onnxruntime 0.9.1-aarch64-linux → 0.9.2-aarch64-linux
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +12 -2
- data/lib/onnxruntime/ffi.rb +11 -1
- data/lib/onnxruntime/inference_session.rb +61 -50
- data/lib/onnxruntime/version.rb +1 -1
- data/vendor/ThirdPartyNotices.txt +1 -1
- data/vendor/libonnxruntime.arm64.so +0 -0
- metadata +3 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 52e865156423eb866f07a8e2e13961a7376da543f93ed1b5dbcff08bfc2bf88d
|
4
|
+
data.tar.gz: a5d82e576c5f8a4528dd14efe4ec8bd508933da2a954118f7ff105a8193bd389
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 655c0c752e56372ae2b37710d4e8e2864f67431be48f834588160f61b1a6ecb93874de75f5f892115925d3fbfd78a820df08f5d3cde2405b9807908d80b19e21
|
7
|
+
data.tar.gz: 2b64c39e0ed3c09072b2f70691a4b1ce805616d2b397a563cbf2ed9270e46fb0422cbe3b5b385311c8f8f9ef384ee86545558185049ac1652a9c01dc1f71aa55
|
data/CHANGELOG.md
CHANGED
data/README.md
CHANGED
@@ -4,7 +4,7 @@
|
|
4
4
|
|
5
5
|
Check out [an example](https://ankane.org/tensorflow-ruby)
|
6
6
|
|
7
|
-
[![Build Status](https://github.com/ankane/onnxruntime-ruby/workflows/build/badge.svg
|
7
|
+
[![Build Status](https://github.com/ankane/onnxruntime-ruby/actions/workflows/build.yml/badge.svg)](https://github.com/ankane/onnxruntime-ruby/actions)
|
8
8
|
|
9
9
|
## Installation
|
10
10
|
|
@@ -108,7 +108,9 @@ OnnxRuntime::Datasets.example("sigmoid.onnx")
|
|
108
108
|
|
109
109
|
## GPU Support
|
110
110
|
|
111
|
-
|
111
|
+
### Linux and Windows
|
112
|
+
|
113
|
+
Download the appropriate [GPU release](https://github.com/microsoft/onnxruntime/releases) and set:
|
112
114
|
|
113
115
|
```ruby
|
114
116
|
OnnxRuntime.ffi_lib = "path/to/lib/libonnxruntime.so" # onnxruntime.dll for Windows
|
@@ -120,6 +122,14 @@ and use:
|
|
120
122
|
model = OnnxRuntime::Model.new("model.onnx", providers: ["CUDAExecutionProvider"])
|
121
123
|
```
|
122
124
|
|
125
|
+
### Mac
|
126
|
+
|
127
|
+
Use:
|
128
|
+
|
129
|
+
```ruby
|
130
|
+
model = OnnxRuntime::Model.new("model.onnx", providers: ["CoreMLExecutionProvider"])
|
131
|
+
```
|
132
|
+
|
123
133
|
## History
|
124
134
|
|
125
135
|
View the [changelog](https://github.com/ankane/onnxruntime-ruby/blob/master/CHANGELOG.md)
|
data/lib/onnxruntime/ffi.rb
CHANGED
@@ -144,7 +144,7 @@ module OnnxRuntime
|
|
144
144
|
:ReleaseAvailableProviders, callback(%i[pointer int], :pointer),
|
145
145
|
:GetStringTensorElementLength, callback(%i[], :pointer),
|
146
146
|
:GetStringTensorElement, callback(%i[], :pointer),
|
147
|
-
:FillStringTensorElement, callback(%i[], :pointer),
|
147
|
+
:FillStringTensorElement, callback(%i[pointer string size_t], :pointer),
|
148
148
|
:AddSessionConfigEntry, callback(%i[pointer string string], :pointer),
|
149
149
|
:CreateAllocator, callback(%i[], :pointer),
|
150
150
|
:ReleaseAllocator, callback(%i[], :pointer),
|
@@ -246,6 +246,10 @@ module OnnxRuntime
|
|
246
246
|
|
247
247
|
attach_function :OrtGetApiBase, %i[], ApiBase.by_ref
|
248
248
|
|
249
|
+
def self.api
|
250
|
+
@api ||= self.OrtGetApiBase[:GetApi].call(ORT_API_VERSION)
|
251
|
+
end
|
252
|
+
|
249
253
|
if Gem.win_platform?
|
250
254
|
class Libc
|
251
255
|
extend ::FFI::Library
|
@@ -253,5 +257,11 @@ module OnnxRuntime
|
|
253
257
|
attach_function :mbstowcs, %i[pointer string size_t], :size_t
|
254
258
|
end
|
255
259
|
end
|
260
|
+
|
261
|
+
# https://github.com/microsoft/onnxruntime/blob/main/include/onnxruntime/core/providers/coreml/coreml_provider_factory.h
|
262
|
+
begin
|
263
|
+
attach_function :OrtSessionOptionsAppendExecutionProvider_CoreML, %i[pointer uint32], :pointer
|
264
|
+
rescue ::FFI::NotFoundError
|
265
|
+
end
|
256
266
|
end
|
257
267
|
end
|
@@ -66,6 +66,13 @@ module OnnxRuntime
|
|
66
66
|
check_status api[:CreateCUDAProviderOptions].call(cuda_options)
|
67
67
|
check_status api[:SessionOptionsAppendExecutionProvider_CUDA_V2].call(session_options.read_pointer, cuda_options.read_pointer)
|
68
68
|
release :CUDAProviderOptions, cuda_options
|
69
|
+
when "CoreMLExecutionProvider"
|
70
|
+
unless FFI.respond_to?(:OrtSessionOptionsAppendExecutionProvider_CoreML)
|
71
|
+
raise ArgumentError, "Provider not available: #{provider}"
|
72
|
+
end
|
73
|
+
|
74
|
+
coreml_flags = 0
|
75
|
+
check_status FFI.OrtSessionOptionsAppendExecutionProvider_CoreML(session_options.read_pointer, coreml_flags)
|
69
76
|
when "CPUExecutionProvider"
|
70
77
|
break
|
71
78
|
else
|
@@ -258,77 +265,81 @@ module OnnxRuntime
|
|
258
265
|
input_tensor = ::FFI::MemoryPointer.new(:pointer, input_feed.size)
|
259
266
|
|
260
267
|
input_feed.each_with_index do |(input_name, input), idx|
|
261
|
-
if numo_array?(input)
|
262
|
-
shape = input.shape
|
263
|
-
else
|
264
|
-
input = input.to_a unless input.is_a?(Array)
|
265
|
-
|
266
|
-
shape = []
|
267
|
-
s = input
|
268
|
-
while s.is_a?(Array)
|
269
|
-
shape << s.size
|
270
|
-
s = s.first
|
271
|
-
end
|
272
|
-
end
|
273
|
-
|
274
268
|
# TODO support more types
|
275
269
|
inp = @inputs.find { |i| i[:name] == input_name.to_s }
|
276
270
|
raise Error, "Unknown input: #{input_name}" unless inp
|
277
271
|
|
272
|
+
input = input.to_a unless input.is_a?(Array) || numo_array?(input)
|
273
|
+
shape = input_shape(input)
|
274
|
+
|
278
275
|
input_node_dims = ::FFI::MemoryPointer.new(:int64, shape.size)
|
279
276
|
input_node_dims.write_array_of_int64(shape)
|
280
277
|
|
281
278
|
if inp[:type] == "tensor(string)"
|
282
|
-
str_ptrs =
|
283
|
-
if numo_array?(input)
|
284
|
-
input.size.times.map { |i| ::FFI::MemoryPointer.from_string(input[i]) }
|
285
|
-
else
|
286
|
-
input.flatten.map { |v| ::FFI::MemoryPointer.from_string(v) }
|
287
|
-
end
|
288
|
-
|
289
|
-
input_tensor_values = ::FFI::MemoryPointer.new(:pointer, str_ptrs.size)
|
290
|
-
input_tensor_values.write_array_of_pointer(str_ptrs)
|
291
|
-
|
292
279
|
type_enum = FFI::TensorElementDataType[:string]
|
293
280
|
check_status api[:CreateTensorAsOrtValue].call(@allocator.read_pointer, input_node_dims, shape.size, type_enum, input_tensor[idx])
|
294
|
-
check_status api[:FillStringTensor].call(input_tensor[idx].read_pointer, input_tensor_values, str_ptrs.size)
|
295
|
-
|
296
|
-
refs << str_ptrs
|
297
|
-
else
|
298
|
-
tensor_type = tensor_types[inp[:type]]
|
299
|
-
|
300
|
-
if tensor_type
|
301
|
-
if numo_array?(input)
|
302
|
-
input_tensor_values = input.cast_to(numo_types[tensor_type]).to_binary
|
303
|
-
else
|
304
|
-
flat_input = input.flatten.to_a
|
305
|
-
input_tensor_values = ::FFI::MemoryPointer.new(tensor_type, flat_input.size)
|
306
|
-
if tensor_type == :bool
|
307
|
-
input_tensor_values.write_array_of_uint8(flat_input.map { |v| v ? 1 : 0 })
|
308
|
-
else
|
309
|
-
input_tensor_values.send("write_array_of_#{tensor_type}", flat_input)
|
310
|
-
end
|
311
|
-
end
|
312
|
-
|
313
|
-
type_enum = FFI::TensorElementDataType[tensor_type]
|
314
|
-
else
|
315
|
-
unsupported_type("input", inp[:type])
|
316
|
-
end
|
317
281
|
|
282
|
+
# keep reference to _str_ptrs until FillStringTensor call
|
283
|
+
input_tensor_values, _str_ptrs = create_input_strings(input)
|
284
|
+
check_status api[:FillStringTensor].call(input_tensor[idx].read_pointer, input_tensor_values, input_tensor_values.size / input_tensor_values.type_size)
|
285
|
+
elsif (tensor_type = tensor_types[inp[:type]])
|
286
|
+
input_tensor_values = create_input_data(input, tensor_type)
|
287
|
+
type_enum = FFI::TensorElementDataType[tensor_type]
|
318
288
|
check_status api[:CreateTensorWithDataAsOrtValue].call(allocator_info.read_pointer, input_tensor_values, input_tensor_values.size, input_node_dims, shape.size, type_enum, input_tensor[idx])
|
319
289
|
|
320
|
-
refs << input_node_dims
|
321
290
|
refs << input_tensor_values
|
291
|
+
else
|
292
|
+
unsupported_type("input", inp[:type])
|
322
293
|
end
|
323
294
|
end
|
324
295
|
|
325
|
-
refs << allocator_info
|
326
|
-
|
327
296
|
input_tensor
|
328
297
|
ensure
|
329
298
|
release :MemoryInfo, allocator_info
|
330
299
|
end
|
331
300
|
|
301
|
+
def input_shape(input)
|
302
|
+
if numo_array?(input)
|
303
|
+
input.shape
|
304
|
+
else
|
305
|
+
shape = []
|
306
|
+
s = input
|
307
|
+
while s.is_a?(Array)
|
308
|
+
shape << s.size
|
309
|
+
s = s.first
|
310
|
+
end
|
311
|
+
shape
|
312
|
+
end
|
313
|
+
end
|
314
|
+
|
315
|
+
def create_input_strings(input)
|
316
|
+
str_ptrs =
|
317
|
+
if numo_array?(input)
|
318
|
+
input.size.times.map { |i| ::FFI::MemoryPointer.from_string(input[i]) }
|
319
|
+
else
|
320
|
+
input.flatten.map { |v| ::FFI::MemoryPointer.from_string(v) }
|
321
|
+
end
|
322
|
+
|
323
|
+
input_tensor_values = ::FFI::MemoryPointer.new(:pointer, str_ptrs.size)
|
324
|
+
input_tensor_values.write_array_of_pointer(str_ptrs)
|
325
|
+
[input_tensor_values, str_ptrs]
|
326
|
+
end
|
327
|
+
|
328
|
+
def create_input_data(input, tensor_type)
|
329
|
+
if numo_array?(input)
|
330
|
+
input.cast_to(numo_types[tensor_type]).to_binary
|
331
|
+
else
|
332
|
+
flat_input = input.flatten.to_a
|
333
|
+
input_tensor_values = ::FFI::MemoryPointer.new(tensor_type, flat_input.size)
|
334
|
+
if tensor_type == :bool
|
335
|
+
input_tensor_values.write_array_of_uint8(flat_input.map { |v| v ? 1 : 0 })
|
336
|
+
else
|
337
|
+
input_tensor_values.send("write_array_of_#{tensor_type}", flat_input)
|
338
|
+
end
|
339
|
+
input_tensor_values
|
340
|
+
end
|
341
|
+
end
|
342
|
+
|
332
343
|
def create_node_names(names, refs)
|
333
344
|
str_ptrs = names.map { |v| ::FFI::MemoryPointer.from_string(v) }
|
334
345
|
refs << str_ptrs
|
@@ -575,7 +586,7 @@ module OnnxRuntime
|
|
575
586
|
end
|
576
587
|
|
577
588
|
def self.api
|
578
|
-
|
589
|
+
FFI.api
|
579
590
|
end
|
580
591
|
|
581
592
|
def self.release(type, pointer)
|
data/lib/onnxruntime/version.rb
CHANGED
@@ -4820,7 +4820,7 @@ SOFTWARE.
|
|
4820
4820
|
|
4821
4821
|
----------------------------------------------------------------------------
|
4822
4822
|
|
4823
|
-
This is the MIT/Expat
|
4823
|
+
This is the MIT/Expat License. For more information see:
|
4824
4824
|
|
4825
4825
|
1. http://www.opensource.org/licenses/mit-license.php
|
4826
4826
|
|
Binary file
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: onnxruntime
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.9.
|
4
|
+
version: 0.9.2
|
5
5
|
platform: aarch64-linux
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-09-04 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: ffi
|
@@ -62,7 +62,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
62
62
|
- !ruby/object:Gem::Version
|
63
63
|
version: '0'
|
64
64
|
requirements: []
|
65
|
-
rubygems_version: 3.5.
|
65
|
+
rubygems_version: 3.5.11
|
66
66
|
signing_key:
|
67
67
|
specification_version: 4
|
68
68
|
summary: High performance scoring engine for ML models
|