numo-random 0.3.0 → 0.4.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +2 -2
- data/ext/numo/random/ext.hpp +156 -2
- data/lib/numo/random/generator.rb +72 -0
- data/lib/numo/random/version.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 9c0f7c2bfe21c7c499f2d18453607b78ccd48bfea287336a3ce8ca4bee1a30e0
|
4
|
+
data.tar.gz: cef6d2005611cabe21606d3b9e3fe31b82ee9e34e909206c6b0b89b6fc78115d
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 7e42a2ecae4e48173c0f96a8d5170bed05165c378289a3b84c1fdad56bd8dcc392b53596c1d3501ddf151bfdd6b10ae82032b6b6ca4f1f03a38e87e8ff83f418
|
7
|
+
data.tar.gz: 96f8de00675b3762ed859a5a9afef3fa8f2fe8a7d48562a3aae267d78caa963e9ddc6c514a6c14a0121b4ab1d633d370a04b6fd64551a60b46e03f73c94682b9
|
data/CHANGELOG.md
CHANGED
data/ext/numo/random/ext.hpp
CHANGED
@@ -58,6 +58,9 @@ public:
|
|
58
58
|
rb_define_method(rb_cPCG64, "seed=", RUBY_METHOD_FUNC(_numo_random_pcg64_set_seed), 1);
|
59
59
|
rb_define_method(rb_cPCG64, "seed", RUBY_METHOD_FUNC(_numo_random_pcg64_get_seed), 0);
|
60
60
|
rb_define_method(rb_cPCG64, "random", RUBY_METHOD_FUNC(_numo_random_pcg64_random), 0);
|
61
|
+
rb_define_method(rb_cPCG64, "binomial", RUBY_METHOD_FUNC(_numo_random_pcg64_binomial), -1);
|
62
|
+
rb_define_method(rb_cPCG64, "negative_binomial", RUBY_METHOD_FUNC(_numo_random_pcg64_negative_binomial), -1);
|
63
|
+
rb_define_method(rb_cPCG64, "geometric", RUBY_METHOD_FUNC(_numo_random_pcg64_geometric), -1);
|
61
64
|
rb_define_method(rb_cPCG64, "exponential", RUBY_METHOD_FUNC(_numo_random_pcg64_exponential), -1);
|
62
65
|
rb_define_method(rb_cPCG64, "gamma", RUBY_METHOD_FUNC(_numo_random_pcg64_gamma), -1);
|
63
66
|
rb_define_method(rb_cPCG64, "gumbel", RUBY_METHOD_FUNC(_numo_random_pcg64_gumbel), -1);
|
@@ -149,6 +152,157 @@ private:
|
|
149
152
|
}
|
150
153
|
}
|
151
154
|
|
155
|
+
// #binomial
|
156
|
+
|
157
|
+
template<typename T> static void _rand_binomial(VALUE& self, VALUE& x, const long n, const double& p) {
|
158
|
+
pcg64* ptr = get_pcg64(self);
|
159
|
+
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
160
|
+
std::binomial_distribution<T> binomial_dist(n, p);
|
161
|
+
ndfunc_t ndf = { _iter_rand<std::binomial_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
162
|
+
rand_opt_t<std::binomial_distribution<T>> opt = { binomial_dist, ptr };
|
163
|
+
na_ndloop3(&ndf, &opt, 1, x);
|
164
|
+
}
|
165
|
+
|
166
|
+
static VALUE _numo_random_pcg64_binomial(int argc, VALUE* argv, VALUE self) {
|
167
|
+
VALUE x = Qnil;
|
168
|
+
VALUE kw_args = Qnil;
|
169
|
+
ID kw_table[2] = { rb_intern("n"), rb_intern("p") };
|
170
|
+
VALUE kw_values[2] = { Qundef, Qundef };
|
171
|
+
rb_scan_args(argc, argv, "1:", &x, &kw_args);
|
172
|
+
rb_get_kwargs(kw_args, kw_table, 2, 0, kw_values);
|
173
|
+
|
174
|
+
const VALUE klass = rb_obj_class(x);
|
175
|
+
if (klass != numo_cInt8 && klass != numo_cInt16 && klass != numo_cInt32 && klass != numo_cInt64
|
176
|
+
&& klass != numo_cUInt8 && klass != numo_cUInt16 && klass != numo_cUInt32 && klass != numo_cUInt64)
|
177
|
+
rb_raise(rb_eTypeError, "invalid NArray class, it must be integer typed array");
|
178
|
+
|
179
|
+
const long n = NUM2LONG(kw_values[0]);
|
180
|
+
const double p = NUM2DBL(kw_values[1]);
|
181
|
+
if (n < 0) rb_raise(rb_eArgError, "n must be a non-negative value");
|
182
|
+
if (p < 0.0 || p > 1.0) rb_raise(rb_eArgError, "p must be >= 0 and <= 1");
|
183
|
+
|
184
|
+
if (klass == numo_cInt8) {
|
185
|
+
_rand_binomial<int8_t>(self, x, n, p);
|
186
|
+
} else if (klass == numo_cInt16) {
|
187
|
+
_rand_binomial<int16_t>(self, x, n, p);
|
188
|
+
} else if (klass == numo_cInt32) {
|
189
|
+
_rand_binomial<int32_t>(self, x, n, p);
|
190
|
+
} else if (klass == numo_cInt64) {
|
191
|
+
_rand_binomial<int64_t>(self, x, n, p);
|
192
|
+
} else if (klass == numo_cUInt8) {
|
193
|
+
_rand_binomial<uint8_t>(self, x, n, p);
|
194
|
+
} else if (klass == numo_cUInt16) {
|
195
|
+
_rand_binomial<uint16_t>(self, x, n, p);
|
196
|
+
} else if (klass == numo_cUInt32) {
|
197
|
+
_rand_binomial<uint32_t>(self, x, n, p);
|
198
|
+
} else if (klass == numo_cUInt64) {
|
199
|
+
_rand_binomial<uint64_t>(self, x, n, p);
|
200
|
+
}
|
201
|
+
|
202
|
+
RB_GC_GUARD(x);
|
203
|
+
return Qnil;
|
204
|
+
}
|
205
|
+
|
206
|
+
// #negative_binomial
|
207
|
+
|
208
|
+
template<typename T> static void _rand_negative_binomial(VALUE& self, VALUE& x, const long n, const double& p) {
|
209
|
+
pcg64* ptr = get_pcg64(self);
|
210
|
+
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
211
|
+
std::negative_binomial_distribution<T> negative_binomial_dist(n, p);
|
212
|
+
ndfunc_t ndf = { _iter_rand<std::negative_binomial_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
213
|
+
rand_opt_t<std::negative_binomial_distribution<T>> opt = { negative_binomial_dist, ptr };
|
214
|
+
na_ndloop3(&ndf, &opt, 1, x);
|
215
|
+
}
|
216
|
+
|
217
|
+
static VALUE _numo_random_pcg64_negative_binomial(int argc, VALUE* argv, VALUE self) {
|
218
|
+
VALUE x = Qnil;
|
219
|
+
VALUE kw_args = Qnil;
|
220
|
+
ID kw_table[2] = { rb_intern("n"), rb_intern("p") };
|
221
|
+
VALUE kw_values[2] = { Qundef, Qundef };
|
222
|
+
rb_scan_args(argc, argv, "1:", &x, &kw_args);
|
223
|
+
rb_get_kwargs(kw_args, kw_table, 2, 0, kw_values);
|
224
|
+
|
225
|
+
const VALUE klass = rb_obj_class(x);
|
226
|
+
if (klass != numo_cInt8 && klass != numo_cInt16 && klass != numo_cInt32 && klass != numo_cInt64
|
227
|
+
&& klass != numo_cUInt8 && klass != numo_cUInt16 && klass != numo_cUInt32 && klass != numo_cUInt64)
|
228
|
+
rb_raise(rb_eTypeError, "invalid NArray class, it must be integer typed array");
|
229
|
+
|
230
|
+
const long n = NUM2LONG(kw_values[0]);
|
231
|
+
const double p = NUM2DBL(kw_values[1]);
|
232
|
+
if (n < 0) rb_raise(rb_eArgError, "n must be a non-negative value");
|
233
|
+
if (p <= 0.0 || p > 1.0) rb_raise(rb_eArgError, "p must be > 0 and <= 1");
|
234
|
+
|
235
|
+
if (klass == numo_cInt8) {
|
236
|
+
_rand_negative_binomial<int8_t>(self, x, n, p);
|
237
|
+
} else if (klass == numo_cInt16) {
|
238
|
+
_rand_negative_binomial<int16_t>(self, x, n, p);
|
239
|
+
} else if (klass == numo_cInt32) {
|
240
|
+
_rand_negative_binomial<int32_t>(self, x, n, p);
|
241
|
+
} else if (klass == numo_cInt64) {
|
242
|
+
_rand_negative_binomial<int64_t>(self, x, n, p);
|
243
|
+
} else if (klass == numo_cUInt8) {
|
244
|
+
_rand_negative_binomial<uint8_t>(self, x, n, p);
|
245
|
+
} else if (klass == numo_cUInt16) {
|
246
|
+
_rand_negative_binomial<uint16_t>(self, x, n, p);
|
247
|
+
} else if (klass == numo_cUInt32) {
|
248
|
+
_rand_negative_binomial<uint32_t>(self, x, n, p);
|
249
|
+
} else if (klass == numo_cUInt64) {
|
250
|
+
_rand_negative_binomial<uint64_t>(self, x, n, p);
|
251
|
+
}
|
252
|
+
|
253
|
+
RB_GC_GUARD(x);
|
254
|
+
return Qnil;
|
255
|
+
}
|
256
|
+
|
257
|
+
// #geometric
|
258
|
+
|
259
|
+
template<typename T> static void _rand_geometric(VALUE& self, VALUE& x, const double& p) {
|
260
|
+
pcg64* ptr = get_pcg64(self);
|
261
|
+
ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
|
262
|
+
std::geometric_distribution<T> geometric_dist(p);
|
263
|
+
ndfunc_t ndf = { _iter_rand<std::geometric_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
|
264
|
+
rand_opt_t<std::geometric_distribution<T>> opt = { geometric_dist, ptr };
|
265
|
+
na_ndloop3(&ndf, &opt, 1, x);
|
266
|
+
}
|
267
|
+
|
268
|
+
static VALUE _numo_random_pcg64_geometric(int argc, VALUE* argv, VALUE self) {
|
269
|
+
VALUE x = Qnil;
|
270
|
+
VALUE kw_args = Qnil;
|
271
|
+
ID kw_table[1] = { rb_intern("p") };
|
272
|
+
VALUE kw_values[1] = { Qundef };
|
273
|
+
rb_scan_args(argc, argv, "1:", &x, &kw_args);
|
274
|
+
rb_get_kwargs(kw_args, kw_table, 1, 0, kw_values);
|
275
|
+
|
276
|
+
const VALUE klass = rb_obj_class(x);
|
277
|
+
if (klass != numo_cInt8 && klass != numo_cInt16 && klass != numo_cInt32 && klass != numo_cInt64
|
278
|
+
&& klass != numo_cUInt8 && klass != numo_cUInt16 && klass != numo_cUInt32 && klass != numo_cUInt64)
|
279
|
+
rb_raise(rb_eTypeError, "invalid NArray class, it must be integer typed array");
|
280
|
+
|
281
|
+
const double p = NUM2DBL(kw_values[0]);
|
282
|
+
if (p <= 0.0 || p >= 1.0) rb_raise(rb_eArgError, "p must be > 0 and < 1");
|
283
|
+
|
284
|
+
if (klass == numo_cInt8) {
|
285
|
+
_rand_geometric<int8_t>(self, x, p);
|
286
|
+
} else if (klass == numo_cInt16) {
|
287
|
+
_rand_geometric<int16_t>(self, x, p);
|
288
|
+
} else if (klass == numo_cInt32) {
|
289
|
+
_rand_geometric<int32_t>(self, x, p);
|
290
|
+
} else if (klass == numo_cInt64) {
|
291
|
+
_rand_geometric<int64_t>(self, x, p);
|
292
|
+
} else if (klass == numo_cUInt8) {
|
293
|
+
_rand_geometric<uint8_t>(self, x, p);
|
294
|
+
} else if (klass == numo_cUInt16) {
|
295
|
+
_rand_geometric<uint16_t>(self, x, p);
|
296
|
+
} else if (klass == numo_cUInt32) {
|
297
|
+
_rand_geometric<uint32_t>(self, x, p);
|
298
|
+
} else if (klass == numo_cUInt64) {
|
299
|
+
_rand_geometric<uint64_t>(self, x, p);
|
300
|
+
}
|
301
|
+
|
302
|
+
RB_GC_GUARD(x);
|
303
|
+
return Qnil;
|
304
|
+
}
|
305
|
+
|
152
306
|
// #exponential
|
153
307
|
|
154
308
|
template<typename T> static void _rand_exponential(VALUE& self, VALUE& x, const double& lam) {
|
@@ -272,8 +426,8 @@ private:
|
|
272
426
|
static VALUE _numo_random_pcg64_poisson(int argc, VALUE* argv, VALUE self) {
|
273
427
|
VALUE x = Qnil;
|
274
428
|
VALUE kw_args = Qnil;
|
275
|
-
ID kw_table[
|
276
|
-
VALUE kw_values[
|
429
|
+
ID kw_table[1] = { rb_intern("mean") };
|
430
|
+
VALUE kw_values[1] = { Qundef };
|
277
431
|
rb_scan_args(argc, argv, "1:", &x, &kw_args);
|
278
432
|
rb_get_kwargs(kw_args, kw_table, 0, 1, kw_values);
|
279
433
|
|
@@ -57,6 +57,78 @@ module Numo
|
|
57
57
|
rng.random
|
58
58
|
end
|
59
59
|
|
60
|
+
# Generates array consists of random values according to the Bernoulli distribution.
|
61
|
+
#
|
62
|
+
# @example
|
63
|
+
# require 'numo/random'
|
64
|
+
#
|
65
|
+
# rng = Numo::Random::Generator.new(seed: 42)
|
66
|
+
# x = rng.bernoulli(shape: 1000, p: 0.4)
|
67
|
+
#
|
68
|
+
# @param shape [Integer | Array<Integer>] size of random array.
|
69
|
+
# @param p [Float] probability of success.
|
70
|
+
# @param dtype [Symbol] data type of random array.
|
71
|
+
# @return [Numo::IntX | Numo::UIntX]
|
72
|
+
def bernoulli(shape:, p:, dtype: :int32)
|
73
|
+
binomial(shape: shape, n: 1, p: p, dtype: dtype)
|
74
|
+
end
|
75
|
+
|
76
|
+
# Generates array consists of random values according to a binomial distribution.
|
77
|
+
#
|
78
|
+
# @example
|
79
|
+
# require 'numo/random'
|
80
|
+
#
|
81
|
+
# rng = Numo::Random::Generator.new(seed: 42)
|
82
|
+
# x = rng.binomial(shape: 1000, n: 10, p: 0.4)
|
83
|
+
#
|
84
|
+
# @param shape [Integer | Array<Integer>] size of random array.
|
85
|
+
# @param n [Integer] number of trials.
|
86
|
+
# @param p [Float] probability of success.
|
87
|
+
# @param dtype [Symbol] data type of random array.
|
88
|
+
# @return [Numo::IntX | Numo::UIntX]
|
89
|
+
def binomial(shape:, n:, p:, dtype: :int32)
|
90
|
+
x = klass(dtype).new(shape)
|
91
|
+
rng.binomial(x, n: n, p: p)
|
92
|
+
x
|
93
|
+
end
|
94
|
+
|
95
|
+
# Generates array consists of random values according to a negative binomial distribution.
|
96
|
+
#
|
97
|
+
# @example
|
98
|
+
# require 'numo/random'
|
99
|
+
#
|
100
|
+
# rng = Numo::Random::Generator.new(seed: 42)
|
101
|
+
# x = rng.negative_binomial(shape: 1000, n: 10, p: 0.4)
|
102
|
+
#
|
103
|
+
# @param shape [Integer | Array<Integer>] size of random array.
|
104
|
+
# @param n [Integer] number of trials.
|
105
|
+
# @param p [Float] probability of success.
|
106
|
+
# @param dtype [Symbol] data type of random array.
|
107
|
+
# @return [Numo::IntX | Numo::UIntX]
|
108
|
+
def negative_binomial(shape:, n:, p:, dtype: :int32)
|
109
|
+
x = klass(dtype).new(shape)
|
110
|
+
rng.negative_binomial(x, n: n, p: p)
|
111
|
+
x
|
112
|
+
end
|
113
|
+
|
114
|
+
# Generates array consists of random values according to a geometric distribution.
|
115
|
+
#
|
116
|
+
# @example
|
117
|
+
# require 'numo/random'
|
118
|
+
#
|
119
|
+
# rng = Numo::Random::Generator.new(seed: 42)
|
120
|
+
# x = rng.geometric(shape: 1000, p: 0.4)
|
121
|
+
#
|
122
|
+
# @param shape [Integer | Array<Integer>] size of random array.
|
123
|
+
# @param p [Float] probability of success on each trial.
|
124
|
+
# @param dtype [Symbol] data type of random array.
|
125
|
+
# @return [Numo::IntX | Numo::UIntX]
|
126
|
+
def geometric(shape:, p:, dtype: :int32)
|
127
|
+
x = klass(dtype).new(shape)
|
128
|
+
rng.geometric(x, p: p)
|
129
|
+
x
|
130
|
+
end
|
131
|
+
|
60
132
|
# Generates array consists of random values with an exponential distribution.
|
61
133
|
#
|
62
134
|
# @example
|
data/lib/numo/random/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: numo-random
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.4.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2022-11-
|
11
|
+
date: 2022-11-09 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|