt(n/4)));
|
21
|
+
t = ALLOC_N(double, n/2);
|
22
|
+
w = ALLOC_N(double, n*5/8);
|
23
|
+
|
24
|
+
for (volatile long i = 0; i < n; i++)
|
25
|
+
{
|
26
|
+
VALUE elem = rb_ary_entry(ary, i);
|
27
|
+
a[i] = NUM2DBL(elem);
|
28
|
+
}
|
29
|
+
|
30
|
+
ip[0] = 0;
|
31
|
+
|
32
|
+
dfst(n, a, t, ip, w);
|
33
|
+
|
34
|
+
retval = rb_ary_new2(n);
|
35
|
+
|
36
|
+
for (volatile long i = 0; i < n; i++)
|
37
|
+
{
|
38
|
+
if (invertible == -1)
|
39
|
+
rb_ary_store(retval, i, DBL2NUM(a[i] * 2.0 / n));
|
40
|
+
else
|
41
|
+
rb_ary_store(retval, i, DBL2NUM(a[i]));
|
42
|
+
}
|
43
|
+
|
44
|
+
xfree(a);
|
45
|
+
xfree(ip);
|
46
|
+
xfree(t);
|
47
|
+
xfree(w);
|
48
|
+
|
49
|
+
return retval;
|
50
|
+
}
|
51
|
+
|
52
|
+
#endif /* INTERNAL_SOLVER_FFT_DFST */
|
@@ -0,0 +1,47 @@
|
|
1
|
+
#ifndef INTERNAL_SOLVER_FFT_RDFT_H
|
2
|
+
#define INTERNAL_SOLVER_FFT_RDFT_H
|
3
|
+
|
4
|
+
static inline VALUE
|
5
|
+
fft_rdft_inline(VALUE ary, int invertible)
|
6
|
+
{
|
7
|
+
VALUE retval;
|
8
|
+
long sz = RARRAY_LEN(ary);
|
9
|
+
int *ip;
|
10
|
+
double *a, *w;
|
11
|
+
|
12
|
+
if (INT_MAX < sz)
|
13
|
+
rb_raise(rb_eRangeError, "biggest array size");
|
14
|
+
else if (sz < 2)
|
15
|
+
rb_raise(rb_eRangeError, "unavailable array size (n >= 2, was %ld)", sz);
|
16
|
+
else if (!ispow2l(sz))
|
17
|
+
rb_raise(rb_eRangeError, "size must be 2^m");
|
18
|
+
|
19
|
+
a = ALLOC_N(double, sz);
|
20
|
+
ip = ALLOC_N(int, (int)(2+sqrt(sz/2)));
|
21
|
+
w = ALLOC_N(double, sz/2);
|
22
|
+
|
23
|
+
for (volatile long i = 0; i < sz; i++)
|
24
|
+
{
|
25
|
+
VALUE elem = rb_ary_entry(ary, i);
|
26
|
+
a[i] = NUM2DBL(elem);
|
27
|
+
}
|
28
|
+
|
29
|
+
ip[0] = 0;
|
30
|
+
|
31
|
+
rdft(sz, invertible, a, ip, w);
|
32
|
+
|
33
|
+
retval = rb_ary_new2(sz);
|
34
|
+
|
35
|
+
for (volatile long i = 0; i < sz; i++)
|
36
|
+
{
|
37
|
+
rb_ary_store(retval, i, DBL2NUM(a[i]));
|
38
|
+
}
|
39
|
+
|
40
|
+
xfree(a);
|
41
|
+
xfree(ip);
|
42
|
+
xfree(w);
|
43
|
+
|
44
|
+
return retval;
|
45
|
+
}
|
46
|
+
|
47
|
+
#endif /* INTERNAL_SOLVER_FFT_RDFT */
|
@@ -0,0 +1,21 @@
|
|
1
|
+
#ifndef FFT_MISSING_H
|
2
|
+
#define FFT_MISSING_H
|
3
|
+
|
4
|
+
#if defined(__cplusplus)
|
5
|
+
extern "C" {
|
6
|
+
#endif
|
7
|
+
|
8
|
+
// C2X newer library
|
9
|
+
#ifdef HAVE_STDBIT_H
|
10
|
+
# include <stdbit.h>
|
11
|
+
#endif
|
12
|
+
|
13
|
+
#ifndef HAVE_ISPOW2L
|
14
|
+
extern bool ispow2l(long);
|
15
|
+
#endif
|
16
|
+
|
17
|
+
#if defined(__cplusplus)
|
18
|
+
}
|
19
|
+
#endif
|
20
|
+
|
21
|
+
#endif /* FFT_MISSING_H */
|
@@ -0,0 +1,13 @@
|
|
1
|
+
#ifndef RB_OOURAFFT_API_H_INCLUDED
|
2
|
+
#define RB_OOURAFFT_API_H_INCLUDED
|
3
|
+
|
4
|
+
#include <ruby/internal/value.h> // VALUE
|
5
|
+
|
6
|
+
VALUE rb_oourafft_cdft(VALUE, int);
|
7
|
+
VALUE rb_oourafft_rdft(VALUE, int);
|
8
|
+
VALUE rb_oourafft_ddct(VALUE, int);
|
9
|
+
VALUE rb_oourafft_ddst(VALUE, int);
|
10
|
+
VALUE rb_oourafft_dfct(VALUE, int);
|
11
|
+
VALUE rb_oourafft_dfst(VALUE, int);
|
12
|
+
|
13
|
+
#endif /* RB_OOURAFFT_API_H_INCLUDED */
|
@@ -0,0 +1,18 @@
|
|
1
|
+
#ifndef RUBY_EXT_EXTERN_H_INCLUDED
|
2
|
+
#define RUBY_EXT_EXTERN_H_INCLUDED
|
3
|
+
|
4
|
+
#if defined(__cplusplus)
|
5
|
+
extern "C" {
|
6
|
+
#endif
|
7
|
+
|
8
|
+
#ifdef USE_GLOBAL_VARIABLE
|
9
|
+
# define RUBY_EXT_EXTERN
|
10
|
+
#else
|
11
|
+
# define RUBY_EXT_EXTERN extern
|
12
|
+
#endif
|
13
|
+
|
14
|
+
#if defined(__cplusplus)
|
15
|
+
}
|
16
|
+
#endif
|
17
|
+
|
18
|
+
#endif /* RUBY_EXT_EXTERN_H_INCLUDED */
|