numo-tiny_linalg 0.1.0 → 0.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 7a298eaec7ee7338e4856ac50b22a06bf774073456a01f5ffb2a405cab632f7a
4
- data.tar.gz: a44ae42f723ee7c9a1af6c2b1a01e6257f1fc417a5cd2a22cb6be51ac0589c1c
3
+ metadata.gz: 81e69278b32b0f565e3f5b5e1eae1738a57556773e9306bb3b0c8450c9fb75ea
4
+ data.tar.gz: de6daa349cd0d16b14f9c133ad451fac8bacbcd42cca682be68509bd5d8fc416
5
5
  SHA512:
6
- metadata.gz: fce33aa331257bc37d7a972e09a0cf1d9328046459c9de6b9feaf8341d0d4545d202b90d6bb0e5e6ee097b4c9c58a4bc76fc0224fd87dc10818c8f566259ab7e
7
- data.tar.gz: 6da516469d0fdfb47884fea2d9fc2483b5ea066063ce1681afc8e9319d1cfcc6863f59e96a4ce1d7cb22ceb159a8b2f8f6e41478958ea245a5eaaf209753ea2c
6
+ metadata.gz: 72894605f074e09f47a37834ba1c2b3a3e504e149742df3290fd4c4e8042b1ac0c70d11bd50e4ab83e19b07181d8a656ab57afcaa47de53794fc28a298e1e768
7
+ data.tar.gz: c896b561fcbeb0ff19196548a3a0f2f6a06098d706fbfe95b785ffd850b139e87ea5d62c1144cde4c456a7ef5bb2b79422b5c2e0ab909df76f5ea9fa4a4bd446
data/CHANGELOG.md CHANGED
@@ -1,5 +1,8 @@
1
1
  ## [Unreleased]
2
2
 
3
+ ## [[0.1.1](https://github.com/yoshoku/numo-tiny_linalg/compare/v0.1.0...v0.1.1)] - 2023-08-07
4
+ - Fix method of getting start and end of eigenvalue range from vals_range arguement of TinyLinalg.eigh.
5
+
3
6
  ## [[0.1.0](https://github.com/yoshoku/numo-tiny_linalg/compare/v0.0.4...v0.1.0)] - 2023-08-06
4
7
  - Refactor codes and update documentations.
5
8
 
@@ -5,6 +5,6 @@ module Numo
5
5
  # Numo::TinyLinalg is a subset library from Numo::Linalg consisting only of methods used in Machine Learning algorithms.
6
6
  module TinyLinalg
7
7
  # The version of Numo::TinyLinalg you install.
8
- VERSION = '0.1.0'
8
+ VERSION = '0.1.1'
9
9
  end
10
10
  end
@@ -39,15 +39,15 @@ module Numo
39
39
  # pp (x - vecs.dot(vals.diag).dot(vecs.transpose)).abs.max
40
40
  # # => 3.3306690738754696e-16
41
41
  #
42
- # @param a [Numo::NArray] n-by-n symmetric / Hermitian matrix.
43
- # @param b [Numo::NArray] n-by-n symmetric / Hermitian matrix. If nil, identity matrix is assumed.
42
+ # @param a [Numo::NArray] The n-by-n symmetric / Hermitian matrix.
43
+ # @param b [Numo::NArray] The n-by-n symmetric / Hermitian matrix. If nil, identity matrix is assumed.
44
44
  # @param vals_only [Boolean] The flag indicating whether to return only eigenvalues.
45
45
  # @param vals_range [Range/Array]
46
46
  # The range of indices of the eigenvalues (in ascending order) and corresponding eigenvectors to be returned.
47
47
  # If nil, all eigenvalues and eigenvectors are computed.
48
48
  # @param uplo [String] This argument is for compatibility with Numo::Linalg.solver, and is not used.
49
49
  # @param turbo [Bool] The flag indicating whether to use a divide and conquer algorithm. If vals_range is given, this flag is ignored.
50
- # @return [Array<Numo::NArray, Numo::NArray>] The eigenvalues and eigenvectors.
50
+ # @return [Array<Numo::NArray>] The eigenvalues and eigenvectors.
51
51
  def eigh(a, b = nil, vals_only: false, vals_range: nil, uplo: 'U', turbo: false) # rubocop:disable Metrics/AbcSize, Metrics/ParameterLists, Lint/UnusedMethodArgument
52
52
  raise ArgumentError, 'input array a must be 2-dimensional' if a.ndim != 2
53
53
  raise ArgumentError, 'input array a must be square' if a.shape[0] != a.shape[1]
@@ -70,8 +70,8 @@ module Numo
70
70
  vecs, _b, vals, _info = Numo::TinyLinalg::Lapack.send(sy_he_gv.to_sym, a.dup, b.dup, jobz: jobz)
71
71
  else
72
72
  sy_he_gv << 'x'
73
- il = vals_range.first + 1
74
- iu = vals_range.last + 1
73
+ il = vals_range.first(1)[0] + 1
74
+ iu = vals_range.last(1)[0] + 1
75
75
  _a, _b, _m, vals, vecs, _ifail, _info = Numo::TinyLinalg::Lapack.send(
76
76
  sy_he_gv.to_sym, a.dup, b.dup, jobz: jobz, range: 'I', il: il, iu: iu
77
77
  )
@@ -91,7 +91,7 @@ module Numo
91
91
  # pp (3.0 - Numo::Linalg.det(a)).abs
92
92
  # # => 1.3322676295501878e-15
93
93
  #
94
- # @param a [Numo::NArray] n-by-n square matrix.
94
+ # @param a [Numo::NArray] The n-by-n square matrix.
95
95
  # @return [Float/Complex] The determinant of `a`.
96
96
  def det(a)
97
97
  raise ArgumentError, 'input array a must be 2-dimensional' if a.ndim != 2
@@ -132,7 +132,7 @@ module Numo
132
132
  # pp inv_a.dot(a).sum
133
133
  # # => 5.0
134
134
  #
135
- # @param a [Numo::NArray] n-by-n square matrix.
135
+ # @param a [Numo::NArray] The n-by-n square matrix.
136
136
  # @param driver [String] This argument is for compatibility with Numo::Linalg.solver, and is not used.
137
137
  # @param uplo [String] This argument is for compatibility with Numo::Linalg.solver, and is not used.
138
138
  # @return [Numo::NArray] The inverse matrix of `a`.
@@ -156,7 +156,7 @@ module Numo
156
156
  end
157
157
  end
158
158
 
159
- # Compute the (Moore-Penrose) pseudo-inverse of a matrix using singular value decomposition.
159
+ # Computes the (Moore-Penrose) pseudo-inverse of a matrix using singular value decomposition.
160
160
  #
161
161
  # @example
162
162
  # require 'numo/tiny_linalg'
@@ -174,7 +174,7 @@ module Numo
174
174
  # # => 3.0
175
175
  #
176
176
  # @param a [Numo::NArray] The m-by-n matrix to be pseudo-inverted.
177
- # @param driver [String] LAPACK driver to be used ('svd' or 'sdd').
177
+ # @param driver [String] The LAPACK driver to be used ('svd' or 'sdd').
178
178
  # @param rcond [Float] The threshold value for small singular values of `a`, default value is `a.shape.max * EPS`.
179
179
  # @return [Numo::NArray] The pseudo-inverse of `a`.
180
180
  def pinv(a, driver: 'svd', rcond: nil)
@@ -186,7 +186,7 @@ module Numo
186
186
  u.dot(vh[0...rank, true]).conj.transpose
187
187
  end
188
188
 
189
- # Compute QR decomposition of a matrix.
189
+ # Computes the QR decomposition of a matrix.
190
190
  #
191
191
  # @example
192
192
  # require 'numo/tiny_linalg'
@@ -222,9 +222,8 @@ module Numo
222
222
  # - "r" -- returns only R,
223
223
  # - "economic" -- returns both Q [m, n] and R [n, n],
224
224
  # - "raw" -- returns QR and TAU (LAPACK geqrf results).
225
- # @return [Numo::NArray] if mode='r'
226
- # @return [Array<Numo::NArray,Numo::NArray>] if mode='reduce' or mode='economic'
227
- # @return [Array<Numo::NArray,Numo::NArray>] if mode='raw' (LAPACK geqrf result)
225
+ # @return [Numo::NArray] if mode='r'.
226
+ # @return [Array<Numo::NArray>] if mode='reduce' or 'economic' or 'raw'.
228
227
  def qr(a, mode: 'reduce')
229
228
  raise ArgumentError, 'input array a must be 2-dimensional' if a.ndim != 2
230
229
  raise ArgumentError, "invalid mode: #{mode}" unless %w[reduce r economic raw].include?(mode)
@@ -295,7 +294,7 @@ module Numo
295
294
  Numo::TinyLinalg::Lapack.send(gesv, a.dup, b.dup)[1]
296
295
  end
297
296
 
298
- # Calculates the Singular Value Decomposition (SVD) of a matrix: `A = U * S * V^T`
297
+ # Computes the Singular Value Decomposition (SVD) of a matrix: `A = U * S * V^T`
299
298
  #
300
299
  # @example
301
300
  # require 'numo/tiny_linalg'
@@ -328,9 +327,9 @@ module Numo
328
327
  # # => 4.440892098500626e-16
329
328
  #
330
329
  # @param a [Numo::NArray] Matrix to be decomposed.
331
- # @param driver [String] LAPACK driver to be used ('svd' or 'sdd').
332
- # @param job [String] Job option ('A', 'S', or 'N').
333
- # @return [Array<Numo::NArray>] Singular values and singular vectors ([s, u, vt]).
330
+ # @param driver [String] The LAPACK driver to be used ('svd' or 'sdd').
331
+ # @param job [String] The job option ('A', 'S', or 'N').
332
+ # @return [Array<Numo::NArray>] The singular values and singular vectors ([s, u, vt]).
334
333
  def svd(a, driver: 'svd', job: 'A')
335
334
  raise ArgumentError, "invalid job: #{job}" unless /^[ASN]/i.match?(job.to_s)
336
335
 
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: numo-tiny_linalg
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.0
4
+ version: 0.1.1
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2023-08-06 00:00:00.000000000 Z
11
+ date: 2023-08-07 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: numo-narray