onnxruntime 0.9.1-x86_64-linux → 0.9.3-x86_64-linux
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +11 -0
- data/README.md +12 -2
- data/lib/onnxruntime/ffi.rb +16 -2
- data/lib/onnxruntime/inference_session.rb +40 -305
- data/lib/onnxruntime/ort_value.rb +278 -0
- data/lib/onnxruntime/utils.rb +131 -5
- data/lib/onnxruntime/version.rb +1 -1
- data/lib/onnxruntime.rb +1 -0
- data/vendor/ThirdPartyNotices.txt +1 -1
- data/vendor/libonnxruntime.so +0 -0
- metadata +4 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: a569d35fb99b55ea5827b2ed431ae041f306a37e4379d29b71d2c46f94319c0d
|
4
|
+
data.tar.gz: 150d205dea67483dbe46f349c59796f0e3768b5bbbab59cad3687adf2151025b
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e91449cbfcb7b901bfc6e56f3f17bbb94115d742e9af47c13c56717273a09f9ad5b119507d7f1a6b3171955604a9c47bc6dc0c6563052229c4a149cf5d85b65d
|
7
|
+
data.tar.gz: 97719176a1d55f818b1c5dea42f75de59fdad552f12e5ae9c42659bcf10e9d563870b3df7f874634a2179aadf0910b8e1b4d7aa037fa7e70b584c9c1340f9a65
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,14 @@
|
|
1
|
+
## 0.9.3 (2024-11-01)
|
2
|
+
|
3
|
+
- Updated ONNX Runtime to 1.20.0
|
4
|
+
- Added experimental `OrtValue` class
|
5
|
+
- Added experimental `run_with_ort_values` method
|
6
|
+
|
7
|
+
## 0.9.2 (2024-09-04)
|
8
|
+
|
9
|
+
- Updated ONNX Runtime to 1.19.2
|
10
|
+
- Added support for CoreML
|
11
|
+
|
1
12
|
## 0.9.1 (2024-05-22)
|
2
13
|
|
3
14
|
- Updated ONNX Runtime to 1.18.0
|
data/README.md
CHANGED
@@ -4,7 +4,7 @@
|
|
4
4
|
|
5
5
|
Check out [an example](https://ankane.org/tensorflow-ruby)
|
6
6
|
|
7
|
-
[](https://github.com/ankane/onnxruntime-ruby/actions)
|
8
8
|
|
9
9
|
## Installation
|
10
10
|
|
@@ -108,7 +108,9 @@ OnnxRuntime::Datasets.example("sigmoid.onnx")
|
|
108
108
|
|
109
109
|
## GPU Support
|
110
110
|
|
111
|
-
|
111
|
+
### Linux and Windows
|
112
|
+
|
113
|
+
Download the appropriate [GPU release](https://github.com/microsoft/onnxruntime/releases) and set:
|
112
114
|
|
113
115
|
```ruby
|
114
116
|
OnnxRuntime.ffi_lib = "path/to/lib/libonnxruntime.so" # onnxruntime.dll for Windows
|
@@ -120,6 +122,14 @@ and use:
|
|
120
122
|
model = OnnxRuntime::Model.new("model.onnx", providers: ["CUDAExecutionProvider"])
|
121
123
|
```
|
122
124
|
|
125
|
+
### Mac
|
126
|
+
|
127
|
+
Use:
|
128
|
+
|
129
|
+
```ruby
|
130
|
+
model = OnnxRuntime::Model.new("model.onnx", providers: ["CoreMLExecutionProvider"])
|
131
|
+
```
|
132
|
+
|
123
133
|
## History
|
124
134
|
|
125
135
|
View the [changelog](https://github.com/ankane/onnxruntime-ruby/blob/master/CHANGELOG.md)
|
data/lib/onnxruntime/ffi.rb
CHANGED
@@ -11,7 +11,7 @@ module OnnxRuntime
|
|
11
11
|
|
12
12
|
# enums
|
13
13
|
TensorElementDataType = enum(:undefined, :float, :uint8, :int8, :uint16, :int16, :int32, :int64, :string, :bool, :float16, :double, :uint32, :uint64, :complex64, :complex128, :bfloat16)
|
14
|
-
OnnxType = enum(:unknown, :tensor, :sequence, :map, :opaque, :sparsetensor)
|
14
|
+
OnnxType = enum(:unknown, :tensor, :sequence, :map, :opaque, :sparsetensor, :optional)
|
15
15
|
|
16
16
|
class Api < ::FFI::Struct
|
17
17
|
layout \
|
@@ -144,7 +144,7 @@ module OnnxRuntime
|
|
144
144
|
:ReleaseAvailableProviders, callback(%i[pointer int], :pointer),
|
145
145
|
:GetStringTensorElementLength, callback(%i[], :pointer),
|
146
146
|
:GetStringTensorElement, callback(%i[], :pointer),
|
147
|
-
:FillStringTensorElement, callback(%i[], :pointer),
|
147
|
+
:FillStringTensorElement, callback(%i[pointer string size_t], :pointer),
|
148
148
|
:AddSessionConfigEntry, callback(%i[pointer string string], :pointer),
|
149
149
|
:CreateAllocator, callback(%i[], :pointer),
|
150
150
|
:ReleaseAllocator, callback(%i[], :pointer),
|
@@ -246,6 +246,14 @@ module OnnxRuntime
|
|
246
246
|
|
247
247
|
attach_function :OrtGetApiBase, %i[], ApiBase.by_ref
|
248
248
|
|
249
|
+
def self.api
|
250
|
+
@api ||= begin
|
251
|
+
api = self.OrtGetApiBase[:GetApi].call(ORT_API_VERSION)
|
252
|
+
api = Api.by_ref.from_native(api, nil) if RUBY_PLATFORM == "java"
|
253
|
+
api
|
254
|
+
end
|
255
|
+
end
|
256
|
+
|
249
257
|
if Gem.win_platform?
|
250
258
|
class Libc
|
251
259
|
extend ::FFI::Library
|
@@ -253,5 +261,11 @@ module OnnxRuntime
|
|
253
261
|
attach_function :mbstowcs, %i[pointer string size_t], :size_t
|
254
262
|
end
|
255
263
|
end
|
264
|
+
|
265
|
+
# https://github.com/microsoft/onnxruntime/blob/main/include/onnxruntime/core/providers/coreml/coreml_provider_factory.h
|
266
|
+
begin
|
267
|
+
attach_function :OrtSessionOptionsAppendExecutionProvider_CoreML, %i[pointer uint32], :pointer
|
268
|
+
rescue ::FFI::NotFoundError
|
269
|
+
end
|
256
270
|
end
|
257
271
|
end
|
@@ -66,6 +66,13 @@ module OnnxRuntime
|
|
66
66
|
check_status api[:CreateCUDAProviderOptions].call(cuda_options)
|
67
67
|
check_status api[:SessionOptionsAppendExecutionProvider_CUDA_V2].call(session_options.read_pointer, cuda_options.read_pointer)
|
68
68
|
release :CUDAProviderOptions, cuda_options
|
69
|
+
when "CoreMLExecutionProvider"
|
70
|
+
unless FFI.respond_to?(:OrtSessionOptionsAppendExecutionProvider_CoreML)
|
71
|
+
raise ArgumentError, "Provider not available: #{provider}"
|
72
|
+
end
|
73
|
+
|
74
|
+
coreml_flags = 0
|
75
|
+
check_status FFI.OrtSessionOptionsAppendExecutionProvider_CoreML(session_options.read_pointer, coreml_flags)
|
69
76
|
when "CPUExecutionProvider"
|
70
77
|
break
|
71
78
|
else
|
@@ -76,23 +83,36 @@ module OnnxRuntime
|
|
76
83
|
@session = load_session(path_or_bytes, session_options)
|
77
84
|
ObjectSpace.define_finalizer(@session, self.class.finalize(read_pointer.to_i))
|
78
85
|
|
79
|
-
@allocator =
|
86
|
+
@allocator = Utils.allocator
|
80
87
|
@inputs = load_inputs
|
81
88
|
@outputs = load_outputs
|
82
89
|
ensure
|
83
90
|
release :SessionOptions, session_options
|
84
91
|
end
|
85
92
|
|
86
|
-
# TODO support logid
|
87
93
|
def run(output_names, input_feed, log_severity_level: nil, log_verbosity_level: nil, logid: nil, terminate: nil, output_type: :ruby)
|
88
|
-
|
89
|
-
|
94
|
+
if ![:ruby, :numo, :ort_value].include?(output_type)
|
95
|
+
raise ArgumentError, "Invalid output type: #{output_type}"
|
96
|
+
end
|
97
|
+
|
98
|
+
ort_values = input_feed.keys.zip(create_input_tensor(input_feed)).to_h
|
90
99
|
|
91
|
-
|
100
|
+
outputs = run_with_ort_values(output_names, ort_values, log_severity_level: log_severity_level, log_verbosity_level: log_verbosity_level, logid: logid, terminate: terminate)
|
101
|
+
|
102
|
+
outputs.map { |v| output_type == :numo ? v.numo : (output_type == :ort_value ? v : v.to_ruby) }
|
103
|
+
end
|
104
|
+
|
105
|
+
# TODO support logid
|
106
|
+
def run_with_ort_values(output_names, input_feed, log_severity_level: nil, log_verbosity_level: nil, logid: nil, terminate: nil)
|
107
|
+
input_tensor = ::FFI::MemoryPointer.new(:pointer, input_feed.size)
|
108
|
+
input_feed.each_with_index do |(_, input), i|
|
109
|
+
input_tensor[i].write_pointer(input.to_ptr)
|
110
|
+
end
|
92
111
|
|
93
112
|
output_names ||= @outputs.map { |v| v[:name] }
|
94
113
|
|
95
114
|
output_tensor = ::FFI::MemoryPointer.new(:pointer, outputs.size)
|
115
|
+
refs = []
|
96
116
|
input_node_names = create_node_names(input_feed.keys.map(&:to_s), refs)
|
97
117
|
output_node_names = create_node_names(output_names.map(&:to_s), refs)
|
98
118
|
|
@@ -106,17 +126,9 @@ module OnnxRuntime
|
|
106
126
|
|
107
127
|
check_status api[:Run].call(read_pointer, run_options.read_pointer, input_node_names, input_tensor, input_feed.size, output_node_names, output_names.size, output_tensor)
|
108
128
|
|
109
|
-
output_names.size.times.map
|
110
|
-
create_from_onnx_value(output_tensor[i].read_pointer, output_type)
|
111
|
-
end
|
129
|
+
output_names.size.times.map { |i| OrtValue.new(output_tensor[i]) }
|
112
130
|
ensure
|
113
131
|
release :RunOptions, run_options
|
114
|
-
if input_tensor
|
115
|
-
input_feed.size.times do |i|
|
116
|
-
release :Value, input_tensor[i]
|
117
|
-
end
|
118
|
-
end
|
119
|
-
# output values released in create_from_onnx_value
|
120
132
|
end
|
121
133
|
|
122
134
|
def modelmeta
|
@@ -214,12 +226,6 @@ module OnnxRuntime
|
|
214
226
|
session
|
215
227
|
end
|
216
228
|
|
217
|
-
def load_allocator
|
218
|
-
allocator = ::FFI::MemoryPointer.new(:pointer)
|
219
|
-
check_status api[:GetAllocatorWithDefaultOptions].call(allocator)
|
220
|
-
allocator
|
221
|
-
end
|
222
|
-
|
223
229
|
def load_inputs
|
224
230
|
inputs = []
|
225
231
|
num_input_nodes = ::FFI::MemoryPointer.new(:size_t)
|
@@ -230,7 +236,7 @@ module OnnxRuntime
|
|
230
236
|
# freed in node_info
|
231
237
|
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
232
238
|
check_status api[:SessionGetInputTypeInfo].call(read_pointer, i, typeinfo)
|
233
|
-
inputs << {name: name_ptr.read_pointer.read_string}.merge(node_info(typeinfo))
|
239
|
+
inputs << {name: name_ptr.read_pointer.read_string}.merge(Utils.node_info(typeinfo))
|
234
240
|
allocator_free name_ptr
|
235
241
|
end
|
236
242
|
inputs
|
@@ -246,87 +252,28 @@ module OnnxRuntime
|
|
246
252
|
# freed in node_info
|
247
253
|
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
248
254
|
check_status api[:SessionGetOutputTypeInfo].call(read_pointer, i, typeinfo)
|
249
|
-
outputs << {name: name_ptr.read_pointer.read_string}.merge(node_info(typeinfo))
|
255
|
+
outputs << {name: name_ptr.read_pointer.read_string}.merge(Utils.node_info(typeinfo))
|
250
256
|
allocator_free name_ptr
|
251
257
|
end
|
252
258
|
outputs
|
253
259
|
end
|
254
260
|
|
255
|
-
def create_input_tensor(input_feed
|
256
|
-
|
257
|
-
check_status api[:CreateCpuMemoryInfo].call(1, 0, allocator_info)
|
258
|
-
input_tensor = ::FFI::MemoryPointer.new(:pointer, input_feed.size)
|
259
|
-
|
260
|
-
input_feed.each_with_index do |(input_name, input), idx|
|
261
|
-
if numo_array?(input)
|
262
|
-
shape = input.shape
|
263
|
-
else
|
264
|
-
input = input.to_a unless input.is_a?(Array)
|
265
|
-
|
266
|
-
shape = []
|
267
|
-
s = input
|
268
|
-
while s.is_a?(Array)
|
269
|
-
shape << s.size
|
270
|
-
s = s.first
|
271
|
-
end
|
272
|
-
end
|
273
|
-
|
261
|
+
def create_input_tensor(input_feed)
|
262
|
+
input_feed.map do |input_name, input|
|
274
263
|
# TODO support more types
|
275
264
|
inp = @inputs.find { |i| i[:name] == input_name.to_s }
|
276
265
|
raise Error, "Unknown input: #{input_name}" unless inp
|
277
266
|
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
input.size.times.map { |i| ::FFI::MemoryPointer.from_string(input[i]) }
|
285
|
-
else
|
286
|
-
input.flatten.map { |v| ::FFI::MemoryPointer.from_string(v) }
|
287
|
-
end
|
288
|
-
|
289
|
-
input_tensor_values = ::FFI::MemoryPointer.new(:pointer, str_ptrs.size)
|
290
|
-
input_tensor_values.write_array_of_pointer(str_ptrs)
|
291
|
-
|
292
|
-
type_enum = FFI::TensorElementDataType[:string]
|
293
|
-
check_status api[:CreateTensorAsOrtValue].call(@allocator.read_pointer, input_node_dims, shape.size, type_enum, input_tensor[idx])
|
294
|
-
check_status api[:FillStringTensor].call(input_tensor[idx].read_pointer, input_tensor_values, str_ptrs.size)
|
295
|
-
|
296
|
-
refs << str_ptrs
|
267
|
+
if input.is_a?(OrtValue)
|
268
|
+
input
|
269
|
+
elsif inp[:type] == "tensor(string)"
|
270
|
+
OrtValue.from_array(input, element_type: :string)
|
271
|
+
elsif (tensor_type = tensor_types[inp[:type]])
|
272
|
+
OrtValue.from_array(input, element_type: tensor_type)
|
297
273
|
else
|
298
|
-
|
299
|
-
|
300
|
-
if tensor_type
|
301
|
-
if numo_array?(input)
|
302
|
-
input_tensor_values = input.cast_to(numo_types[tensor_type]).to_binary
|
303
|
-
else
|
304
|
-
flat_input = input.flatten.to_a
|
305
|
-
input_tensor_values = ::FFI::MemoryPointer.new(tensor_type, flat_input.size)
|
306
|
-
if tensor_type == :bool
|
307
|
-
input_tensor_values.write_array_of_uint8(flat_input.map { |v| v ? 1 : 0 })
|
308
|
-
else
|
309
|
-
input_tensor_values.send("write_array_of_#{tensor_type}", flat_input)
|
310
|
-
end
|
311
|
-
end
|
312
|
-
|
313
|
-
type_enum = FFI::TensorElementDataType[tensor_type]
|
314
|
-
else
|
315
|
-
unsupported_type("input", inp[:type])
|
316
|
-
end
|
317
|
-
|
318
|
-
check_status api[:CreateTensorWithDataAsOrtValue].call(allocator_info.read_pointer, input_tensor_values, input_tensor_values.size, input_node_dims, shape.size, type_enum, input_tensor[idx])
|
319
|
-
|
320
|
-
refs << input_node_dims
|
321
|
-
refs << input_tensor_values
|
274
|
+
Utils.unsupported_type("input", inp[:type])
|
322
275
|
end
|
323
276
|
end
|
324
|
-
|
325
|
-
refs << allocator_info
|
326
|
-
|
327
|
-
input_tensor
|
328
|
-
ensure
|
329
|
-
release :MemoryInfo, allocator_info
|
330
277
|
end
|
331
278
|
|
332
279
|
def create_node_names(names, refs)
|
@@ -338,230 +285,18 @@ module OnnxRuntime
|
|
338
285
|
ptr
|
339
286
|
end
|
340
287
|
|
341
|
-
def create_from_onnx_value(out_ptr, output_type)
|
342
|
-
out_type = ::FFI::MemoryPointer.new(:int)
|
343
|
-
check_status api[:GetValueType].call(out_ptr, out_type)
|
344
|
-
type = FFI::OnnxType[out_type.read_int]
|
345
|
-
|
346
|
-
case type
|
347
|
-
when :tensor
|
348
|
-
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
349
|
-
check_status api[:GetTensorTypeAndShape].call(out_ptr, typeinfo)
|
350
|
-
|
351
|
-
type, shape = tensor_type_and_shape(typeinfo)
|
352
|
-
|
353
|
-
tensor_data = ::FFI::MemoryPointer.new(:pointer)
|
354
|
-
check_status api[:GetTensorMutableData].call(out_ptr, tensor_data)
|
355
|
-
|
356
|
-
out_size = ::FFI::MemoryPointer.new(:size_t)
|
357
|
-
check_status api[:GetTensorShapeElementCount].call(typeinfo.read_pointer, out_size)
|
358
|
-
output_tensor_size = out_size.read(:size_t)
|
359
|
-
|
360
|
-
release :TensorTypeAndShapeInfo, typeinfo
|
361
|
-
|
362
|
-
# TODO support more types
|
363
|
-
type = FFI::TensorElementDataType[type]
|
364
|
-
|
365
|
-
case output_type
|
366
|
-
when :numo
|
367
|
-
case type
|
368
|
-
when :string
|
369
|
-
result = Numo::RObject.new(shape)
|
370
|
-
result.allocate
|
371
|
-
create_strings_from_onnx_value(out_ptr, output_tensor_size, result)
|
372
|
-
else
|
373
|
-
numo_type = numo_types[type]
|
374
|
-
unsupported_type("element", type) unless numo_type
|
375
|
-
numo_type.from_binary(tensor_data.read_pointer.read_bytes(output_tensor_size * numo_type::ELEMENT_BYTE_SIZE), shape)
|
376
|
-
end
|
377
|
-
when :ruby
|
378
|
-
arr =
|
379
|
-
case type
|
380
|
-
when :float, :uint8, :int8, :uint16, :int16, :int32, :int64, :double, :uint32, :uint64
|
381
|
-
tensor_data.read_pointer.send("read_array_of_#{type}", output_tensor_size)
|
382
|
-
when :bool
|
383
|
-
tensor_data.read_pointer.read_array_of_uint8(output_tensor_size).map { |v| v == 1 }
|
384
|
-
when :string
|
385
|
-
create_strings_from_onnx_value(out_ptr, output_tensor_size, [])
|
386
|
-
else
|
387
|
-
unsupported_type("element", type)
|
388
|
-
end
|
389
|
-
|
390
|
-
Utils.reshape(arr, shape)
|
391
|
-
else
|
392
|
-
raise ArgumentError, "Invalid output type: #{output_type}"
|
393
|
-
end
|
394
|
-
when :sequence
|
395
|
-
out = ::FFI::MemoryPointer.new(:size_t)
|
396
|
-
check_status api[:GetValueCount].call(out_ptr, out)
|
397
|
-
|
398
|
-
out.read(:size_t).times.map do |i|
|
399
|
-
seq = ::FFI::MemoryPointer.new(:pointer)
|
400
|
-
check_status api[:GetValue].call(out_ptr, i, @allocator.read_pointer, seq)
|
401
|
-
create_from_onnx_value(seq.read_pointer, output_type)
|
402
|
-
end
|
403
|
-
when :map
|
404
|
-
type_shape = ::FFI::MemoryPointer.new(:pointer)
|
405
|
-
map_keys = ::FFI::MemoryPointer.new(:pointer)
|
406
|
-
map_values = ::FFI::MemoryPointer.new(:pointer)
|
407
|
-
elem_type = ::FFI::MemoryPointer.new(:int)
|
408
|
-
|
409
|
-
check_status api[:GetValue].call(out_ptr, 0, @allocator.read_pointer, map_keys)
|
410
|
-
check_status api[:GetValue].call(out_ptr, 1, @allocator.read_pointer, map_values)
|
411
|
-
check_status api[:GetTensorTypeAndShape].call(map_keys.read_pointer, type_shape)
|
412
|
-
check_status api[:GetTensorElementType].call(type_shape.read_pointer, elem_type)
|
413
|
-
release :TensorTypeAndShapeInfo, type_shape
|
414
|
-
|
415
|
-
# TODO support more types
|
416
|
-
elem_type = FFI::TensorElementDataType[elem_type.read_int]
|
417
|
-
case elem_type
|
418
|
-
when :int64
|
419
|
-
ret = {}
|
420
|
-
keys = create_from_onnx_value(map_keys.read_pointer, output_type)
|
421
|
-
values = create_from_onnx_value(map_values.read_pointer, output_type)
|
422
|
-
keys.zip(values).each do |k, v|
|
423
|
-
ret[k] = v
|
424
|
-
end
|
425
|
-
ret
|
426
|
-
else
|
427
|
-
unsupported_type("element", elem_type)
|
428
|
-
end
|
429
|
-
else
|
430
|
-
unsupported_type("ONNX", type)
|
431
|
-
end
|
432
|
-
ensure
|
433
|
-
api[:ReleaseValue].call(out_ptr) unless out_ptr.null?
|
434
|
-
end
|
435
|
-
|
436
|
-
def create_strings_from_onnx_value(out_ptr, output_tensor_size, result)
|
437
|
-
len = ::FFI::MemoryPointer.new(:size_t)
|
438
|
-
check_status api[:GetStringTensorDataLength].call(out_ptr, len)
|
439
|
-
|
440
|
-
s_len = len.read(:size_t)
|
441
|
-
s = ::FFI::MemoryPointer.new(:uchar, s_len)
|
442
|
-
offsets = ::FFI::MemoryPointer.new(:size_t, output_tensor_size)
|
443
|
-
check_status api[:GetStringTensorContent].call(out_ptr, s, s_len, offsets, output_tensor_size)
|
444
|
-
|
445
|
-
offsets = output_tensor_size.times.map { |i| offsets[i].read(:size_t) }
|
446
|
-
offsets << s_len
|
447
|
-
output_tensor_size.times do |i|
|
448
|
-
result[i] = s.get_bytes(offsets[i], offsets[i + 1] - offsets[i])
|
449
|
-
end
|
450
|
-
result
|
451
|
-
end
|
452
|
-
|
453
288
|
def read_pointer
|
454
289
|
@session.read_pointer
|
455
290
|
end
|
456
291
|
|
457
292
|
def check_status(status)
|
458
|
-
|
459
|
-
message = api[:GetErrorMessage].call(status).read_string
|
460
|
-
api[:ReleaseStatus].call(status)
|
461
|
-
raise Error, message
|
462
|
-
end
|
463
|
-
end
|
464
|
-
|
465
|
-
def node_info(typeinfo)
|
466
|
-
onnx_type = ::FFI::MemoryPointer.new(:int)
|
467
|
-
check_status api[:GetOnnxTypeFromTypeInfo].call(typeinfo.read_pointer, onnx_type)
|
468
|
-
|
469
|
-
type = FFI::OnnxType[onnx_type.read_int]
|
470
|
-
case type
|
471
|
-
when :tensor
|
472
|
-
tensor_info = ::FFI::MemoryPointer.new(:pointer)
|
473
|
-
# don't free tensor_info
|
474
|
-
check_status api[:CastTypeInfoToTensorInfo].call(typeinfo.read_pointer, tensor_info)
|
475
|
-
|
476
|
-
type, shape = tensor_type_and_shape(tensor_info)
|
477
|
-
{
|
478
|
-
type: "tensor(#{FFI::TensorElementDataType[type]})",
|
479
|
-
shape: shape
|
480
|
-
}
|
481
|
-
when :sequence
|
482
|
-
sequence_type_info = ::FFI::MemoryPointer.new(:pointer)
|
483
|
-
check_status api[:CastTypeInfoToSequenceTypeInfo].call(typeinfo.read_pointer, sequence_type_info)
|
484
|
-
nested_type_info = ::FFI::MemoryPointer.new(:pointer)
|
485
|
-
check_status api[:GetSequenceElementType].call(sequence_type_info.read_pointer, nested_type_info)
|
486
|
-
v = node_info(nested_type_info)[:type]
|
487
|
-
|
488
|
-
{
|
489
|
-
type: "seq(#{v})",
|
490
|
-
shape: []
|
491
|
-
}
|
492
|
-
when :map
|
493
|
-
map_type_info = ::FFI::MemoryPointer.new(:pointer)
|
494
|
-
check_status api[:CastTypeInfoToMapTypeInfo].call(typeinfo.read_pointer, map_type_info)
|
495
|
-
|
496
|
-
# key
|
497
|
-
key_type = ::FFI::MemoryPointer.new(:int)
|
498
|
-
check_status api[:GetMapKeyType].call(map_type_info.read_pointer, key_type)
|
499
|
-
k = FFI::TensorElementDataType[key_type.read_int]
|
500
|
-
|
501
|
-
# value
|
502
|
-
value_type_info = ::FFI::MemoryPointer.new(:pointer)
|
503
|
-
check_status api[:GetMapValueType].call(map_type_info.read_pointer, value_type_info)
|
504
|
-
v = node_info(value_type_info)[:type]
|
505
|
-
|
506
|
-
{
|
507
|
-
type: "map(#{k},#{v})",
|
508
|
-
shape: []
|
509
|
-
}
|
510
|
-
else
|
511
|
-
unsupported_type("ONNX", type)
|
512
|
-
end
|
513
|
-
ensure
|
514
|
-
release :TypeInfo, typeinfo
|
515
|
-
end
|
516
|
-
|
517
|
-
def tensor_type_and_shape(tensor_info)
|
518
|
-
type = ::FFI::MemoryPointer.new(:int)
|
519
|
-
check_status api[:GetTensorElementType].call(tensor_info.read_pointer, type)
|
520
|
-
|
521
|
-
num_dims_ptr = ::FFI::MemoryPointer.new(:size_t)
|
522
|
-
check_status api[:GetDimensionsCount].call(tensor_info.read_pointer, num_dims_ptr)
|
523
|
-
num_dims = num_dims_ptr.read(:size_t)
|
524
|
-
|
525
|
-
node_dims = ::FFI::MemoryPointer.new(:int64, num_dims)
|
526
|
-
check_status api[:GetDimensions].call(tensor_info.read_pointer, node_dims, num_dims)
|
527
|
-
dims = node_dims.read_array_of_int64(num_dims)
|
528
|
-
|
529
|
-
symbolic_dims = ::FFI::MemoryPointer.new(:pointer, num_dims)
|
530
|
-
check_status api[:GetSymbolicDimensions].call(tensor_info.read_pointer, symbolic_dims, num_dims)
|
531
|
-
named_dims = num_dims.times.map { |i| symbolic_dims[i].read_pointer.read_string }
|
532
|
-
dims = named_dims.zip(dims).map { |n, d| n.empty? ? d : n }
|
533
|
-
|
534
|
-
[type.read_int, dims]
|
535
|
-
end
|
536
|
-
|
537
|
-
def unsupported_type(name, type)
|
538
|
-
raise Error, "Unsupported #{name} type: #{type}"
|
293
|
+
Utils.check_status(status)
|
539
294
|
end
|
540
295
|
|
541
296
|
def tensor_types
|
542
297
|
@tensor_types ||= [:float, :uint8, :int8, :uint16, :int16, :int32, :int64, :bool, :double, :uint32, :uint64].map { |v| ["tensor(#{v})", v] }.to_h
|
543
298
|
end
|
544
299
|
|
545
|
-
def numo_array?(obj)
|
546
|
-
defined?(Numo::NArray) && obj.is_a?(Numo::NArray)
|
547
|
-
end
|
548
|
-
|
549
|
-
def numo_types
|
550
|
-
@numo_types ||= {
|
551
|
-
float: Numo::SFloat,
|
552
|
-
uint8: Numo::UInt8,
|
553
|
-
int8: Numo::Int8,
|
554
|
-
uint16: Numo::UInt16,
|
555
|
-
int16: Numo::Int16,
|
556
|
-
int32: Numo::Int32,
|
557
|
-
int64: Numo::Int64,
|
558
|
-
bool: Numo::UInt8,
|
559
|
-
double: Numo::DFloat,
|
560
|
-
uint32: Numo::UInt32,
|
561
|
-
uint64: Numo::UInt64
|
562
|
-
}
|
563
|
-
end
|
564
|
-
|
565
300
|
def api
|
566
301
|
self.class.api
|
567
302
|
end
|
@@ -575,11 +310,11 @@ module OnnxRuntime
|
|
575
310
|
end
|
576
311
|
|
577
312
|
def self.api
|
578
|
-
|
313
|
+
FFI.api
|
579
314
|
end
|
580
315
|
|
581
316
|
def self.release(type, pointer)
|
582
|
-
|
317
|
+
Utils.release(type, pointer)
|
583
318
|
end
|
584
319
|
|
585
320
|
def self.finalize(addr)
|
@@ -0,0 +1,278 @@
|
|
1
|
+
module OnnxRuntime
|
2
|
+
class OrtValue
|
3
|
+
def initialize(ptr, ref = nil)
|
4
|
+
@ptr = ptr.read_pointer
|
5
|
+
@ref = ref # keep reference to data
|
6
|
+
ObjectSpace.define_finalizer(@ptr, self.class.finalize(@ptr.to_i))
|
7
|
+
end
|
8
|
+
|
9
|
+
def self.from_numo(numo_obj)
|
10
|
+
element_type = numo_obj.is_a?(Numo::Bit) ? :bool : Utils.numo_types.invert[numo_obj.class]
|
11
|
+
Utils.unsupported_type("Numo", numo_obj.class.name) unless element_type
|
12
|
+
|
13
|
+
from_array(numo_obj, element_type: element_type)
|
14
|
+
end
|
15
|
+
|
16
|
+
def self.from_array(input, element_type:)
|
17
|
+
type_enum = FFI::TensorElementDataType[element_type]
|
18
|
+
Utils.unsupported_type("element", element_type) unless type_enum
|
19
|
+
|
20
|
+
input = input.to_a unless input.is_a?(Array) || Utils.numo_array?(input)
|
21
|
+
|
22
|
+
shape = Utils.input_shape(input)
|
23
|
+
input_node_dims = ::FFI::MemoryPointer.new(:int64, shape.size)
|
24
|
+
input_node_dims.write_array_of_int64(shape)
|
25
|
+
|
26
|
+
ptr = ::FFI::MemoryPointer.new(:pointer)
|
27
|
+
if element_type == :string
|
28
|
+
# keep reference to _str_ptrs until FillStringTensor call
|
29
|
+
input_tensor_values, _str_ptrs = create_input_strings(input)
|
30
|
+
Utils.check_status FFI.api[:CreateTensorAsOrtValue].call(Utils.allocator.read_pointer, input_node_dims, shape.size, type_enum, ptr)
|
31
|
+
Utils.check_status FFI.api[:FillStringTensor].call(ptr.read_pointer, input_tensor_values, input_tensor_values.size / input_tensor_values.type_size)
|
32
|
+
else
|
33
|
+
input_tensor_values = create_input_data(input, element_type)
|
34
|
+
Utils.check_status FFI.api[:CreateTensorWithDataAsOrtValue].call(allocator_info.read_pointer, input_tensor_values, input_tensor_values.size, input_node_dims, shape.size, type_enum, ptr)
|
35
|
+
end
|
36
|
+
|
37
|
+
new(ptr, input_tensor_values)
|
38
|
+
end
|
39
|
+
|
40
|
+
def self.from_shape_and_type(shape, element_type)
|
41
|
+
type_enum = FFI::TensorElementDataType[element_type]
|
42
|
+
Utils.unsupported_type("element", element_type) unless type_enum
|
43
|
+
|
44
|
+
input_node_dims = ::FFI::MemoryPointer.new(:int64, shape.size)
|
45
|
+
input_node_dims.write_array_of_int64(shape)
|
46
|
+
|
47
|
+
ptr = ::FFI::MemoryPointer.new(:pointer)
|
48
|
+
Utils.check_status FFI.api[:CreateTensorAsOrtValue].call(Utils.allocator.read_pointer, input_node_dims, shape.size, type_enum, ptr)
|
49
|
+
|
50
|
+
new(ptr)
|
51
|
+
end
|
52
|
+
|
53
|
+
def self.create_input_data(input, tensor_type)
|
54
|
+
if Utils.numo_array?(input)
|
55
|
+
input.cast_to(Utils.numo_types[tensor_type]).to_binary
|
56
|
+
else
|
57
|
+
flat_input = input.flatten.to_a
|
58
|
+
input_tensor_values = ::FFI::MemoryPointer.new(tensor_type, flat_input.size)
|
59
|
+
if tensor_type == :bool
|
60
|
+
input_tensor_values.write_array_of_uint8(flat_input.map { |v| v ? 1 : 0 })
|
61
|
+
else
|
62
|
+
input_tensor_values.send("write_array_of_#{tensor_type}", flat_input)
|
63
|
+
end
|
64
|
+
input_tensor_values
|
65
|
+
end
|
66
|
+
end
|
67
|
+
private_class_method :create_input_data
|
68
|
+
|
69
|
+
def self.create_input_strings(input)
|
70
|
+
str_ptrs =
|
71
|
+
if Utils.numo_array?(input)
|
72
|
+
input.size.times.map { |i| ::FFI::MemoryPointer.from_string(input[i]) }
|
73
|
+
else
|
74
|
+
input.flatten.map { |v| ::FFI::MemoryPointer.from_string(v) }
|
75
|
+
end
|
76
|
+
|
77
|
+
input_tensor_values = ::FFI::MemoryPointer.new(:pointer, str_ptrs.size)
|
78
|
+
input_tensor_values.write_array_of_pointer(str_ptrs)
|
79
|
+
[input_tensor_values, str_ptrs]
|
80
|
+
end
|
81
|
+
private_class_method :create_input_strings
|
82
|
+
|
83
|
+
def tensor?
|
84
|
+
FFI::OnnxType[value_type] == :tensor
|
85
|
+
end
|
86
|
+
|
87
|
+
def data_type
|
88
|
+
@data_type ||= begin
|
89
|
+
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
90
|
+
Utils.check_status FFI.api[:GetTypeInfo].call(@ptr, typeinfo)
|
91
|
+
Utils.node_info(typeinfo)[:type]
|
92
|
+
end
|
93
|
+
end
|
94
|
+
|
95
|
+
def element_type
|
96
|
+
FFI::TensorElementDataType[type_and_shape_info[0]]
|
97
|
+
end
|
98
|
+
|
99
|
+
def shape
|
100
|
+
type_and_shape_info[1]
|
101
|
+
end
|
102
|
+
|
103
|
+
def device_name
|
104
|
+
"cpu"
|
105
|
+
end
|
106
|
+
|
107
|
+
def numo
|
108
|
+
create_from_onnx_value(@ptr, :numo)
|
109
|
+
end
|
110
|
+
|
111
|
+
def to_ruby
|
112
|
+
create_from_onnx_value(@ptr, :ruby)
|
113
|
+
end
|
114
|
+
|
115
|
+
def to_ptr
|
116
|
+
@ptr
|
117
|
+
end
|
118
|
+
|
119
|
+
def data_ptr
|
120
|
+
tensor_data = ::FFI::MemoryPointer.new(:pointer)
|
121
|
+
FFI.api[:GetTensorMutableData].call(@ptr, tensor_data)
|
122
|
+
tensor_data.read_pointer
|
123
|
+
end
|
124
|
+
|
125
|
+
private
|
126
|
+
|
127
|
+
def value_type
|
128
|
+
@value_type ||= begin
|
129
|
+
out_type = ::FFI::MemoryPointer.new(:int)
|
130
|
+
Utils.check_status FFI.api[:GetValueType].call(@ptr, out_type)
|
131
|
+
out_type.read_int
|
132
|
+
end
|
133
|
+
end
|
134
|
+
|
135
|
+
def type_and_shape_info
|
136
|
+
@type_and_shape_info ||= begin
|
137
|
+
begin
|
138
|
+
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
139
|
+
Utils.check_status FFI.api[:GetTensorTypeAndShape].call(@ptr, typeinfo)
|
140
|
+
Utils.tensor_type_and_shape(typeinfo)
|
141
|
+
ensure
|
142
|
+
Utils.release :TensorTypeAndShapeInfo, typeinfo
|
143
|
+
end
|
144
|
+
end
|
145
|
+
end
|
146
|
+
|
147
|
+
def create_from_onnx_value(out_ptr, output_type)
|
148
|
+
out_type = ::FFI::MemoryPointer.new(:int)
|
149
|
+
Utils.check_status FFI.api[:GetValueType].call(out_ptr, out_type)
|
150
|
+
type = FFI::OnnxType[out_type.read_int]
|
151
|
+
|
152
|
+
case type
|
153
|
+
when :tensor
|
154
|
+
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
155
|
+
Utils.check_status FFI.api[:GetTensorTypeAndShape].call(out_ptr, typeinfo)
|
156
|
+
|
157
|
+
type, shape = Utils.tensor_type_and_shape(typeinfo)
|
158
|
+
|
159
|
+
tensor_data = ::FFI::MemoryPointer.new(:pointer)
|
160
|
+
Utils.check_status FFI.api[:GetTensorMutableData].call(out_ptr, tensor_data)
|
161
|
+
|
162
|
+
out_size = ::FFI::MemoryPointer.new(:size_t)
|
163
|
+
Utils.check_status FFI.api[:GetTensorShapeElementCount].call(typeinfo.read_pointer, out_size)
|
164
|
+
output_tensor_size = out_size.read(:size_t)
|
165
|
+
|
166
|
+
Utils.release :TensorTypeAndShapeInfo, typeinfo
|
167
|
+
|
168
|
+
# TODO support more types
|
169
|
+
type = FFI::TensorElementDataType[type]
|
170
|
+
|
171
|
+
case output_type
|
172
|
+
when :numo
|
173
|
+
case type
|
174
|
+
when :string
|
175
|
+
result = Numo::RObject.new(shape)
|
176
|
+
result.allocate
|
177
|
+
create_strings_from_onnx_value(out_ptr, output_tensor_size, result)
|
178
|
+
else
|
179
|
+
numo_type = Utils.numo_types[type]
|
180
|
+
Utils.unsupported_type("element", type) unless numo_type
|
181
|
+
numo_type.from_binary(tensor_data.read_pointer.read_bytes(output_tensor_size * numo_type::ELEMENT_BYTE_SIZE), shape)
|
182
|
+
end
|
183
|
+
when :ruby
|
184
|
+
arr =
|
185
|
+
case type
|
186
|
+
when :float, :uint8, :int8, :uint16, :int16, :int32, :int64, :double, :uint32, :uint64
|
187
|
+
tensor_data.read_pointer.send("read_array_of_#{type}", output_tensor_size)
|
188
|
+
when :bool
|
189
|
+
tensor_data.read_pointer.read_array_of_uint8(output_tensor_size).map { |v| v == 1 }
|
190
|
+
when :string
|
191
|
+
create_strings_from_onnx_value(out_ptr, output_tensor_size, [])
|
192
|
+
else
|
193
|
+
Utils.unsupported_type("element", type)
|
194
|
+
end
|
195
|
+
|
196
|
+
reshape(arr, shape)
|
197
|
+
else
|
198
|
+
raise ArgumentError, "Invalid output type: #{output_type}"
|
199
|
+
end
|
200
|
+
when :sequence
|
201
|
+
out = ::FFI::MemoryPointer.new(:size_t)
|
202
|
+
Utils.check_status FFI.api[:GetValueCount].call(out_ptr, out)
|
203
|
+
|
204
|
+
out.read(:size_t).times.map do |i|
|
205
|
+
seq = ::FFI::MemoryPointer.new(:pointer)
|
206
|
+
Utils.check_status FFI.api[:GetValue].call(out_ptr, i, Utils.allocator.read_pointer, seq)
|
207
|
+
create_from_onnx_value(seq.read_pointer, output_type)
|
208
|
+
end
|
209
|
+
when :map
|
210
|
+
type_shape = ::FFI::MemoryPointer.new(:pointer)
|
211
|
+
map_keys = ::FFI::MemoryPointer.new(:pointer)
|
212
|
+
map_values = ::FFI::MemoryPointer.new(:pointer)
|
213
|
+
elem_type = ::FFI::MemoryPointer.new(:int)
|
214
|
+
|
215
|
+
Utils.check_status FFI.api[:GetValue].call(out_ptr, 0, Utils.allocator.read_pointer, map_keys)
|
216
|
+
Utils.check_status FFI.api[:GetValue].call(out_ptr, 1, Utils.allocator.read_pointer, map_values)
|
217
|
+
Utils.check_status FFI.api[:GetTensorTypeAndShape].call(map_keys.read_pointer, type_shape)
|
218
|
+
Utils.check_status FFI.api[:GetTensorElementType].call(type_shape.read_pointer, elem_type)
|
219
|
+
Utils.release :TensorTypeAndShapeInfo, type_shape
|
220
|
+
|
221
|
+
# TODO support more types
|
222
|
+
elem_type = FFI::TensorElementDataType[elem_type.read_int]
|
223
|
+
case elem_type
|
224
|
+
when :int64
|
225
|
+
ret = {}
|
226
|
+
keys = create_from_onnx_value(map_keys.read_pointer, output_type)
|
227
|
+
values = create_from_onnx_value(map_values.read_pointer, output_type)
|
228
|
+
keys.zip(values).each do |k, v|
|
229
|
+
ret[k] = v
|
230
|
+
end
|
231
|
+
ret
|
232
|
+
else
|
233
|
+
Utils.unsupported_type("element", elem_type)
|
234
|
+
end
|
235
|
+
else
|
236
|
+
Utils.unsupported_type("ONNX", type)
|
237
|
+
end
|
238
|
+
end
|
239
|
+
|
240
|
+
def create_strings_from_onnx_value(out_ptr, output_tensor_size, result)
|
241
|
+
len = ::FFI::MemoryPointer.new(:size_t)
|
242
|
+
Utils.check_status FFI.api[:GetStringTensorDataLength].call(out_ptr, len)
|
243
|
+
|
244
|
+
s_len = len.read(:size_t)
|
245
|
+
s = ::FFI::MemoryPointer.new(:uchar, s_len)
|
246
|
+
offsets = ::FFI::MemoryPointer.new(:size_t, output_tensor_size)
|
247
|
+
Utils.check_status FFI.api[:GetStringTensorContent].call(out_ptr, s, s_len, offsets, output_tensor_size)
|
248
|
+
|
249
|
+
offsets = output_tensor_size.times.map { |i| offsets[i].read(:size_t) }
|
250
|
+
offsets << s_len
|
251
|
+
output_tensor_size.times do |i|
|
252
|
+
result[i] = s.get_bytes(offsets[i], offsets[i + 1] - offsets[i])
|
253
|
+
end
|
254
|
+
result
|
255
|
+
end
|
256
|
+
|
257
|
+
def reshape(arr, dims)
|
258
|
+
arr = arr.flatten
|
259
|
+
dims[1..-1].reverse_each do |dim|
|
260
|
+
arr = arr.each_slice(dim)
|
261
|
+
end
|
262
|
+
arr.to_a
|
263
|
+
end
|
264
|
+
|
265
|
+
def self.finalize(addr)
|
266
|
+
# must use proc instead of stabby lambda
|
267
|
+
proc { FFI.api[:ReleaseValue].call(::FFI::Pointer.new(:pointer, addr)) }
|
268
|
+
end
|
269
|
+
|
270
|
+
def self.allocator_info
|
271
|
+
@allocator_info ||= begin
|
272
|
+
allocator_info = ::FFI::MemoryPointer.new(:pointer)
|
273
|
+
Utils.check_status FFI.api[:CreateCpuMemoryInfo].call(1, 0, allocator_info)
|
274
|
+
allocator_info
|
275
|
+
end
|
276
|
+
end
|
277
|
+
end
|
278
|
+
end
|
data/lib/onnxruntime/utils.rb
CHANGED
@@ -5,12 +5,138 @@ module OnnxRuntime
|
|
5
5
|
end
|
6
6
|
self.mutex = Mutex.new
|
7
7
|
|
8
|
-
def self.
|
9
|
-
|
10
|
-
|
11
|
-
|
8
|
+
def self.check_status(status)
|
9
|
+
unless status.null?
|
10
|
+
message = api[:GetErrorMessage].call(status).read_string
|
11
|
+
api[:ReleaseStatus].call(status)
|
12
|
+
raise Error, message
|
13
|
+
end
|
14
|
+
end
|
15
|
+
|
16
|
+
def self.api
|
17
|
+
FFI.api
|
18
|
+
end
|
19
|
+
|
20
|
+
def self.release(type, pointer)
|
21
|
+
FFI.api[:"Release#{type}"].call(pointer.read_pointer) if pointer && !pointer.null?
|
22
|
+
end
|
23
|
+
|
24
|
+
def self.unsupported_type(name, type)
|
25
|
+
raise Error, "Unsupported #{name} type: #{type}"
|
26
|
+
end
|
27
|
+
|
28
|
+
def self.tensor_type_and_shape(tensor_info)
|
29
|
+
type = ::FFI::MemoryPointer.new(:int)
|
30
|
+
check_status api[:GetTensorElementType].call(tensor_info.read_pointer, type)
|
31
|
+
|
32
|
+
num_dims_ptr = ::FFI::MemoryPointer.new(:size_t)
|
33
|
+
check_status api[:GetDimensionsCount].call(tensor_info.read_pointer, num_dims_ptr)
|
34
|
+
num_dims = num_dims_ptr.read(:size_t)
|
35
|
+
|
36
|
+
node_dims = ::FFI::MemoryPointer.new(:int64, num_dims)
|
37
|
+
check_status api[:GetDimensions].call(tensor_info.read_pointer, node_dims, num_dims)
|
38
|
+
dims = node_dims.read_array_of_int64(num_dims)
|
39
|
+
|
40
|
+
symbolic_dims = ::FFI::MemoryPointer.new(:pointer, num_dims)
|
41
|
+
check_status api[:GetSymbolicDimensions].call(tensor_info.read_pointer, symbolic_dims, num_dims)
|
42
|
+
named_dims = num_dims.times.map { |i| symbolic_dims[i].read_pointer.read_string }
|
43
|
+
dims = named_dims.zip(dims).map { |n, d| n.empty? ? d : n }
|
44
|
+
|
45
|
+
[type.read_int, dims]
|
46
|
+
end
|
47
|
+
|
48
|
+
def self.node_info(typeinfo)
|
49
|
+
onnx_type = ::FFI::MemoryPointer.new(:int)
|
50
|
+
check_status api[:GetOnnxTypeFromTypeInfo].call(typeinfo.read_pointer, onnx_type)
|
51
|
+
|
52
|
+
type = FFI::OnnxType[onnx_type.read_int]
|
53
|
+
case type
|
54
|
+
when :tensor
|
55
|
+
tensor_info = ::FFI::MemoryPointer.new(:pointer)
|
56
|
+
# don't free tensor_info
|
57
|
+
check_status api[:CastTypeInfoToTensorInfo].call(typeinfo.read_pointer, tensor_info)
|
58
|
+
|
59
|
+
type, shape = Utils.tensor_type_and_shape(tensor_info)
|
60
|
+
{
|
61
|
+
type: "tensor(#{FFI::TensorElementDataType[type]})",
|
62
|
+
shape: shape
|
63
|
+
}
|
64
|
+
when :sequence
|
65
|
+
sequence_type_info = ::FFI::MemoryPointer.new(:pointer)
|
66
|
+
check_status api[:CastTypeInfoToSequenceTypeInfo].call(typeinfo.read_pointer, sequence_type_info)
|
67
|
+
nested_type_info = ::FFI::MemoryPointer.new(:pointer)
|
68
|
+
check_status api[:GetSequenceElementType].call(sequence_type_info.read_pointer, nested_type_info)
|
69
|
+
v = node_info(nested_type_info)[:type]
|
70
|
+
|
71
|
+
{
|
72
|
+
type: "seq(#{v})",
|
73
|
+
shape: []
|
74
|
+
}
|
75
|
+
when :map
|
76
|
+
map_type_info = ::FFI::MemoryPointer.new(:pointer)
|
77
|
+
check_status api[:CastTypeInfoToMapTypeInfo].call(typeinfo.read_pointer, map_type_info)
|
78
|
+
|
79
|
+
# key
|
80
|
+
key_type = ::FFI::MemoryPointer.new(:int)
|
81
|
+
check_status api[:GetMapKeyType].call(map_type_info.read_pointer, key_type)
|
82
|
+
k = FFI::TensorElementDataType[key_type.read_int]
|
83
|
+
|
84
|
+
# value
|
85
|
+
value_type_info = ::FFI::MemoryPointer.new(:pointer)
|
86
|
+
check_status api[:GetMapValueType].call(map_type_info.read_pointer, value_type_info)
|
87
|
+
v = node_info(value_type_info)[:type]
|
88
|
+
|
89
|
+
{
|
90
|
+
type: "map(#{k},#{v})",
|
91
|
+
shape: []
|
92
|
+
}
|
93
|
+
else
|
94
|
+
Utils.unsupported_type("ONNX", type)
|
95
|
+
end
|
96
|
+
ensure
|
97
|
+
release :TypeInfo, typeinfo
|
98
|
+
end
|
99
|
+
|
100
|
+
def self.numo_array?(obj)
|
101
|
+
defined?(Numo::NArray) && obj.is_a?(Numo::NArray)
|
102
|
+
end
|
103
|
+
|
104
|
+
def self.numo_types
|
105
|
+
@numo_types ||= {
|
106
|
+
float: Numo::SFloat,
|
107
|
+
uint8: Numo::UInt8,
|
108
|
+
int8: Numo::Int8,
|
109
|
+
uint16: Numo::UInt16,
|
110
|
+
int16: Numo::Int16,
|
111
|
+
int32: Numo::Int32,
|
112
|
+
int64: Numo::Int64,
|
113
|
+
bool: Numo::UInt8,
|
114
|
+
double: Numo::DFloat,
|
115
|
+
uint32: Numo::UInt32,
|
116
|
+
uint64: Numo::UInt64
|
117
|
+
}
|
118
|
+
end
|
119
|
+
|
120
|
+
def self.input_shape(input)
|
121
|
+
if numo_array?(input)
|
122
|
+
input.shape
|
123
|
+
else
|
124
|
+
shape = []
|
125
|
+
s = input
|
126
|
+
while s.is_a?(Array)
|
127
|
+
shape << s.size
|
128
|
+
s = s.first
|
129
|
+
end
|
130
|
+
shape
|
131
|
+
end
|
132
|
+
end
|
133
|
+
|
134
|
+
def self.allocator
|
135
|
+
@allocator ||= begin
|
136
|
+
allocator = ::FFI::MemoryPointer.new(:pointer)
|
137
|
+
check_status api[:GetAllocatorWithDefaultOptions].call(allocator)
|
138
|
+
allocator
|
12
139
|
end
|
13
|
-
arr.to_a
|
14
140
|
end
|
15
141
|
end
|
16
142
|
end
|
data/lib/onnxruntime/version.rb
CHANGED
data/lib/onnxruntime.rb
CHANGED
@@ -5,6 +5,7 @@ require "ffi"
|
|
5
5
|
require_relative "onnxruntime/datasets"
|
6
6
|
require_relative "onnxruntime/inference_session"
|
7
7
|
require_relative "onnxruntime/model"
|
8
|
+
require_relative "onnxruntime/ort_value"
|
8
9
|
require_relative "onnxruntime/utils"
|
9
10
|
require_relative "onnxruntime/version"
|
10
11
|
|
@@ -4820,7 +4820,7 @@ SOFTWARE.
|
|
4820
4820
|
|
4821
4821
|
----------------------------------------------------------------------------
|
4822
4822
|
|
4823
|
-
This is the MIT/Expat
|
4823
|
+
This is the MIT/Expat License. For more information see:
|
4824
4824
|
|
4825
4825
|
1. http://www.opensource.org/licenses/mit-license.php
|
4826
4826
|
|
data/vendor/libonnxruntime.so
CHANGED
Binary file
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: onnxruntime
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.9.
|
4
|
+
version: 0.9.3
|
5
5
|
platform: x86_64-linux
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-11-01 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: ffi
|
@@ -38,6 +38,7 @@ files:
|
|
38
38
|
- lib/onnxruntime/ffi.rb
|
39
39
|
- lib/onnxruntime/inference_session.rb
|
40
40
|
- lib/onnxruntime/model.rb
|
41
|
+
- lib/onnxruntime/ort_value.rb
|
41
42
|
- lib/onnxruntime/utils.rb
|
42
43
|
- lib/onnxruntime/version.rb
|
43
44
|
- vendor/LICENSE
|
@@ -62,7 +63,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
62
63
|
- !ruby/object:Gem::Version
|
63
64
|
version: '0'
|
64
65
|
requirements: []
|
65
|
-
rubygems_version: 3.5.
|
66
|
+
rubygems_version: 3.5.16
|
66
67
|
signing_key:
|
67
68
|
specification_version: 4
|
68
69
|
summary: High performance scoring engine for ML models
|