onnxruntime 0.9.2-x86_64-darwin → 0.9.4-x86_64-darwin
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/README.md +2 -0
- data/lib/onnxruntime/ffi.rb +6 -2
- data/lib/onnxruntime/inference_session.rb +31 -307
- data/lib/onnxruntime/ort_value.rb +278 -0
- data/lib/onnxruntime/utils.rb +131 -5
- data/lib/onnxruntime/version.rb +1 -1
- data/lib/onnxruntime.rb +1 -0
- data/vendor/ThirdPartyNotices.txt +35 -461
- data/vendor/libonnxruntime.dylib +0 -0
- metadata +4 -7
@@ -0,0 +1,278 @@
|
|
1
|
+
module OnnxRuntime
|
2
|
+
class OrtValue
|
3
|
+
def initialize(ptr, ref = nil)
|
4
|
+
@ptr = ptr.read_pointer
|
5
|
+
@ref = ref # keep reference to data
|
6
|
+
ObjectSpace.define_finalizer(@ptr, self.class.finalize(@ptr.to_i))
|
7
|
+
end
|
8
|
+
|
9
|
+
def self.from_numo(numo_obj)
|
10
|
+
element_type = numo_obj.is_a?(Numo::Bit) ? :bool : Utils.numo_types.invert[numo_obj.class]
|
11
|
+
Utils.unsupported_type("Numo", numo_obj.class.name) unless element_type
|
12
|
+
|
13
|
+
from_array(numo_obj, element_type: element_type)
|
14
|
+
end
|
15
|
+
|
16
|
+
def self.from_array(input, element_type:)
|
17
|
+
type_enum = FFI::TensorElementDataType[element_type]
|
18
|
+
Utils.unsupported_type("element", element_type) unless type_enum
|
19
|
+
|
20
|
+
input = input.to_a unless input.is_a?(Array) || Utils.numo_array?(input)
|
21
|
+
|
22
|
+
shape = Utils.input_shape(input)
|
23
|
+
input_node_dims = ::FFI::MemoryPointer.new(:int64, shape.size)
|
24
|
+
input_node_dims.write_array_of_int64(shape)
|
25
|
+
|
26
|
+
ptr = ::FFI::MemoryPointer.new(:pointer)
|
27
|
+
if element_type == :string
|
28
|
+
# keep reference to _str_ptrs until FillStringTensor call
|
29
|
+
input_tensor_values, _str_ptrs = create_input_strings(input)
|
30
|
+
Utils.check_status FFI.api[:CreateTensorAsOrtValue].call(Utils.allocator.read_pointer, input_node_dims, shape.size, type_enum, ptr)
|
31
|
+
Utils.check_status FFI.api[:FillStringTensor].call(ptr.read_pointer, input_tensor_values, input_tensor_values.size / input_tensor_values.type_size)
|
32
|
+
else
|
33
|
+
input_tensor_values = create_input_data(input, element_type)
|
34
|
+
Utils.check_status FFI.api[:CreateTensorWithDataAsOrtValue].call(allocator_info.read_pointer, input_tensor_values, input_tensor_values.size, input_node_dims, shape.size, type_enum, ptr)
|
35
|
+
end
|
36
|
+
|
37
|
+
new(ptr, input_tensor_values)
|
38
|
+
end
|
39
|
+
|
40
|
+
def self.from_shape_and_type(shape, element_type)
|
41
|
+
type_enum = FFI::TensorElementDataType[element_type]
|
42
|
+
Utils.unsupported_type("element", element_type) unless type_enum
|
43
|
+
|
44
|
+
input_node_dims = ::FFI::MemoryPointer.new(:int64, shape.size)
|
45
|
+
input_node_dims.write_array_of_int64(shape)
|
46
|
+
|
47
|
+
ptr = ::FFI::MemoryPointer.new(:pointer)
|
48
|
+
Utils.check_status FFI.api[:CreateTensorAsOrtValue].call(Utils.allocator.read_pointer, input_node_dims, shape.size, type_enum, ptr)
|
49
|
+
|
50
|
+
new(ptr)
|
51
|
+
end
|
52
|
+
|
53
|
+
def self.create_input_data(input, tensor_type)
|
54
|
+
if Utils.numo_array?(input)
|
55
|
+
input.cast_to(Utils.numo_types[tensor_type]).to_binary
|
56
|
+
else
|
57
|
+
flat_input = input.flatten.to_a
|
58
|
+
input_tensor_values = ::FFI::MemoryPointer.new(tensor_type, flat_input.size)
|
59
|
+
if tensor_type == :bool
|
60
|
+
input_tensor_values.write_array_of_uint8(flat_input.map { |v| v ? 1 : 0 })
|
61
|
+
else
|
62
|
+
input_tensor_values.send("write_array_of_#{tensor_type}", flat_input)
|
63
|
+
end
|
64
|
+
input_tensor_values
|
65
|
+
end
|
66
|
+
end
|
67
|
+
private_class_method :create_input_data
|
68
|
+
|
69
|
+
def self.create_input_strings(input)
|
70
|
+
str_ptrs =
|
71
|
+
if Utils.numo_array?(input)
|
72
|
+
input.size.times.map { |i| ::FFI::MemoryPointer.from_string(input[i]) }
|
73
|
+
else
|
74
|
+
input.flatten.map { |v| ::FFI::MemoryPointer.from_string(v) }
|
75
|
+
end
|
76
|
+
|
77
|
+
input_tensor_values = ::FFI::MemoryPointer.new(:pointer, str_ptrs.size)
|
78
|
+
input_tensor_values.write_array_of_pointer(str_ptrs)
|
79
|
+
[input_tensor_values, str_ptrs]
|
80
|
+
end
|
81
|
+
private_class_method :create_input_strings
|
82
|
+
|
83
|
+
def tensor?
|
84
|
+
FFI::OnnxType[value_type] == :tensor
|
85
|
+
end
|
86
|
+
|
87
|
+
def data_type
|
88
|
+
@data_type ||= begin
|
89
|
+
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
90
|
+
Utils.check_status FFI.api[:GetTypeInfo].call(@ptr, typeinfo)
|
91
|
+
Utils.node_info(typeinfo)[:type]
|
92
|
+
end
|
93
|
+
end
|
94
|
+
|
95
|
+
def element_type
|
96
|
+
FFI::TensorElementDataType[type_and_shape_info[0]]
|
97
|
+
end
|
98
|
+
|
99
|
+
def shape
|
100
|
+
type_and_shape_info[1]
|
101
|
+
end
|
102
|
+
|
103
|
+
def device_name
|
104
|
+
"cpu"
|
105
|
+
end
|
106
|
+
|
107
|
+
def numo
|
108
|
+
create_from_onnx_value(@ptr, :numo)
|
109
|
+
end
|
110
|
+
|
111
|
+
def to_ruby
|
112
|
+
create_from_onnx_value(@ptr, :ruby)
|
113
|
+
end
|
114
|
+
|
115
|
+
def to_ptr
|
116
|
+
@ptr
|
117
|
+
end
|
118
|
+
|
119
|
+
def data_ptr
|
120
|
+
tensor_data = ::FFI::MemoryPointer.new(:pointer)
|
121
|
+
FFI.api[:GetTensorMutableData].call(@ptr, tensor_data)
|
122
|
+
tensor_data.read_pointer
|
123
|
+
end
|
124
|
+
|
125
|
+
private
|
126
|
+
|
127
|
+
def value_type
|
128
|
+
@value_type ||= begin
|
129
|
+
out_type = ::FFI::MemoryPointer.new(:int)
|
130
|
+
Utils.check_status FFI.api[:GetValueType].call(@ptr, out_type)
|
131
|
+
out_type.read_int
|
132
|
+
end
|
133
|
+
end
|
134
|
+
|
135
|
+
def type_and_shape_info
|
136
|
+
@type_and_shape_info ||= begin
|
137
|
+
begin
|
138
|
+
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
139
|
+
Utils.check_status FFI.api[:GetTensorTypeAndShape].call(@ptr, typeinfo)
|
140
|
+
Utils.tensor_type_and_shape(typeinfo)
|
141
|
+
ensure
|
142
|
+
Utils.release :TensorTypeAndShapeInfo, typeinfo
|
143
|
+
end
|
144
|
+
end
|
145
|
+
end
|
146
|
+
|
147
|
+
def create_from_onnx_value(out_ptr, output_type)
|
148
|
+
out_type = ::FFI::MemoryPointer.new(:int)
|
149
|
+
Utils.check_status FFI.api[:GetValueType].call(out_ptr, out_type)
|
150
|
+
type = FFI::OnnxType[out_type.read_int]
|
151
|
+
|
152
|
+
case type
|
153
|
+
when :tensor
|
154
|
+
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
155
|
+
Utils.check_status FFI.api[:GetTensorTypeAndShape].call(out_ptr, typeinfo)
|
156
|
+
|
157
|
+
type, shape = Utils.tensor_type_and_shape(typeinfo)
|
158
|
+
|
159
|
+
tensor_data = ::FFI::MemoryPointer.new(:pointer)
|
160
|
+
Utils.check_status FFI.api[:GetTensorMutableData].call(out_ptr, tensor_data)
|
161
|
+
|
162
|
+
out_size = ::FFI::MemoryPointer.new(:size_t)
|
163
|
+
Utils.check_status FFI.api[:GetTensorShapeElementCount].call(typeinfo.read_pointer, out_size)
|
164
|
+
output_tensor_size = out_size.read(:size_t)
|
165
|
+
|
166
|
+
Utils.release :TensorTypeAndShapeInfo, typeinfo
|
167
|
+
|
168
|
+
# TODO support more types
|
169
|
+
type = FFI::TensorElementDataType[type]
|
170
|
+
|
171
|
+
case output_type
|
172
|
+
when :numo
|
173
|
+
case type
|
174
|
+
when :string
|
175
|
+
result = Numo::RObject.new(shape)
|
176
|
+
result.allocate
|
177
|
+
create_strings_from_onnx_value(out_ptr, output_tensor_size, result)
|
178
|
+
else
|
179
|
+
numo_type = Utils.numo_types[type]
|
180
|
+
Utils.unsupported_type("element", type) unless numo_type
|
181
|
+
numo_type.from_binary(tensor_data.read_pointer.read_bytes(output_tensor_size * numo_type::ELEMENT_BYTE_SIZE), shape)
|
182
|
+
end
|
183
|
+
when :ruby
|
184
|
+
arr =
|
185
|
+
case type
|
186
|
+
when :float, :uint8, :int8, :uint16, :int16, :int32, :int64, :double, :uint32, :uint64
|
187
|
+
tensor_data.read_pointer.send("read_array_of_#{type}", output_tensor_size)
|
188
|
+
when :bool
|
189
|
+
tensor_data.read_pointer.read_array_of_uint8(output_tensor_size).map { |v| v == 1 }
|
190
|
+
when :string
|
191
|
+
create_strings_from_onnx_value(out_ptr, output_tensor_size, [])
|
192
|
+
else
|
193
|
+
Utils.unsupported_type("element", type)
|
194
|
+
end
|
195
|
+
|
196
|
+
reshape(arr, shape)
|
197
|
+
else
|
198
|
+
raise ArgumentError, "Invalid output type: #{output_type}"
|
199
|
+
end
|
200
|
+
when :sequence
|
201
|
+
out = ::FFI::MemoryPointer.new(:size_t)
|
202
|
+
Utils.check_status FFI.api[:GetValueCount].call(out_ptr, out)
|
203
|
+
|
204
|
+
out.read(:size_t).times.map do |i|
|
205
|
+
seq = ::FFI::MemoryPointer.new(:pointer)
|
206
|
+
Utils.check_status FFI.api[:GetValue].call(out_ptr, i, Utils.allocator.read_pointer, seq)
|
207
|
+
create_from_onnx_value(seq.read_pointer, output_type)
|
208
|
+
end
|
209
|
+
when :map
|
210
|
+
type_shape = ::FFI::MemoryPointer.new(:pointer)
|
211
|
+
map_keys = ::FFI::MemoryPointer.new(:pointer)
|
212
|
+
map_values = ::FFI::MemoryPointer.new(:pointer)
|
213
|
+
elem_type = ::FFI::MemoryPointer.new(:int)
|
214
|
+
|
215
|
+
Utils.check_status FFI.api[:GetValue].call(out_ptr, 0, Utils.allocator.read_pointer, map_keys)
|
216
|
+
Utils.check_status FFI.api[:GetValue].call(out_ptr, 1, Utils.allocator.read_pointer, map_values)
|
217
|
+
Utils.check_status FFI.api[:GetTensorTypeAndShape].call(map_keys.read_pointer, type_shape)
|
218
|
+
Utils.check_status FFI.api[:GetTensorElementType].call(type_shape.read_pointer, elem_type)
|
219
|
+
Utils.release :TensorTypeAndShapeInfo, type_shape
|
220
|
+
|
221
|
+
# TODO support more types
|
222
|
+
elem_type = FFI::TensorElementDataType[elem_type.read_int]
|
223
|
+
case elem_type
|
224
|
+
when :int64
|
225
|
+
ret = {}
|
226
|
+
keys = create_from_onnx_value(map_keys.read_pointer, output_type)
|
227
|
+
values = create_from_onnx_value(map_values.read_pointer, output_type)
|
228
|
+
keys.zip(values).each do |k, v|
|
229
|
+
ret[k] = v
|
230
|
+
end
|
231
|
+
ret
|
232
|
+
else
|
233
|
+
Utils.unsupported_type("element", elem_type)
|
234
|
+
end
|
235
|
+
else
|
236
|
+
Utils.unsupported_type("ONNX", type)
|
237
|
+
end
|
238
|
+
end
|
239
|
+
|
240
|
+
def create_strings_from_onnx_value(out_ptr, output_tensor_size, result)
|
241
|
+
len = ::FFI::MemoryPointer.new(:size_t)
|
242
|
+
Utils.check_status FFI.api[:GetStringTensorDataLength].call(out_ptr, len)
|
243
|
+
|
244
|
+
s_len = len.read(:size_t)
|
245
|
+
s = ::FFI::MemoryPointer.new(:uchar, s_len)
|
246
|
+
offsets = ::FFI::MemoryPointer.new(:size_t, output_tensor_size)
|
247
|
+
Utils.check_status FFI.api[:GetStringTensorContent].call(out_ptr, s, s_len, offsets, output_tensor_size)
|
248
|
+
|
249
|
+
offsets = output_tensor_size.times.map { |i| offsets[i].read(:size_t) }
|
250
|
+
offsets << s_len
|
251
|
+
output_tensor_size.times do |i|
|
252
|
+
result[i] = s.get_bytes(offsets[i], offsets[i + 1] - offsets[i])
|
253
|
+
end
|
254
|
+
result
|
255
|
+
end
|
256
|
+
|
257
|
+
def reshape(arr, dims)
|
258
|
+
arr = arr.flatten
|
259
|
+
dims[1..-1].reverse_each do |dim|
|
260
|
+
arr = arr.each_slice(dim)
|
261
|
+
end
|
262
|
+
arr.to_a
|
263
|
+
end
|
264
|
+
|
265
|
+
def self.finalize(addr)
|
266
|
+
# must use proc instead of stabby lambda
|
267
|
+
proc { FFI.api[:ReleaseValue].call(::FFI::Pointer.new(:pointer, addr)) }
|
268
|
+
end
|
269
|
+
|
270
|
+
def self.allocator_info
|
271
|
+
@allocator_info ||= begin
|
272
|
+
allocator_info = ::FFI::MemoryPointer.new(:pointer)
|
273
|
+
Utils.check_status FFI.api[:CreateCpuMemoryInfo].call(1, 0, allocator_info)
|
274
|
+
allocator_info
|
275
|
+
end
|
276
|
+
end
|
277
|
+
end
|
278
|
+
end
|
data/lib/onnxruntime/utils.rb
CHANGED
@@ -5,12 +5,138 @@ module OnnxRuntime
|
|
5
5
|
end
|
6
6
|
self.mutex = Mutex.new
|
7
7
|
|
8
|
-
def self.
|
9
|
-
|
10
|
-
|
11
|
-
|
8
|
+
def self.check_status(status)
|
9
|
+
unless status.null?
|
10
|
+
message = api[:GetErrorMessage].call(status).read_string
|
11
|
+
api[:ReleaseStatus].call(status)
|
12
|
+
raise Error, message
|
13
|
+
end
|
14
|
+
end
|
15
|
+
|
16
|
+
def self.api
|
17
|
+
FFI.api
|
18
|
+
end
|
19
|
+
|
20
|
+
def self.release(type, pointer)
|
21
|
+
FFI.api[:"Release#{type}"].call(pointer.read_pointer) if pointer && !pointer.null?
|
22
|
+
end
|
23
|
+
|
24
|
+
def self.unsupported_type(name, type)
|
25
|
+
raise Error, "Unsupported #{name} type: #{type}"
|
26
|
+
end
|
27
|
+
|
28
|
+
def self.tensor_type_and_shape(tensor_info)
|
29
|
+
type = ::FFI::MemoryPointer.new(:int)
|
30
|
+
check_status api[:GetTensorElementType].call(tensor_info.read_pointer, type)
|
31
|
+
|
32
|
+
num_dims_ptr = ::FFI::MemoryPointer.new(:size_t)
|
33
|
+
check_status api[:GetDimensionsCount].call(tensor_info.read_pointer, num_dims_ptr)
|
34
|
+
num_dims = num_dims_ptr.read(:size_t)
|
35
|
+
|
36
|
+
node_dims = ::FFI::MemoryPointer.new(:int64, num_dims)
|
37
|
+
check_status api[:GetDimensions].call(tensor_info.read_pointer, node_dims, num_dims)
|
38
|
+
dims = node_dims.read_array_of_int64(num_dims)
|
39
|
+
|
40
|
+
symbolic_dims = ::FFI::MemoryPointer.new(:pointer, num_dims)
|
41
|
+
check_status api[:GetSymbolicDimensions].call(tensor_info.read_pointer, symbolic_dims, num_dims)
|
42
|
+
named_dims = num_dims.times.map { |i| symbolic_dims[i].read_pointer.read_string }
|
43
|
+
dims = named_dims.zip(dims).map { |n, d| n.empty? ? d : n }
|
44
|
+
|
45
|
+
[type.read_int, dims]
|
46
|
+
end
|
47
|
+
|
48
|
+
def self.node_info(typeinfo)
|
49
|
+
onnx_type = ::FFI::MemoryPointer.new(:int)
|
50
|
+
check_status api[:GetOnnxTypeFromTypeInfo].call(typeinfo.read_pointer, onnx_type)
|
51
|
+
|
52
|
+
type = FFI::OnnxType[onnx_type.read_int]
|
53
|
+
case type
|
54
|
+
when :tensor
|
55
|
+
tensor_info = ::FFI::MemoryPointer.new(:pointer)
|
56
|
+
# don't free tensor_info
|
57
|
+
check_status api[:CastTypeInfoToTensorInfo].call(typeinfo.read_pointer, tensor_info)
|
58
|
+
|
59
|
+
type, shape = Utils.tensor_type_and_shape(tensor_info)
|
60
|
+
{
|
61
|
+
type: "tensor(#{FFI::TensorElementDataType[type]})",
|
62
|
+
shape: shape
|
63
|
+
}
|
64
|
+
when :sequence
|
65
|
+
sequence_type_info = ::FFI::MemoryPointer.new(:pointer)
|
66
|
+
check_status api[:CastTypeInfoToSequenceTypeInfo].call(typeinfo.read_pointer, sequence_type_info)
|
67
|
+
nested_type_info = ::FFI::MemoryPointer.new(:pointer)
|
68
|
+
check_status api[:GetSequenceElementType].call(sequence_type_info.read_pointer, nested_type_info)
|
69
|
+
v = node_info(nested_type_info)[:type]
|
70
|
+
|
71
|
+
{
|
72
|
+
type: "seq(#{v})",
|
73
|
+
shape: []
|
74
|
+
}
|
75
|
+
when :map
|
76
|
+
map_type_info = ::FFI::MemoryPointer.new(:pointer)
|
77
|
+
check_status api[:CastTypeInfoToMapTypeInfo].call(typeinfo.read_pointer, map_type_info)
|
78
|
+
|
79
|
+
# key
|
80
|
+
key_type = ::FFI::MemoryPointer.new(:int)
|
81
|
+
check_status api[:GetMapKeyType].call(map_type_info.read_pointer, key_type)
|
82
|
+
k = FFI::TensorElementDataType[key_type.read_int]
|
83
|
+
|
84
|
+
# value
|
85
|
+
value_type_info = ::FFI::MemoryPointer.new(:pointer)
|
86
|
+
check_status api[:GetMapValueType].call(map_type_info.read_pointer, value_type_info)
|
87
|
+
v = node_info(value_type_info)[:type]
|
88
|
+
|
89
|
+
{
|
90
|
+
type: "map(#{k},#{v})",
|
91
|
+
shape: []
|
92
|
+
}
|
93
|
+
else
|
94
|
+
Utils.unsupported_type("ONNX", type)
|
95
|
+
end
|
96
|
+
ensure
|
97
|
+
release :TypeInfo, typeinfo
|
98
|
+
end
|
99
|
+
|
100
|
+
def self.numo_array?(obj)
|
101
|
+
defined?(Numo::NArray) && obj.is_a?(Numo::NArray)
|
102
|
+
end
|
103
|
+
|
104
|
+
def self.numo_types
|
105
|
+
@numo_types ||= {
|
106
|
+
float: Numo::SFloat,
|
107
|
+
uint8: Numo::UInt8,
|
108
|
+
int8: Numo::Int8,
|
109
|
+
uint16: Numo::UInt16,
|
110
|
+
int16: Numo::Int16,
|
111
|
+
int32: Numo::Int32,
|
112
|
+
int64: Numo::Int64,
|
113
|
+
bool: Numo::UInt8,
|
114
|
+
double: Numo::DFloat,
|
115
|
+
uint32: Numo::UInt32,
|
116
|
+
uint64: Numo::UInt64
|
117
|
+
}
|
118
|
+
end
|
119
|
+
|
120
|
+
def self.input_shape(input)
|
121
|
+
if numo_array?(input)
|
122
|
+
input.shape
|
123
|
+
else
|
124
|
+
shape = []
|
125
|
+
s = input
|
126
|
+
while s.is_a?(Array)
|
127
|
+
shape << s.size
|
128
|
+
s = s.first
|
129
|
+
end
|
130
|
+
shape
|
131
|
+
end
|
132
|
+
end
|
133
|
+
|
134
|
+
def self.allocator
|
135
|
+
@allocator ||= begin
|
136
|
+
allocator = ::FFI::MemoryPointer.new(:pointer)
|
137
|
+
check_status api[:GetAllocatorWithDefaultOptions].call(allocator)
|
138
|
+
allocator
|
12
139
|
end
|
13
|
-
arr.to_a
|
14
140
|
end
|
15
141
|
end
|
16
142
|
end
|
data/lib/onnxruntime/version.rb
CHANGED
data/lib/onnxruntime.rb
CHANGED
@@ -5,6 +5,7 @@ require "ffi"
|
|
5
5
|
require_relative "onnxruntime/datasets"
|
6
6
|
require_relative "onnxruntime/inference_session"
|
7
7
|
require_relative "onnxruntime/model"
|
8
|
+
require_relative "onnxruntime/ort_value"
|
8
9
|
require_relative "onnxruntime/utils"
|
9
10
|
require_relative "onnxruntime/version"
|
10
11
|
|