onnxruntime 0.9.1-arm64-darwin → 0.9.3-arm64-darwin
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +11 -0
- data/README.md +12 -2
- data/lib/onnxruntime/ffi.rb +16 -2
- data/lib/onnxruntime/inference_session.rb +40 -305
- data/lib/onnxruntime/ort_value.rb +278 -0
- data/lib/onnxruntime/utils.rb +131 -5
- data/lib/onnxruntime/version.rb +1 -1
- data/lib/onnxruntime.rb +1 -0
- data/vendor/ThirdPartyNotices.txt +1 -1
- data/vendor/libonnxruntime.arm64.dylib +0 -0
- metadata +4 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: a0f68aa52a14030b633fd2424395a803150d0f336259de1c97a7e27430259191
|
4
|
+
data.tar.gz: 6619423585e62a142abf5298f90ebecd16396264b689da3885535967f6dca1d1
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 616c2f43fd027b2461e3ceb798d7de8288afc6cf0df46982635bfd0507b5c46ab607b6088fffbb1c969f036e109a25aaafb661ca9d8fd88562e5c3af3c27ab89
|
7
|
+
data.tar.gz: aa82092853cfa49307d665972348b54eab01d685cd638ebfda8c5adfe7d3d4f43bb31aa9a1e93ea4740a7de6e21efea8711365509ae155035d1cdafff7a9bb1f
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,14 @@
|
|
1
|
+
## 0.9.3 (2024-11-01)
|
2
|
+
|
3
|
+
- Updated ONNX Runtime to 1.20.0
|
4
|
+
- Added experimental `OrtValue` class
|
5
|
+
- Added experimental `run_with_ort_values` method
|
6
|
+
|
7
|
+
## 0.9.2 (2024-09-04)
|
8
|
+
|
9
|
+
- Updated ONNX Runtime to 1.19.2
|
10
|
+
- Added support for CoreML
|
11
|
+
|
1
12
|
## 0.9.1 (2024-05-22)
|
2
13
|
|
3
14
|
- Updated ONNX Runtime to 1.18.0
|
data/README.md
CHANGED
@@ -4,7 +4,7 @@
|
|
4
4
|
|
5
5
|
Check out [an example](https://ankane.org/tensorflow-ruby)
|
6
6
|
|
7
|
-
[![Build Status](https://github.com/ankane/onnxruntime-ruby/workflows/build/badge.svg
|
7
|
+
[![Build Status](https://github.com/ankane/onnxruntime-ruby/actions/workflows/build.yml/badge.svg)](https://github.com/ankane/onnxruntime-ruby/actions)
|
8
8
|
|
9
9
|
## Installation
|
10
10
|
|
@@ -108,7 +108,9 @@ OnnxRuntime::Datasets.example("sigmoid.onnx")
|
|
108
108
|
|
109
109
|
## GPU Support
|
110
110
|
|
111
|
-
|
111
|
+
### Linux and Windows
|
112
|
+
|
113
|
+
Download the appropriate [GPU release](https://github.com/microsoft/onnxruntime/releases) and set:
|
112
114
|
|
113
115
|
```ruby
|
114
116
|
OnnxRuntime.ffi_lib = "path/to/lib/libonnxruntime.so" # onnxruntime.dll for Windows
|
@@ -120,6 +122,14 @@ and use:
|
|
120
122
|
model = OnnxRuntime::Model.new("model.onnx", providers: ["CUDAExecutionProvider"])
|
121
123
|
```
|
122
124
|
|
125
|
+
### Mac
|
126
|
+
|
127
|
+
Use:
|
128
|
+
|
129
|
+
```ruby
|
130
|
+
model = OnnxRuntime::Model.new("model.onnx", providers: ["CoreMLExecutionProvider"])
|
131
|
+
```
|
132
|
+
|
123
133
|
## History
|
124
134
|
|
125
135
|
View the [changelog](https://github.com/ankane/onnxruntime-ruby/blob/master/CHANGELOG.md)
|
data/lib/onnxruntime/ffi.rb
CHANGED
@@ -11,7 +11,7 @@ module OnnxRuntime
|
|
11
11
|
|
12
12
|
# enums
|
13
13
|
TensorElementDataType = enum(:undefined, :float, :uint8, :int8, :uint16, :int16, :int32, :int64, :string, :bool, :float16, :double, :uint32, :uint64, :complex64, :complex128, :bfloat16)
|
14
|
-
OnnxType = enum(:unknown, :tensor, :sequence, :map, :opaque, :sparsetensor)
|
14
|
+
OnnxType = enum(:unknown, :tensor, :sequence, :map, :opaque, :sparsetensor, :optional)
|
15
15
|
|
16
16
|
class Api < ::FFI::Struct
|
17
17
|
layout \
|
@@ -144,7 +144,7 @@ module OnnxRuntime
|
|
144
144
|
:ReleaseAvailableProviders, callback(%i[pointer int], :pointer),
|
145
145
|
:GetStringTensorElementLength, callback(%i[], :pointer),
|
146
146
|
:GetStringTensorElement, callback(%i[], :pointer),
|
147
|
-
:FillStringTensorElement, callback(%i[], :pointer),
|
147
|
+
:FillStringTensorElement, callback(%i[pointer string size_t], :pointer),
|
148
148
|
:AddSessionConfigEntry, callback(%i[pointer string string], :pointer),
|
149
149
|
:CreateAllocator, callback(%i[], :pointer),
|
150
150
|
:ReleaseAllocator, callback(%i[], :pointer),
|
@@ -246,6 +246,14 @@ module OnnxRuntime
|
|
246
246
|
|
247
247
|
attach_function :OrtGetApiBase, %i[], ApiBase.by_ref
|
248
248
|
|
249
|
+
def self.api
|
250
|
+
@api ||= begin
|
251
|
+
api = self.OrtGetApiBase[:GetApi].call(ORT_API_VERSION)
|
252
|
+
api = Api.by_ref.from_native(api, nil) if RUBY_PLATFORM == "java"
|
253
|
+
api
|
254
|
+
end
|
255
|
+
end
|
256
|
+
|
249
257
|
if Gem.win_platform?
|
250
258
|
class Libc
|
251
259
|
extend ::FFI::Library
|
@@ -253,5 +261,11 @@ module OnnxRuntime
|
|
253
261
|
attach_function :mbstowcs, %i[pointer string size_t], :size_t
|
254
262
|
end
|
255
263
|
end
|
264
|
+
|
265
|
+
# https://github.com/microsoft/onnxruntime/blob/main/include/onnxruntime/core/providers/coreml/coreml_provider_factory.h
|
266
|
+
begin
|
267
|
+
attach_function :OrtSessionOptionsAppendExecutionProvider_CoreML, %i[pointer uint32], :pointer
|
268
|
+
rescue ::FFI::NotFoundError
|
269
|
+
end
|
256
270
|
end
|
257
271
|
end
|
@@ -66,6 +66,13 @@ module OnnxRuntime
|
|
66
66
|
check_status api[:CreateCUDAProviderOptions].call(cuda_options)
|
67
67
|
check_status api[:SessionOptionsAppendExecutionProvider_CUDA_V2].call(session_options.read_pointer, cuda_options.read_pointer)
|
68
68
|
release :CUDAProviderOptions, cuda_options
|
69
|
+
when "CoreMLExecutionProvider"
|
70
|
+
unless FFI.respond_to?(:OrtSessionOptionsAppendExecutionProvider_CoreML)
|
71
|
+
raise ArgumentError, "Provider not available: #{provider}"
|
72
|
+
end
|
73
|
+
|
74
|
+
coreml_flags = 0
|
75
|
+
check_status FFI.OrtSessionOptionsAppendExecutionProvider_CoreML(session_options.read_pointer, coreml_flags)
|
69
76
|
when "CPUExecutionProvider"
|
70
77
|
break
|
71
78
|
else
|
@@ -76,23 +83,36 @@ module OnnxRuntime
|
|
76
83
|
@session = load_session(path_or_bytes, session_options)
|
77
84
|
ObjectSpace.define_finalizer(@session, self.class.finalize(read_pointer.to_i))
|
78
85
|
|
79
|
-
@allocator =
|
86
|
+
@allocator = Utils.allocator
|
80
87
|
@inputs = load_inputs
|
81
88
|
@outputs = load_outputs
|
82
89
|
ensure
|
83
90
|
release :SessionOptions, session_options
|
84
91
|
end
|
85
92
|
|
86
|
-
# TODO support logid
|
87
93
|
def run(output_names, input_feed, log_severity_level: nil, log_verbosity_level: nil, logid: nil, terminate: nil, output_type: :ruby)
|
88
|
-
|
89
|
-
|
94
|
+
if ![:ruby, :numo, :ort_value].include?(output_type)
|
95
|
+
raise ArgumentError, "Invalid output type: #{output_type}"
|
96
|
+
end
|
97
|
+
|
98
|
+
ort_values = input_feed.keys.zip(create_input_tensor(input_feed)).to_h
|
90
99
|
|
91
|
-
|
100
|
+
outputs = run_with_ort_values(output_names, ort_values, log_severity_level: log_severity_level, log_verbosity_level: log_verbosity_level, logid: logid, terminate: terminate)
|
101
|
+
|
102
|
+
outputs.map { |v| output_type == :numo ? v.numo : (output_type == :ort_value ? v : v.to_ruby) }
|
103
|
+
end
|
104
|
+
|
105
|
+
# TODO support logid
|
106
|
+
def run_with_ort_values(output_names, input_feed, log_severity_level: nil, log_verbosity_level: nil, logid: nil, terminate: nil)
|
107
|
+
input_tensor = ::FFI::MemoryPointer.new(:pointer, input_feed.size)
|
108
|
+
input_feed.each_with_index do |(_, input), i|
|
109
|
+
input_tensor[i].write_pointer(input.to_ptr)
|
110
|
+
end
|
92
111
|
|
93
112
|
output_names ||= @outputs.map { |v| v[:name] }
|
94
113
|
|
95
114
|
output_tensor = ::FFI::MemoryPointer.new(:pointer, outputs.size)
|
115
|
+
refs = []
|
96
116
|
input_node_names = create_node_names(input_feed.keys.map(&:to_s), refs)
|
97
117
|
output_node_names = create_node_names(output_names.map(&:to_s), refs)
|
98
118
|
|
@@ -106,17 +126,9 @@ module OnnxRuntime
|
|
106
126
|
|
107
127
|
check_status api[:Run].call(read_pointer, run_options.read_pointer, input_node_names, input_tensor, input_feed.size, output_node_names, output_names.size, output_tensor)
|
108
128
|
|
109
|
-
output_names.size.times.map
|
110
|
-
create_from_onnx_value(output_tensor[i].read_pointer, output_type)
|
111
|
-
end
|
129
|
+
output_names.size.times.map { |i| OrtValue.new(output_tensor[i]) }
|
112
130
|
ensure
|
113
131
|
release :RunOptions, run_options
|
114
|
-
if input_tensor
|
115
|
-
input_feed.size.times do |i|
|
116
|
-
release :Value, input_tensor[i]
|
117
|
-
end
|
118
|
-
end
|
119
|
-
# output values released in create_from_onnx_value
|
120
132
|
end
|
121
133
|
|
122
134
|
def modelmeta
|
@@ -214,12 +226,6 @@ module OnnxRuntime
|
|
214
226
|
session
|
215
227
|
end
|
216
228
|
|
217
|
-
def load_allocator
|
218
|
-
allocator = ::FFI::MemoryPointer.new(:pointer)
|
219
|
-
check_status api[:GetAllocatorWithDefaultOptions].call(allocator)
|
220
|
-
allocator
|
221
|
-
end
|
222
|
-
|
223
229
|
def load_inputs
|
224
230
|
inputs = []
|
225
231
|
num_input_nodes = ::FFI::MemoryPointer.new(:size_t)
|
@@ -230,7 +236,7 @@ module OnnxRuntime
|
|
230
236
|
# freed in node_info
|
231
237
|
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
232
238
|
check_status api[:SessionGetInputTypeInfo].call(read_pointer, i, typeinfo)
|
233
|
-
inputs << {name: name_ptr.read_pointer.read_string}.merge(node_info(typeinfo))
|
239
|
+
inputs << {name: name_ptr.read_pointer.read_string}.merge(Utils.node_info(typeinfo))
|
234
240
|
allocator_free name_ptr
|
235
241
|
end
|
236
242
|
inputs
|
@@ -246,87 +252,28 @@ module OnnxRuntime
|
|
246
252
|
# freed in node_info
|
247
253
|
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
248
254
|
check_status api[:SessionGetOutputTypeInfo].call(read_pointer, i, typeinfo)
|
249
|
-
outputs << {name: name_ptr.read_pointer.read_string}.merge(node_info(typeinfo))
|
255
|
+
outputs << {name: name_ptr.read_pointer.read_string}.merge(Utils.node_info(typeinfo))
|
250
256
|
allocator_free name_ptr
|
251
257
|
end
|
252
258
|
outputs
|
253
259
|
end
|
254
260
|
|
255
|
-
def create_input_tensor(input_feed
|
256
|
-
|
257
|
-
check_status api[:CreateCpuMemoryInfo].call(1, 0, allocator_info)
|
258
|
-
input_tensor = ::FFI::MemoryPointer.new(:pointer, input_feed.size)
|
259
|
-
|
260
|
-
input_feed.each_with_index do |(input_name, input), idx|
|
261
|
-
if numo_array?(input)
|
262
|
-
shape = input.shape
|
263
|
-
else
|
264
|
-
input = input.to_a unless input.is_a?(Array)
|
265
|
-
|
266
|
-
shape = []
|
267
|
-
s = input
|
268
|
-
while s.is_a?(Array)
|
269
|
-
shape << s.size
|
270
|
-
s = s.first
|
271
|
-
end
|
272
|
-
end
|
273
|
-
|
261
|
+
def create_input_tensor(input_feed)
|
262
|
+
input_feed.map do |input_name, input|
|
274
263
|
# TODO support more types
|
275
264
|
inp = @inputs.find { |i| i[:name] == input_name.to_s }
|
276
265
|
raise Error, "Unknown input: #{input_name}" unless inp
|
277
266
|
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
input.size.times.map { |i| ::FFI::MemoryPointer.from_string(input[i]) }
|
285
|
-
else
|
286
|
-
input.flatten.map { |v| ::FFI::MemoryPointer.from_string(v) }
|
287
|
-
end
|
288
|
-
|
289
|
-
input_tensor_values = ::FFI::MemoryPointer.new(:pointer, str_ptrs.size)
|
290
|
-
input_tensor_values.write_array_of_pointer(str_ptrs)
|
291
|
-
|
292
|
-
type_enum = FFI::TensorElementDataType[:string]
|
293
|
-
check_status api[:CreateTensorAsOrtValue].call(@allocator.read_pointer, input_node_dims, shape.size, type_enum, input_tensor[idx])
|
294
|
-
check_status api[:FillStringTensor].call(input_tensor[idx].read_pointer, input_tensor_values, str_ptrs.size)
|
295
|
-
|
296
|
-
refs << str_ptrs
|
267
|
+
if input.is_a?(OrtValue)
|
268
|
+
input
|
269
|
+
elsif inp[:type] == "tensor(string)"
|
270
|
+
OrtValue.from_array(input, element_type: :string)
|
271
|
+
elsif (tensor_type = tensor_types[inp[:type]])
|
272
|
+
OrtValue.from_array(input, element_type: tensor_type)
|
297
273
|
else
|
298
|
-
|
299
|
-
|
300
|
-
if tensor_type
|
301
|
-
if numo_array?(input)
|
302
|
-
input_tensor_values = input.cast_to(numo_types[tensor_type]).to_binary
|
303
|
-
else
|
304
|
-
flat_input = input.flatten.to_a
|
305
|
-
input_tensor_values = ::FFI::MemoryPointer.new(tensor_type, flat_input.size)
|
306
|
-
if tensor_type == :bool
|
307
|
-
input_tensor_values.write_array_of_uint8(flat_input.map { |v| v ? 1 : 0 })
|
308
|
-
else
|
309
|
-
input_tensor_values.send("write_array_of_#{tensor_type}", flat_input)
|
310
|
-
end
|
311
|
-
end
|
312
|
-
|
313
|
-
type_enum = FFI::TensorElementDataType[tensor_type]
|
314
|
-
else
|
315
|
-
unsupported_type("input", inp[:type])
|
316
|
-
end
|
317
|
-
|
318
|
-
check_status api[:CreateTensorWithDataAsOrtValue].call(allocator_info.read_pointer, input_tensor_values, input_tensor_values.size, input_node_dims, shape.size, type_enum, input_tensor[idx])
|
319
|
-
|
320
|
-
refs << input_node_dims
|
321
|
-
refs << input_tensor_values
|
274
|
+
Utils.unsupported_type("input", inp[:type])
|
322
275
|
end
|
323
276
|
end
|
324
|
-
|
325
|
-
refs << allocator_info
|
326
|
-
|
327
|
-
input_tensor
|
328
|
-
ensure
|
329
|
-
release :MemoryInfo, allocator_info
|
330
277
|
end
|
331
278
|
|
332
279
|
def create_node_names(names, refs)
|
@@ -338,230 +285,18 @@ module OnnxRuntime
|
|
338
285
|
ptr
|
339
286
|
end
|
340
287
|
|
341
|
-
def create_from_onnx_value(out_ptr, output_type)
|
342
|
-
out_type = ::FFI::MemoryPointer.new(:int)
|
343
|
-
check_status api[:GetValueType].call(out_ptr, out_type)
|
344
|
-
type = FFI::OnnxType[out_type.read_int]
|
345
|
-
|
346
|
-
case type
|
347
|
-
when :tensor
|
348
|
-
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
349
|
-
check_status api[:GetTensorTypeAndShape].call(out_ptr, typeinfo)
|
350
|
-
|
351
|
-
type, shape = tensor_type_and_shape(typeinfo)
|
352
|
-
|
353
|
-
tensor_data = ::FFI::MemoryPointer.new(:pointer)
|
354
|
-
check_status api[:GetTensorMutableData].call(out_ptr, tensor_data)
|
355
|
-
|
356
|
-
out_size = ::FFI::MemoryPointer.new(:size_t)
|
357
|
-
check_status api[:GetTensorShapeElementCount].call(typeinfo.read_pointer, out_size)
|
358
|
-
output_tensor_size = out_size.read(:size_t)
|
359
|
-
|
360
|
-
release :TensorTypeAndShapeInfo, typeinfo
|
361
|
-
|
362
|
-
# TODO support more types
|
363
|
-
type = FFI::TensorElementDataType[type]
|
364
|
-
|
365
|
-
case output_type
|
366
|
-
when :numo
|
367
|
-
case type
|
368
|
-
when :string
|
369
|
-
result = Numo::RObject.new(shape)
|
370
|
-
result.allocate
|
371
|
-
create_strings_from_onnx_value(out_ptr, output_tensor_size, result)
|
372
|
-
else
|
373
|
-
numo_type = numo_types[type]
|
374
|
-
unsupported_type("element", type) unless numo_type
|
375
|
-
numo_type.from_binary(tensor_data.read_pointer.read_bytes(output_tensor_size * numo_type::ELEMENT_BYTE_SIZE), shape)
|
376
|
-
end
|
377
|
-
when :ruby
|
378
|
-
arr =
|
379
|
-
case type
|
380
|
-
when :float, :uint8, :int8, :uint16, :int16, :int32, :int64, :double, :uint32, :uint64
|
381
|
-
tensor_data.read_pointer.send("read_array_of_#{type}", output_tensor_size)
|
382
|
-
when :bool
|
383
|
-
tensor_data.read_pointer.read_array_of_uint8(output_tensor_size).map { |v| v == 1 }
|
384
|
-
when :string
|
385
|
-
create_strings_from_onnx_value(out_ptr, output_tensor_size, [])
|
386
|
-
else
|
387
|
-
unsupported_type("element", type)
|
388
|
-
end
|
389
|
-
|
390
|
-
Utils.reshape(arr, shape)
|
391
|
-
else
|
392
|
-
raise ArgumentError, "Invalid output type: #{output_type}"
|
393
|
-
end
|
394
|
-
when :sequence
|
395
|
-
out = ::FFI::MemoryPointer.new(:size_t)
|
396
|
-
check_status api[:GetValueCount].call(out_ptr, out)
|
397
|
-
|
398
|
-
out.read(:size_t).times.map do |i|
|
399
|
-
seq = ::FFI::MemoryPointer.new(:pointer)
|
400
|
-
check_status api[:GetValue].call(out_ptr, i, @allocator.read_pointer, seq)
|
401
|
-
create_from_onnx_value(seq.read_pointer, output_type)
|
402
|
-
end
|
403
|
-
when :map
|
404
|
-
type_shape = ::FFI::MemoryPointer.new(:pointer)
|
405
|
-
map_keys = ::FFI::MemoryPointer.new(:pointer)
|
406
|
-
map_values = ::FFI::MemoryPointer.new(:pointer)
|
407
|
-
elem_type = ::FFI::MemoryPointer.new(:int)
|
408
|
-
|
409
|
-
check_status api[:GetValue].call(out_ptr, 0, @allocator.read_pointer, map_keys)
|
410
|
-
check_status api[:GetValue].call(out_ptr, 1, @allocator.read_pointer, map_values)
|
411
|
-
check_status api[:GetTensorTypeAndShape].call(map_keys.read_pointer, type_shape)
|
412
|
-
check_status api[:GetTensorElementType].call(type_shape.read_pointer, elem_type)
|
413
|
-
release :TensorTypeAndShapeInfo, type_shape
|
414
|
-
|
415
|
-
# TODO support more types
|
416
|
-
elem_type = FFI::TensorElementDataType[elem_type.read_int]
|
417
|
-
case elem_type
|
418
|
-
when :int64
|
419
|
-
ret = {}
|
420
|
-
keys = create_from_onnx_value(map_keys.read_pointer, output_type)
|
421
|
-
values = create_from_onnx_value(map_values.read_pointer, output_type)
|
422
|
-
keys.zip(values).each do |k, v|
|
423
|
-
ret[k] = v
|
424
|
-
end
|
425
|
-
ret
|
426
|
-
else
|
427
|
-
unsupported_type("element", elem_type)
|
428
|
-
end
|
429
|
-
else
|
430
|
-
unsupported_type("ONNX", type)
|
431
|
-
end
|
432
|
-
ensure
|
433
|
-
api[:ReleaseValue].call(out_ptr) unless out_ptr.null?
|
434
|
-
end
|
435
|
-
|
436
|
-
def create_strings_from_onnx_value(out_ptr, output_tensor_size, result)
|
437
|
-
len = ::FFI::MemoryPointer.new(:size_t)
|
438
|
-
check_status api[:GetStringTensorDataLength].call(out_ptr, len)
|
439
|
-
|
440
|
-
s_len = len.read(:size_t)
|
441
|
-
s = ::FFI::MemoryPointer.new(:uchar, s_len)
|
442
|
-
offsets = ::FFI::MemoryPointer.new(:size_t, output_tensor_size)
|
443
|
-
check_status api[:GetStringTensorContent].call(out_ptr, s, s_len, offsets, output_tensor_size)
|
444
|
-
|
445
|
-
offsets = output_tensor_size.times.map { |i| offsets[i].read(:size_t) }
|
446
|
-
offsets << s_len
|
447
|
-
output_tensor_size.times do |i|
|
448
|
-
result[i] = s.get_bytes(offsets[i], offsets[i + 1] - offsets[i])
|
449
|
-
end
|
450
|
-
result
|
451
|
-
end
|
452
|
-
|
453
288
|
def read_pointer
|
454
289
|
@session.read_pointer
|
455
290
|
end
|
456
291
|
|
457
292
|
def check_status(status)
|
458
|
-
|
459
|
-
message = api[:GetErrorMessage].call(status).read_string
|
460
|
-
api[:ReleaseStatus].call(status)
|
461
|
-
raise Error, message
|
462
|
-
end
|
463
|
-
end
|
464
|
-
|
465
|
-
def node_info(typeinfo)
|
466
|
-
onnx_type = ::FFI::MemoryPointer.new(:int)
|
467
|
-
check_status api[:GetOnnxTypeFromTypeInfo].call(typeinfo.read_pointer, onnx_type)
|
468
|
-
|
469
|
-
type = FFI::OnnxType[onnx_type.read_int]
|
470
|
-
case type
|
471
|
-
when :tensor
|
472
|
-
tensor_info = ::FFI::MemoryPointer.new(:pointer)
|
473
|
-
# don't free tensor_info
|
474
|
-
check_status api[:CastTypeInfoToTensorInfo].call(typeinfo.read_pointer, tensor_info)
|
475
|
-
|
476
|
-
type, shape = tensor_type_and_shape(tensor_info)
|
477
|
-
{
|
478
|
-
type: "tensor(#{FFI::TensorElementDataType[type]})",
|
479
|
-
shape: shape
|
480
|
-
}
|
481
|
-
when :sequence
|
482
|
-
sequence_type_info = ::FFI::MemoryPointer.new(:pointer)
|
483
|
-
check_status api[:CastTypeInfoToSequenceTypeInfo].call(typeinfo.read_pointer, sequence_type_info)
|
484
|
-
nested_type_info = ::FFI::MemoryPointer.new(:pointer)
|
485
|
-
check_status api[:GetSequenceElementType].call(sequence_type_info.read_pointer, nested_type_info)
|
486
|
-
v = node_info(nested_type_info)[:type]
|
487
|
-
|
488
|
-
{
|
489
|
-
type: "seq(#{v})",
|
490
|
-
shape: []
|
491
|
-
}
|
492
|
-
when :map
|
493
|
-
map_type_info = ::FFI::MemoryPointer.new(:pointer)
|
494
|
-
check_status api[:CastTypeInfoToMapTypeInfo].call(typeinfo.read_pointer, map_type_info)
|
495
|
-
|
496
|
-
# key
|
497
|
-
key_type = ::FFI::MemoryPointer.new(:int)
|
498
|
-
check_status api[:GetMapKeyType].call(map_type_info.read_pointer, key_type)
|
499
|
-
k = FFI::TensorElementDataType[key_type.read_int]
|
500
|
-
|
501
|
-
# value
|
502
|
-
value_type_info = ::FFI::MemoryPointer.new(:pointer)
|
503
|
-
check_status api[:GetMapValueType].call(map_type_info.read_pointer, value_type_info)
|
504
|
-
v = node_info(value_type_info)[:type]
|
505
|
-
|
506
|
-
{
|
507
|
-
type: "map(#{k},#{v})",
|
508
|
-
shape: []
|
509
|
-
}
|
510
|
-
else
|
511
|
-
unsupported_type("ONNX", type)
|
512
|
-
end
|
513
|
-
ensure
|
514
|
-
release :TypeInfo, typeinfo
|
515
|
-
end
|
516
|
-
|
517
|
-
def tensor_type_and_shape(tensor_info)
|
518
|
-
type = ::FFI::MemoryPointer.new(:int)
|
519
|
-
check_status api[:GetTensorElementType].call(tensor_info.read_pointer, type)
|
520
|
-
|
521
|
-
num_dims_ptr = ::FFI::MemoryPointer.new(:size_t)
|
522
|
-
check_status api[:GetDimensionsCount].call(tensor_info.read_pointer, num_dims_ptr)
|
523
|
-
num_dims = num_dims_ptr.read(:size_t)
|
524
|
-
|
525
|
-
node_dims = ::FFI::MemoryPointer.new(:int64, num_dims)
|
526
|
-
check_status api[:GetDimensions].call(tensor_info.read_pointer, node_dims, num_dims)
|
527
|
-
dims = node_dims.read_array_of_int64(num_dims)
|
528
|
-
|
529
|
-
symbolic_dims = ::FFI::MemoryPointer.new(:pointer, num_dims)
|
530
|
-
check_status api[:GetSymbolicDimensions].call(tensor_info.read_pointer, symbolic_dims, num_dims)
|
531
|
-
named_dims = num_dims.times.map { |i| symbolic_dims[i].read_pointer.read_string }
|
532
|
-
dims = named_dims.zip(dims).map { |n, d| n.empty? ? d : n }
|
533
|
-
|
534
|
-
[type.read_int, dims]
|
535
|
-
end
|
536
|
-
|
537
|
-
def unsupported_type(name, type)
|
538
|
-
raise Error, "Unsupported #{name} type: #{type}"
|
293
|
+
Utils.check_status(status)
|
539
294
|
end
|
540
295
|
|
541
296
|
def tensor_types
|
542
297
|
@tensor_types ||= [:float, :uint8, :int8, :uint16, :int16, :int32, :int64, :bool, :double, :uint32, :uint64].map { |v| ["tensor(#{v})", v] }.to_h
|
543
298
|
end
|
544
299
|
|
545
|
-
def numo_array?(obj)
|
546
|
-
defined?(Numo::NArray) && obj.is_a?(Numo::NArray)
|
547
|
-
end
|
548
|
-
|
549
|
-
def numo_types
|
550
|
-
@numo_types ||= {
|
551
|
-
float: Numo::SFloat,
|
552
|
-
uint8: Numo::UInt8,
|
553
|
-
int8: Numo::Int8,
|
554
|
-
uint16: Numo::UInt16,
|
555
|
-
int16: Numo::Int16,
|
556
|
-
int32: Numo::Int32,
|
557
|
-
int64: Numo::Int64,
|
558
|
-
bool: Numo::UInt8,
|
559
|
-
double: Numo::DFloat,
|
560
|
-
uint32: Numo::UInt32,
|
561
|
-
uint64: Numo::UInt64
|
562
|
-
}
|
563
|
-
end
|
564
|
-
|
565
300
|
def api
|
566
301
|
self.class.api
|
567
302
|
end
|
@@ -575,11 +310,11 @@ module OnnxRuntime
|
|
575
310
|
end
|
576
311
|
|
577
312
|
def self.api
|
578
|
-
|
313
|
+
FFI.api
|
579
314
|
end
|
580
315
|
|
581
316
|
def self.release(type, pointer)
|
582
|
-
|
317
|
+
Utils.release(type, pointer)
|
583
318
|
end
|
584
319
|
|
585
320
|
def self.finalize(addr)
|
@@ -0,0 +1,278 @@
|
|
1
|
+
module OnnxRuntime
|
2
|
+
class OrtValue
|
3
|
+
def initialize(ptr, ref = nil)
|
4
|
+
@ptr = ptr.read_pointer
|
5
|
+
@ref = ref # keep reference to data
|
6
|
+
ObjectSpace.define_finalizer(@ptr, self.class.finalize(@ptr.to_i))
|
7
|
+
end
|
8
|
+
|
9
|
+
def self.from_numo(numo_obj)
|
10
|
+
element_type = numo_obj.is_a?(Numo::Bit) ? :bool : Utils.numo_types.invert[numo_obj.class]
|
11
|
+
Utils.unsupported_type("Numo", numo_obj.class.name) unless element_type
|
12
|
+
|
13
|
+
from_array(numo_obj, element_type: element_type)
|
14
|
+
end
|
15
|
+
|
16
|
+
def self.from_array(input, element_type:)
|
17
|
+
type_enum = FFI::TensorElementDataType[element_type]
|
18
|
+
Utils.unsupported_type("element", element_type) unless type_enum
|
19
|
+
|
20
|
+
input = input.to_a unless input.is_a?(Array) || Utils.numo_array?(input)
|
21
|
+
|
22
|
+
shape = Utils.input_shape(input)
|
23
|
+
input_node_dims = ::FFI::MemoryPointer.new(:int64, shape.size)
|
24
|
+
input_node_dims.write_array_of_int64(shape)
|
25
|
+
|
26
|
+
ptr = ::FFI::MemoryPointer.new(:pointer)
|
27
|
+
if element_type == :string
|
28
|
+
# keep reference to _str_ptrs until FillStringTensor call
|
29
|
+
input_tensor_values, _str_ptrs = create_input_strings(input)
|
30
|
+
Utils.check_status FFI.api[:CreateTensorAsOrtValue].call(Utils.allocator.read_pointer, input_node_dims, shape.size, type_enum, ptr)
|
31
|
+
Utils.check_status FFI.api[:FillStringTensor].call(ptr.read_pointer, input_tensor_values, input_tensor_values.size / input_tensor_values.type_size)
|
32
|
+
else
|
33
|
+
input_tensor_values = create_input_data(input, element_type)
|
34
|
+
Utils.check_status FFI.api[:CreateTensorWithDataAsOrtValue].call(allocator_info.read_pointer, input_tensor_values, input_tensor_values.size, input_node_dims, shape.size, type_enum, ptr)
|
35
|
+
end
|
36
|
+
|
37
|
+
new(ptr, input_tensor_values)
|
38
|
+
end
|
39
|
+
|
40
|
+
def self.from_shape_and_type(shape, element_type)
|
41
|
+
type_enum = FFI::TensorElementDataType[element_type]
|
42
|
+
Utils.unsupported_type("element", element_type) unless type_enum
|
43
|
+
|
44
|
+
input_node_dims = ::FFI::MemoryPointer.new(:int64, shape.size)
|
45
|
+
input_node_dims.write_array_of_int64(shape)
|
46
|
+
|
47
|
+
ptr = ::FFI::MemoryPointer.new(:pointer)
|
48
|
+
Utils.check_status FFI.api[:CreateTensorAsOrtValue].call(Utils.allocator.read_pointer, input_node_dims, shape.size, type_enum, ptr)
|
49
|
+
|
50
|
+
new(ptr)
|
51
|
+
end
|
52
|
+
|
53
|
+
def self.create_input_data(input, tensor_type)
|
54
|
+
if Utils.numo_array?(input)
|
55
|
+
input.cast_to(Utils.numo_types[tensor_type]).to_binary
|
56
|
+
else
|
57
|
+
flat_input = input.flatten.to_a
|
58
|
+
input_tensor_values = ::FFI::MemoryPointer.new(tensor_type, flat_input.size)
|
59
|
+
if tensor_type == :bool
|
60
|
+
input_tensor_values.write_array_of_uint8(flat_input.map { |v| v ? 1 : 0 })
|
61
|
+
else
|
62
|
+
input_tensor_values.send("write_array_of_#{tensor_type}", flat_input)
|
63
|
+
end
|
64
|
+
input_tensor_values
|
65
|
+
end
|
66
|
+
end
|
67
|
+
private_class_method :create_input_data
|
68
|
+
|
69
|
+
def self.create_input_strings(input)
|
70
|
+
str_ptrs =
|
71
|
+
if Utils.numo_array?(input)
|
72
|
+
input.size.times.map { |i| ::FFI::MemoryPointer.from_string(input[i]) }
|
73
|
+
else
|
74
|
+
input.flatten.map { |v| ::FFI::MemoryPointer.from_string(v) }
|
75
|
+
end
|
76
|
+
|
77
|
+
input_tensor_values = ::FFI::MemoryPointer.new(:pointer, str_ptrs.size)
|
78
|
+
input_tensor_values.write_array_of_pointer(str_ptrs)
|
79
|
+
[input_tensor_values, str_ptrs]
|
80
|
+
end
|
81
|
+
private_class_method :create_input_strings
|
82
|
+
|
83
|
+
def tensor?
|
84
|
+
FFI::OnnxType[value_type] == :tensor
|
85
|
+
end
|
86
|
+
|
87
|
+
def data_type
|
88
|
+
@data_type ||= begin
|
89
|
+
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
90
|
+
Utils.check_status FFI.api[:GetTypeInfo].call(@ptr, typeinfo)
|
91
|
+
Utils.node_info(typeinfo)[:type]
|
92
|
+
end
|
93
|
+
end
|
94
|
+
|
95
|
+
def element_type
|
96
|
+
FFI::TensorElementDataType[type_and_shape_info[0]]
|
97
|
+
end
|
98
|
+
|
99
|
+
def shape
|
100
|
+
type_and_shape_info[1]
|
101
|
+
end
|
102
|
+
|
103
|
+
def device_name
|
104
|
+
"cpu"
|
105
|
+
end
|
106
|
+
|
107
|
+
def numo
|
108
|
+
create_from_onnx_value(@ptr, :numo)
|
109
|
+
end
|
110
|
+
|
111
|
+
def to_ruby
|
112
|
+
create_from_onnx_value(@ptr, :ruby)
|
113
|
+
end
|
114
|
+
|
115
|
+
def to_ptr
|
116
|
+
@ptr
|
117
|
+
end
|
118
|
+
|
119
|
+
def data_ptr
|
120
|
+
tensor_data = ::FFI::MemoryPointer.new(:pointer)
|
121
|
+
FFI.api[:GetTensorMutableData].call(@ptr, tensor_data)
|
122
|
+
tensor_data.read_pointer
|
123
|
+
end
|
124
|
+
|
125
|
+
private
|
126
|
+
|
127
|
+
def value_type
|
128
|
+
@value_type ||= begin
|
129
|
+
out_type = ::FFI::MemoryPointer.new(:int)
|
130
|
+
Utils.check_status FFI.api[:GetValueType].call(@ptr, out_type)
|
131
|
+
out_type.read_int
|
132
|
+
end
|
133
|
+
end
|
134
|
+
|
135
|
+
def type_and_shape_info
|
136
|
+
@type_and_shape_info ||= begin
|
137
|
+
begin
|
138
|
+
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
139
|
+
Utils.check_status FFI.api[:GetTensorTypeAndShape].call(@ptr, typeinfo)
|
140
|
+
Utils.tensor_type_and_shape(typeinfo)
|
141
|
+
ensure
|
142
|
+
Utils.release :TensorTypeAndShapeInfo, typeinfo
|
143
|
+
end
|
144
|
+
end
|
145
|
+
end
|
146
|
+
|
147
|
+
def create_from_onnx_value(out_ptr, output_type)
|
148
|
+
out_type = ::FFI::MemoryPointer.new(:int)
|
149
|
+
Utils.check_status FFI.api[:GetValueType].call(out_ptr, out_type)
|
150
|
+
type = FFI::OnnxType[out_type.read_int]
|
151
|
+
|
152
|
+
case type
|
153
|
+
when :tensor
|
154
|
+
typeinfo = ::FFI::MemoryPointer.new(:pointer)
|
155
|
+
Utils.check_status FFI.api[:GetTensorTypeAndShape].call(out_ptr, typeinfo)
|
156
|
+
|
157
|
+
type, shape = Utils.tensor_type_and_shape(typeinfo)
|
158
|
+
|
159
|
+
tensor_data = ::FFI::MemoryPointer.new(:pointer)
|
160
|
+
Utils.check_status FFI.api[:GetTensorMutableData].call(out_ptr, tensor_data)
|
161
|
+
|
162
|
+
out_size = ::FFI::MemoryPointer.new(:size_t)
|
163
|
+
Utils.check_status FFI.api[:GetTensorShapeElementCount].call(typeinfo.read_pointer, out_size)
|
164
|
+
output_tensor_size = out_size.read(:size_t)
|
165
|
+
|
166
|
+
Utils.release :TensorTypeAndShapeInfo, typeinfo
|
167
|
+
|
168
|
+
# TODO support more types
|
169
|
+
type = FFI::TensorElementDataType[type]
|
170
|
+
|
171
|
+
case output_type
|
172
|
+
when :numo
|
173
|
+
case type
|
174
|
+
when :string
|
175
|
+
result = Numo::RObject.new(shape)
|
176
|
+
result.allocate
|
177
|
+
create_strings_from_onnx_value(out_ptr, output_tensor_size, result)
|
178
|
+
else
|
179
|
+
numo_type = Utils.numo_types[type]
|
180
|
+
Utils.unsupported_type("element", type) unless numo_type
|
181
|
+
numo_type.from_binary(tensor_data.read_pointer.read_bytes(output_tensor_size * numo_type::ELEMENT_BYTE_SIZE), shape)
|
182
|
+
end
|
183
|
+
when :ruby
|
184
|
+
arr =
|
185
|
+
case type
|
186
|
+
when :float, :uint8, :int8, :uint16, :int16, :int32, :int64, :double, :uint32, :uint64
|
187
|
+
tensor_data.read_pointer.send("read_array_of_#{type}", output_tensor_size)
|
188
|
+
when :bool
|
189
|
+
tensor_data.read_pointer.read_array_of_uint8(output_tensor_size).map { |v| v == 1 }
|
190
|
+
when :string
|
191
|
+
create_strings_from_onnx_value(out_ptr, output_tensor_size, [])
|
192
|
+
else
|
193
|
+
Utils.unsupported_type("element", type)
|
194
|
+
end
|
195
|
+
|
196
|
+
reshape(arr, shape)
|
197
|
+
else
|
198
|
+
raise ArgumentError, "Invalid output type: #{output_type}"
|
199
|
+
end
|
200
|
+
when :sequence
|
201
|
+
out = ::FFI::MemoryPointer.new(:size_t)
|
202
|
+
Utils.check_status FFI.api[:GetValueCount].call(out_ptr, out)
|
203
|
+
|
204
|
+
out.read(:size_t).times.map do |i|
|
205
|
+
seq = ::FFI::MemoryPointer.new(:pointer)
|
206
|
+
Utils.check_status FFI.api[:GetValue].call(out_ptr, i, Utils.allocator.read_pointer, seq)
|
207
|
+
create_from_onnx_value(seq.read_pointer, output_type)
|
208
|
+
end
|
209
|
+
when :map
|
210
|
+
type_shape = ::FFI::MemoryPointer.new(:pointer)
|
211
|
+
map_keys = ::FFI::MemoryPointer.new(:pointer)
|
212
|
+
map_values = ::FFI::MemoryPointer.new(:pointer)
|
213
|
+
elem_type = ::FFI::MemoryPointer.new(:int)
|
214
|
+
|
215
|
+
Utils.check_status FFI.api[:GetValue].call(out_ptr, 0, Utils.allocator.read_pointer, map_keys)
|
216
|
+
Utils.check_status FFI.api[:GetValue].call(out_ptr, 1, Utils.allocator.read_pointer, map_values)
|
217
|
+
Utils.check_status FFI.api[:GetTensorTypeAndShape].call(map_keys.read_pointer, type_shape)
|
218
|
+
Utils.check_status FFI.api[:GetTensorElementType].call(type_shape.read_pointer, elem_type)
|
219
|
+
Utils.release :TensorTypeAndShapeInfo, type_shape
|
220
|
+
|
221
|
+
# TODO support more types
|
222
|
+
elem_type = FFI::TensorElementDataType[elem_type.read_int]
|
223
|
+
case elem_type
|
224
|
+
when :int64
|
225
|
+
ret = {}
|
226
|
+
keys = create_from_onnx_value(map_keys.read_pointer, output_type)
|
227
|
+
values = create_from_onnx_value(map_values.read_pointer, output_type)
|
228
|
+
keys.zip(values).each do |k, v|
|
229
|
+
ret[k] = v
|
230
|
+
end
|
231
|
+
ret
|
232
|
+
else
|
233
|
+
Utils.unsupported_type("element", elem_type)
|
234
|
+
end
|
235
|
+
else
|
236
|
+
Utils.unsupported_type("ONNX", type)
|
237
|
+
end
|
238
|
+
end
|
239
|
+
|
240
|
+
def create_strings_from_onnx_value(out_ptr, output_tensor_size, result)
|
241
|
+
len = ::FFI::MemoryPointer.new(:size_t)
|
242
|
+
Utils.check_status FFI.api[:GetStringTensorDataLength].call(out_ptr, len)
|
243
|
+
|
244
|
+
s_len = len.read(:size_t)
|
245
|
+
s = ::FFI::MemoryPointer.new(:uchar, s_len)
|
246
|
+
offsets = ::FFI::MemoryPointer.new(:size_t, output_tensor_size)
|
247
|
+
Utils.check_status FFI.api[:GetStringTensorContent].call(out_ptr, s, s_len, offsets, output_tensor_size)
|
248
|
+
|
249
|
+
offsets = output_tensor_size.times.map { |i| offsets[i].read(:size_t) }
|
250
|
+
offsets << s_len
|
251
|
+
output_tensor_size.times do |i|
|
252
|
+
result[i] = s.get_bytes(offsets[i], offsets[i + 1] - offsets[i])
|
253
|
+
end
|
254
|
+
result
|
255
|
+
end
|
256
|
+
|
257
|
+
def reshape(arr, dims)
|
258
|
+
arr = arr.flatten
|
259
|
+
dims[1..-1].reverse_each do |dim|
|
260
|
+
arr = arr.each_slice(dim)
|
261
|
+
end
|
262
|
+
arr.to_a
|
263
|
+
end
|
264
|
+
|
265
|
+
def self.finalize(addr)
|
266
|
+
# must use proc instead of stabby lambda
|
267
|
+
proc { FFI.api[:ReleaseValue].call(::FFI::Pointer.new(:pointer, addr)) }
|
268
|
+
end
|
269
|
+
|
270
|
+
def self.allocator_info
|
271
|
+
@allocator_info ||= begin
|
272
|
+
allocator_info = ::FFI::MemoryPointer.new(:pointer)
|
273
|
+
Utils.check_status FFI.api[:CreateCpuMemoryInfo].call(1, 0, allocator_info)
|
274
|
+
allocator_info
|
275
|
+
end
|
276
|
+
end
|
277
|
+
end
|
278
|
+
end
|
data/lib/onnxruntime/utils.rb
CHANGED
@@ -5,12 +5,138 @@ module OnnxRuntime
|
|
5
5
|
end
|
6
6
|
self.mutex = Mutex.new
|
7
7
|
|
8
|
-
def self.
|
9
|
-
|
10
|
-
|
11
|
-
|
8
|
+
def self.check_status(status)
|
9
|
+
unless status.null?
|
10
|
+
message = api[:GetErrorMessage].call(status).read_string
|
11
|
+
api[:ReleaseStatus].call(status)
|
12
|
+
raise Error, message
|
13
|
+
end
|
14
|
+
end
|
15
|
+
|
16
|
+
def self.api
|
17
|
+
FFI.api
|
18
|
+
end
|
19
|
+
|
20
|
+
def self.release(type, pointer)
|
21
|
+
FFI.api[:"Release#{type}"].call(pointer.read_pointer) if pointer && !pointer.null?
|
22
|
+
end
|
23
|
+
|
24
|
+
def self.unsupported_type(name, type)
|
25
|
+
raise Error, "Unsupported #{name} type: #{type}"
|
26
|
+
end
|
27
|
+
|
28
|
+
def self.tensor_type_and_shape(tensor_info)
|
29
|
+
type = ::FFI::MemoryPointer.new(:int)
|
30
|
+
check_status api[:GetTensorElementType].call(tensor_info.read_pointer, type)
|
31
|
+
|
32
|
+
num_dims_ptr = ::FFI::MemoryPointer.new(:size_t)
|
33
|
+
check_status api[:GetDimensionsCount].call(tensor_info.read_pointer, num_dims_ptr)
|
34
|
+
num_dims = num_dims_ptr.read(:size_t)
|
35
|
+
|
36
|
+
node_dims = ::FFI::MemoryPointer.new(:int64, num_dims)
|
37
|
+
check_status api[:GetDimensions].call(tensor_info.read_pointer, node_dims, num_dims)
|
38
|
+
dims = node_dims.read_array_of_int64(num_dims)
|
39
|
+
|
40
|
+
symbolic_dims = ::FFI::MemoryPointer.new(:pointer, num_dims)
|
41
|
+
check_status api[:GetSymbolicDimensions].call(tensor_info.read_pointer, symbolic_dims, num_dims)
|
42
|
+
named_dims = num_dims.times.map { |i| symbolic_dims[i].read_pointer.read_string }
|
43
|
+
dims = named_dims.zip(dims).map { |n, d| n.empty? ? d : n }
|
44
|
+
|
45
|
+
[type.read_int, dims]
|
46
|
+
end
|
47
|
+
|
48
|
+
def self.node_info(typeinfo)
|
49
|
+
onnx_type = ::FFI::MemoryPointer.new(:int)
|
50
|
+
check_status api[:GetOnnxTypeFromTypeInfo].call(typeinfo.read_pointer, onnx_type)
|
51
|
+
|
52
|
+
type = FFI::OnnxType[onnx_type.read_int]
|
53
|
+
case type
|
54
|
+
when :tensor
|
55
|
+
tensor_info = ::FFI::MemoryPointer.new(:pointer)
|
56
|
+
# don't free tensor_info
|
57
|
+
check_status api[:CastTypeInfoToTensorInfo].call(typeinfo.read_pointer, tensor_info)
|
58
|
+
|
59
|
+
type, shape = Utils.tensor_type_and_shape(tensor_info)
|
60
|
+
{
|
61
|
+
type: "tensor(#{FFI::TensorElementDataType[type]})",
|
62
|
+
shape: shape
|
63
|
+
}
|
64
|
+
when :sequence
|
65
|
+
sequence_type_info = ::FFI::MemoryPointer.new(:pointer)
|
66
|
+
check_status api[:CastTypeInfoToSequenceTypeInfo].call(typeinfo.read_pointer, sequence_type_info)
|
67
|
+
nested_type_info = ::FFI::MemoryPointer.new(:pointer)
|
68
|
+
check_status api[:GetSequenceElementType].call(sequence_type_info.read_pointer, nested_type_info)
|
69
|
+
v = node_info(nested_type_info)[:type]
|
70
|
+
|
71
|
+
{
|
72
|
+
type: "seq(#{v})",
|
73
|
+
shape: []
|
74
|
+
}
|
75
|
+
when :map
|
76
|
+
map_type_info = ::FFI::MemoryPointer.new(:pointer)
|
77
|
+
check_status api[:CastTypeInfoToMapTypeInfo].call(typeinfo.read_pointer, map_type_info)
|
78
|
+
|
79
|
+
# key
|
80
|
+
key_type = ::FFI::MemoryPointer.new(:int)
|
81
|
+
check_status api[:GetMapKeyType].call(map_type_info.read_pointer, key_type)
|
82
|
+
k = FFI::TensorElementDataType[key_type.read_int]
|
83
|
+
|
84
|
+
# value
|
85
|
+
value_type_info = ::FFI::MemoryPointer.new(:pointer)
|
86
|
+
check_status api[:GetMapValueType].call(map_type_info.read_pointer, value_type_info)
|
87
|
+
v = node_info(value_type_info)[:type]
|
88
|
+
|
89
|
+
{
|
90
|
+
type: "map(#{k},#{v})",
|
91
|
+
shape: []
|
92
|
+
}
|
93
|
+
else
|
94
|
+
Utils.unsupported_type("ONNX", type)
|
95
|
+
end
|
96
|
+
ensure
|
97
|
+
release :TypeInfo, typeinfo
|
98
|
+
end
|
99
|
+
|
100
|
+
def self.numo_array?(obj)
|
101
|
+
defined?(Numo::NArray) && obj.is_a?(Numo::NArray)
|
102
|
+
end
|
103
|
+
|
104
|
+
def self.numo_types
|
105
|
+
@numo_types ||= {
|
106
|
+
float: Numo::SFloat,
|
107
|
+
uint8: Numo::UInt8,
|
108
|
+
int8: Numo::Int8,
|
109
|
+
uint16: Numo::UInt16,
|
110
|
+
int16: Numo::Int16,
|
111
|
+
int32: Numo::Int32,
|
112
|
+
int64: Numo::Int64,
|
113
|
+
bool: Numo::UInt8,
|
114
|
+
double: Numo::DFloat,
|
115
|
+
uint32: Numo::UInt32,
|
116
|
+
uint64: Numo::UInt64
|
117
|
+
}
|
118
|
+
end
|
119
|
+
|
120
|
+
def self.input_shape(input)
|
121
|
+
if numo_array?(input)
|
122
|
+
input.shape
|
123
|
+
else
|
124
|
+
shape = []
|
125
|
+
s = input
|
126
|
+
while s.is_a?(Array)
|
127
|
+
shape << s.size
|
128
|
+
s = s.first
|
129
|
+
end
|
130
|
+
shape
|
131
|
+
end
|
132
|
+
end
|
133
|
+
|
134
|
+
def self.allocator
|
135
|
+
@allocator ||= begin
|
136
|
+
allocator = ::FFI::MemoryPointer.new(:pointer)
|
137
|
+
check_status api[:GetAllocatorWithDefaultOptions].call(allocator)
|
138
|
+
allocator
|
12
139
|
end
|
13
|
-
arr.to_a
|
14
140
|
end
|
15
141
|
end
|
16
142
|
end
|
data/lib/onnxruntime/version.rb
CHANGED
data/lib/onnxruntime.rb
CHANGED
@@ -5,6 +5,7 @@ require "ffi"
|
|
5
5
|
require_relative "onnxruntime/datasets"
|
6
6
|
require_relative "onnxruntime/inference_session"
|
7
7
|
require_relative "onnxruntime/model"
|
8
|
+
require_relative "onnxruntime/ort_value"
|
8
9
|
require_relative "onnxruntime/utils"
|
9
10
|
require_relative "onnxruntime/version"
|
10
11
|
|
@@ -4820,7 +4820,7 @@ SOFTWARE.
|
|
4820
4820
|
|
4821
4821
|
----------------------------------------------------------------------------
|
4822
4822
|
|
4823
|
-
This is the MIT/Expat
|
4823
|
+
This is the MIT/Expat License. For more information see:
|
4824
4824
|
|
4825
4825
|
1. http://www.opensource.org/licenses/mit-license.php
|
4826
4826
|
|
Binary file
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: onnxruntime
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.9.
|
4
|
+
version: 0.9.3
|
5
5
|
platform: arm64-darwin
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-11-01 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: ffi
|
@@ -38,6 +38,7 @@ files:
|
|
38
38
|
- lib/onnxruntime/ffi.rb
|
39
39
|
- lib/onnxruntime/inference_session.rb
|
40
40
|
- lib/onnxruntime/model.rb
|
41
|
+
- lib/onnxruntime/ort_value.rb
|
41
42
|
- lib/onnxruntime/utils.rb
|
42
43
|
- lib/onnxruntime/version.rb
|
43
44
|
- vendor/LICENSE
|
@@ -62,7 +63,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
62
63
|
- !ruby/object:Gem::Version
|
63
64
|
version: '0'
|
64
65
|
requirements: []
|
65
|
-
rubygems_version: 3.5.
|
66
|
+
rubygems_version: 3.5.16
|
66
67
|
signing_key:
|
67
68
|
specification_version: 4
|
68
69
|
summary: High performance scoring engine for ML models
|