numo-tiny_linalg 0.0.4 → 0.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -13,15 +13,41 @@ module Numo
13
13
  # Computes the eigenvalues and eigenvectors of a symmetric / Hermitian matrix
14
14
  # by solving an ordinary or generalized eigenvalue problem.
15
15
  #
16
- # @param a [Numo::NArray] n-by-n symmetric / Hermitian matrix.
17
- # @param b [Numo::NArray] n-by-n symmetric / Hermitian matrix. If nil, identity matrix is assumed.
16
+ # @example
17
+ # require 'numo/tiny_linalg'
18
+ #
19
+ # Numo::Linalg = Numo::TinyLinalg unless defined?(Numo::Linalg)
20
+ #
21
+ # x = Numo::DFloat.new(5, 3).rand - 0.5
22
+ # c = x.dot(x.transpose)
23
+ # vals, vecs = Numo::Linalg.eigh(c, vals_range: [2, 4])
24
+ #
25
+ # pp vals
26
+ # # =>
27
+ # # Numo::DFloat#shape=[3]
28
+ # # [0.118795, 0.434252, 0.903245]
29
+ #
30
+ # pp vecs
31
+ # # =>
32
+ # # Numo::DFloat#shape=[5,3]
33
+ # # [[0.154178, 0.60661, -0.382961],
34
+ # # [-0.349761, -0.141726, -0.513178],
35
+ # # [0.739633, -0.468202, 0.105933],
36
+ # # [0.0519655, -0.471436, -0.701507],
37
+ # # [-0.551488, -0.412883, 0.294371]]
38
+ #
39
+ # pp (x - vecs.dot(vals.diag).dot(vecs.transpose)).abs.max
40
+ # # => 3.3306690738754696e-16
41
+ #
42
+ # @param a [Numo::NArray] The n-by-n symmetric / Hermitian matrix.
43
+ # @param b [Numo::NArray] The n-by-n symmetric / Hermitian matrix. If nil, identity matrix is assumed.
18
44
  # @param vals_only [Boolean] The flag indicating whether to return only eigenvalues.
19
45
  # @param vals_range [Range/Array]
20
46
  # The range of indices of the eigenvalues (in ascending order) and corresponding eigenvectors to be returned.
21
47
  # If nil, all eigenvalues and eigenvectors are computed.
22
48
  # @param uplo [String] This argument is for compatibility with Numo::Linalg.solver, and is not used.
23
49
  # @param turbo [Bool] The flag indicating whether to use a divide and conquer algorithm. If vals_range is given, this flag is ignored.
24
- # @return [Array<Numo::NArray, Numo::NArray>] The eigenvalues and eigenvectors.
50
+ # @return [Array<Numo::NArray>] The eigenvalues and eigenvectors.
25
51
  def eigh(a, b = nil, vals_only: false, vals_range: nil, uplo: 'U', turbo: false) # rubocop:disable Metrics/AbcSize, Metrics/ParameterLists, Lint/UnusedMethodArgument
26
52
  raise ArgumentError, 'input array a must be 2-dimensional' if a.ndim != 2
27
53
  raise ArgumentError, 'input array a must be square' if a.shape[0] != a.shape[1]
@@ -44,8 +70,8 @@ module Numo
44
70
  vecs, _b, vals, _info = Numo::TinyLinalg::Lapack.send(sy_he_gv.to_sym, a.dup, b.dup, jobz: jobz)
45
71
  else
46
72
  sy_he_gv << 'x'
47
- il = vals_range.first + 1
48
- iu = vals_range.last + 1
73
+ il = vals_range.first(1)[0] + 1
74
+ iu = vals_range.last(1)[0] + 1
49
75
  _a, _b, _m, vals, vecs, _ifail, _info = Numo::TinyLinalg::Lapack.send(
50
76
  sy_he_gv.to_sym, a.dup, b.dup, jobz: jobz, range: 'I', il: il, iu: iu
51
77
  )
@@ -56,7 +82,16 @@ module Numo
56
82
 
57
83
  # Computes the determinant of matrix.
58
84
  #
59
- # @param a [Numo::NArray] n-by-n square matrix.
85
+ # @example
86
+ # require 'numo/tiny_linalg'
87
+ #
88
+ # Numo::Linalg = Numo::TinyLinalg unless defined?(Numo::Linalg)
89
+ #
90
+ # a = Numo::DFloat[[0, 2, 3], [4, 5, 6], [7, 8, 9]]
91
+ # pp (3.0 - Numo::Linalg.det(a)).abs
92
+ # # => 1.3322676295501878e-15
93
+ #
94
+ # @param a [Numo::NArray] The n-by-n square matrix.
60
95
  # @return [Float/Complex] The determinant of `a`.
61
96
  def det(a)
62
97
  raise ArgumentError, 'input array a must be 2-dimensional' if a.ndim != 2
@@ -82,7 +117,22 @@ module Numo
82
117
 
83
118
  # Computes the inverse matrix of a square matrix.
84
119
  #
85
- # @param a [Numo::NArray] n-by-n square matrix.
120
+ # @example
121
+ # require 'numo/tiny_linalg'
122
+ #
123
+ # Numo::Linalg = Numo::TinyLinalg unless defined?(Numo::Linalg)
124
+ #
125
+ # a = Numo::DFloat.new(5, 5).rand
126
+ #
127
+ # inv_a = Numo::Linalg.inv(a)
128
+ #
129
+ # pp (inv_a.dot(a) - Numo::DFloat.eye(5)).abs.max
130
+ # # => 7.019165976816745e-16
131
+ #
132
+ # pp inv_a.dot(a).sum
133
+ # # => 5.0
134
+ #
135
+ # @param a [Numo::NArray] The n-by-n square matrix.
86
136
  # @param driver [String] This argument is for compatibility with Numo::Linalg.solver, and is not used.
87
137
  # @param uplo [String] This argument is for compatibility with Numo::Linalg.solver, and is not used.
88
138
  # @return [Numo::NArray] The inverse matrix of `a`.
@@ -106,10 +156,25 @@ module Numo
106
156
  end
107
157
  end
108
158
 
109
- # Compute the (Moore-Penrose) pseudo-inverse of a matrix using singular value decomposition.
159
+ # Computes the (Moore-Penrose) pseudo-inverse of a matrix using singular value decomposition.
160
+ #
161
+ # @example
162
+ # require 'numo/tiny_linalg'
163
+ #
164
+ # Numo::Linalg = Numo::TinyLinalg unless defined?(Numo::Linalg)
165
+ #
166
+ # a = Numo::DFloat.new(5, 3).rand
167
+ #
168
+ # inv_a = Numo::Linalg.pinv(a)
169
+ #
170
+ # pp (inv_a.dot(a) - Numo::DFloat.eye(3)).abs.max
171
+ # # => 1.1102230246251565e-15
172
+ #
173
+ # pp inv_a.dot(a).sum
174
+ # # => 3.0
110
175
  #
111
176
  # @param a [Numo::NArray] The m-by-n matrix to be pseudo-inverted.
112
- # @param driver [String] LAPACK driver to be used ('svd' or 'sdd').
177
+ # @param driver [String] The LAPACK driver to be used ('svd' or 'sdd').
113
178
  # @param rcond [Float] The threshold value for small singular values of `a`, default value is `a.shape.max * EPS`.
114
179
  # @return [Numo::NArray] The pseudo-inverse of `a`.
115
180
  def pinv(a, driver: 'svd', rcond: nil)
@@ -121,7 +186,35 @@ module Numo
121
186
  u.dot(vh[0...rank, true]).conj.transpose
122
187
  end
123
188
 
124
- # Compute QR decomposition of a matrix.
189
+ # Computes the QR decomposition of a matrix.
190
+ #
191
+ # @example
192
+ # require 'numo/tiny_linalg'
193
+ #
194
+ # Numo::Linalg = Numo::TinyLinalg unless defined?(Numo::Linalg)
195
+ #
196
+ # x = Numo::DFloat.new(5, 3).rand
197
+ #
198
+ # q, r = Numo::Linalg.qr(x, mode: 'economic')
199
+ #
200
+ # pp q
201
+ # # =>
202
+ # # Numo::DFloat#shape=[5,3]
203
+ # # [[-0.0574417, 0.635216, 0.707116],
204
+ # # [-0.187002, -0.073192, 0.422088],
205
+ # # [-0.502239, 0.634088, -0.537489],
206
+ # # [-0.0473292, 0.134867, -0.0223491],
207
+ # # [-0.840979, -0.413385, 0.180096]]
208
+ #
209
+ # pp r
210
+ # # =>
211
+ # # Numo::DFloat#shape=[3,3]
212
+ # # [[-1.07508, -0.821334, -0.484586],
213
+ # # [0, 0.513035, 0.451868],
214
+ # # [0, 0, 0.678737]]
215
+ #
216
+ # pp (q.dot(r) - x).abs.max
217
+ # # => 3.885780586188048e-16
125
218
  #
126
219
  # @param a [Numo::NArray] The m-by-n matrix to be decomposed.
127
220
  # @param mode [String] The mode of decomposition.
@@ -129,9 +222,8 @@ module Numo
129
222
  # - "r" -- returns only R,
130
223
  # - "economic" -- returns both Q [m, n] and R [n, n],
131
224
  # - "raw" -- returns QR and TAU (LAPACK geqrf results).
132
- # @return [Numo::NArray] if mode='r'
133
- # @return [Array<Numo::NArray,Numo::NArray>] if mode='reduce' or mode='economic'
134
- # @return [Array<Numo::NArray,Numo::NArray>] if mode='raw' (LAPACK geqrf result)
225
+ # @return [Numo::NArray] if mode='r'.
226
+ # @return [Array<Numo::NArray>] if mode='reduce' or 'economic' or 'raw'.
135
227
  def qr(a, mode: 'reduce')
136
228
  raise ArgumentError, 'input array a must be 2-dimensional' if a.ndim != 2
137
229
  raise ArgumentError, "invalid mode: #{mode}" unless %w[reduce r economic raw].include?(mode)
@@ -166,60 +258,91 @@ module Numo
166
258
 
167
259
  # Solves linear equation `A * x = b` or `A * X = B` for `x` from square matrix `a`.
168
260
  #
169
- # @param a [Numo::NArray] The n-by-n square matrix (>= 2-dimensinal NArray).
261
+ # @example
262
+ # require 'numo/tiny_linalg'
263
+ #
264
+ # Numo::Linalg = Numo::TinyLinalg unless defined?(Numo::Linalg)
265
+ #
266
+ # a = Numo::DFloat.new(3, 3).rand
267
+ # b = Numo::DFloat.eye(3)
268
+ #
269
+ # x = Numo::Linalg.solve(a, b)
270
+ #
271
+ # pp x
272
+ # # =>
273
+ # # Numo::DFloat#shape=[3,3]
274
+ # # [[-2.12332, 4.74868, 0.326773],
275
+ # # [1.38043, -3.79074, 1.25355],
276
+ # # [0.775187, 1.41032, -0.613774]]
277
+ #
278
+ # pp (b - a.dot(x)).abs.max
279
+ # # => 2.1081041547796492e-16
280
+ #
281
+ # @param a [Numo::NArray] The n-by-n square matrix.
170
282
  # @param b [Numo::NArray] The n right-hand side vector, or n-by-nrhs right-hand side matrix (>= 1-dimensinal NArray).
171
283
  # @param driver [String] This argument is for compatibility with Numo::Linalg.solver, and is not used.
172
284
  # @param uplo [String] This argument is for compatibility with Numo::Linalg.solver, and is not used.
173
285
  # @return [Numo::NArray] The solusion vector / matrix `x`.
174
286
  def solve(a, b, driver: 'gen', uplo: 'U') # rubocop:disable Lint/UnusedMethodArgument
175
- case blas_char(a, b)
176
- when 'd'
177
- Lapack.dgesv(a.dup, b.dup)[1]
178
- when 's'
179
- Lapack.sgesv(a.dup, b.dup)[1]
180
- when 'z'
181
- Lapack.zgesv(a.dup, b.dup)[1]
182
- when 'c'
183
- Lapack.cgesv(a.dup, b.dup)[1]
184
- end
287
+ raise ArgumentError, 'input array a must be 2-dimensional' if a.ndim != 2
288
+ raise ArgumentError, 'input array a must be square' if a.shape[0] != a.shape[1]
289
+
290
+ bchr = blas_char(a, b)
291
+ raise ArgumentError, "invalid array type: #{a.class}, #{b.class}" if bchr == 'n'
292
+
293
+ gesv = "#{bchr}gesv".to_sym
294
+ Numo::TinyLinalg::Lapack.send(gesv, a.dup, b.dup)[1]
185
295
  end
186
296
 
187
- # Calculates the Singular Value Decomposition (SVD) of a matrix: `A = U * S * V^T`
297
+ # Computes the Singular Value Decomposition (SVD) of a matrix: `A = U * S * V^T`
298
+ #
299
+ # @example
300
+ # require 'numo/tiny_linalg'
301
+ #
302
+ # Numo::Linalg = Numo::TinyLinalg unless defined?(Numo::Linalg)
303
+ #
304
+ # x = Numo::DFloat.new(5, 2).rand.dot(Numo::DFloat.new(2, 3).rand)
305
+ # pp x
306
+ # # =>
307
+ # # Numo::DFloat#shape=[5,3]
308
+ # # [[0.104945, 0.0284236, 0.117406],
309
+ # # [0.862634, 0.210945, 0.922135],
310
+ # # [0.324507, 0.0752655, 0.339158],
311
+ # # [0.67085, 0.102594, 0.600882],
312
+ # # [0.404631, 0.116868, 0.46644]]
313
+ #
314
+ # s, u, vt = Numo::Linalg.svd(x, job: 'S')
315
+ #
316
+ # z = u.dot(s.diag).dot(vt)
317
+ # pp z
318
+ # # =>
319
+ # # Numo::DFloat#shape=[5,3]
320
+ # # [[0.104945, 0.0284236, 0.117406],
321
+ # # [0.862634, 0.210945, 0.922135],
322
+ # # [0.324507, 0.0752655, 0.339158],
323
+ # # [0.67085, 0.102594, 0.600882],
324
+ # # [0.404631, 0.116868, 0.46644]]
325
+ #
326
+ # pp (x - z).abs.max
327
+ # # => 4.440892098500626e-16
188
328
  #
189
329
  # @param a [Numo::NArray] Matrix to be decomposed.
190
- # @param driver [String] LAPACK driver to be used ('svd' or 'sdd').
191
- # @param job [String] Job option ('A', 'S', or 'N').
192
- # @return [Array<Numo::NArray>] Singular values and singular vectors ([s, u, vt]).
330
+ # @param driver [String] The LAPACK driver to be used ('svd' or 'sdd').
331
+ # @param job [String] The job option ('A', 'S', or 'N').
332
+ # @return [Array<Numo::NArray>] The singular values and singular vectors ([s, u, vt]).
193
333
  def svd(a, driver: 'svd', job: 'A')
194
334
  raise ArgumentError, "invalid job: #{job}" unless /^[ASN]/i.match?(job.to_s)
195
335
 
336
+ bchr = blas_char(a)
337
+ raise ArgumentError, "invalid array type: #{a.class}" if bchr == 'n'
338
+
196
339
  case driver.to_s
197
340
  when 'sdd'
198
- s, u, vt, info = case a
199
- when Numo::DFloat
200
- Numo::TinyLinalg::Lapack.dgesdd(a.dup, jobz: job)
201
- when Numo::SFloat
202
- Numo::TinyLinalg::Lapack.sgesdd(a.dup, jobz: job)
203
- when Numo::DComplex
204
- Numo::TinyLinalg::Lapack.zgesdd(a.dup, jobz: job)
205
- when Numo::SComplex
206
- Numo::TinyLinalg::Lapack.cgesdd(a.dup, jobz: job)
207
- else
208
- raise ArgumentError, "invalid array type: #{a.class}"
209
- end
341
+ gesdd = "#{bchr}gesdd".to_sym
342
+ s, u, vt, info = Numo::TinyLinalg::Lapack.send(gesdd, a.dup, jobz: job)
210
343
  when 'svd'
211
- s, u, vt, info = case a
212
- when Numo::DFloat
213
- Numo::TinyLinalg::Lapack.dgesvd(a.dup, jobu: job, jobvt: job)
214
- when Numo::SFloat
215
- Numo::TinyLinalg::Lapack.sgesvd(a.dup, jobu: job, jobvt: job)
216
- when Numo::DComplex
217
- Numo::TinyLinalg::Lapack.zgesvd(a.dup, jobu: job, jobvt: job)
218
- when Numo::SComplex
219
- Numo::TinyLinalg::Lapack.cgesvd(a.dup, jobu: job, jobvt: job)
220
- else
221
- raise ArgumentError, "invalid array type: #{a.class}"
222
- end
344
+ gesvd = "#{bchr}gesvd".to_sym
345
+ s, u, vt, info = Numo::TinyLinalg::Lapack.send(gesvd, a.dup, jobu: job, jobvt: job)
223
346
  else
224
347
  raise ArgumentError, "invalid driver: #{driver}"
225
348
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: numo-tiny_linalg
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.4
4
+ version: 0.1.1
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2023-08-06 00:00:00.000000000 Z
11
+ date: 2023-08-07 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: numo-narray
@@ -62,6 +62,7 @@ files:
62
62
  - ext/numo/tiny_linalg/lapack/ungqr.hpp
63
63
  - ext/numo/tiny_linalg/tiny_linalg.cpp
64
64
  - ext/numo/tiny_linalg/tiny_linalg.hpp
65
+ - ext/numo/tiny_linalg/util.hpp
65
66
  - lib/numo/tiny_linalg.rb
66
67
  - lib/numo/tiny_linalg/version.rb
67
68
  - vendor/tmp/.gitkeep