numo-random 0.2.0 → 0.4.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 18a6bedc77eb910e04462508a925d336fe2e5e8c29f9c159643adea1e0988a88
4
- data.tar.gz: 728c52eb3e9f390cae89d149e6d4305228be5330e90fa39494ac0a1ffa546126
3
+ metadata.gz: 9c0f7c2bfe21c7c499f2d18453607b78ccd48bfea287336a3ce8ca4bee1a30e0
4
+ data.tar.gz: cef6d2005611cabe21606d3b9e3fe31b82ee9e34e909206c6b0b89b6fc78115d
5
5
  SHA512:
6
- metadata.gz: cd851012b81e6cec4d4dc7e37113ca9c6d5e0a56604107bba201a67cc4935f3618f887285a0c745adf3ad6c25493bbe6bd5fe4af49cac08eead625cb0c6afa78
7
- data.tar.gz: 88f85185352601de72dbf8889095e2603c0b581750c11d683eddab26ab313f30c1b38577a1a3a099d2dc6834d29e0fbe2e53052e05918e5de00648adfcf9930d
6
+ metadata.gz: 7e42a2ecae4e48173c0f96a8d5170bed05165c378289a3b84c1fdad56bd8dcc392b53596c1d3501ddf151bfdd6b10ae82032b6b6ca4f1f03a38e87e8ff83f418
7
+ data.tar.gz: 96f8de00675b3762ed859a5a9afef3fa8f2fe8a7d48562a3aae267d78caa963e9ddc6c514a6c14a0121b4ab1d633d370a04b6fd64551a60b46e03f73c94682b9
data/CHANGELOG.md CHANGED
@@ -1,9 +1,11 @@
1
- ## [Unreleased]
2
- - Bernoulli distribution.
3
- - Poisson distribution.
1
+ ## [0.4.0]
2
+ - Add method for random number generation with bernoulli distribution: bernoulli, binomial, negative_binomial, and geometric.
4
3
 
5
- ## [0.2.0]
4
+ ## [0.3.0]
5
+ - Change native extension filename.
6
+ - Add methods for random number generation with poisson distributions: poisson, exponential, gamma, gumbel, and weibull.
6
7
 
8
+ ## [0.2.0]
7
9
  - Add discrete method.
8
10
 
9
11
  ### Breaking Changes
@@ -16,9 +16,9 @@
16
16
  * limitations under the License.
17
17
  */
18
18
 
19
- #include "randomext.hpp"
19
+ #include "ext.hpp"
20
20
 
21
- extern "C" void Init_randomext(void) {
21
+ extern "C" void Init_ext(void) {
22
22
  rb_require("numo/narray");
23
23
 
24
24
  VALUE rb_mNumoRandom = rb_define_module_under(mNumo, "Random");
@@ -16,8 +16,8 @@
16
16
  * limitations under the License.
17
17
  */
18
18
 
19
- #ifndef NUMO_RANDOMEXT_HPP
20
- #define NUMO_RANDOMEXT_HPP 1
19
+ #ifndef NUMO_RANDOM_EXT_HPP
20
+ #define NUMO_RANDOM_EXT_HPP 1
21
21
 
22
22
  #include <ruby.h>
23
23
 
@@ -58,6 +58,14 @@ public:
58
58
  rb_define_method(rb_cPCG64, "seed=", RUBY_METHOD_FUNC(_numo_random_pcg64_set_seed), 1);
59
59
  rb_define_method(rb_cPCG64, "seed", RUBY_METHOD_FUNC(_numo_random_pcg64_get_seed), 0);
60
60
  rb_define_method(rb_cPCG64, "random", RUBY_METHOD_FUNC(_numo_random_pcg64_random), 0);
61
+ rb_define_method(rb_cPCG64, "binomial", RUBY_METHOD_FUNC(_numo_random_pcg64_binomial), -1);
62
+ rb_define_method(rb_cPCG64, "negative_binomial", RUBY_METHOD_FUNC(_numo_random_pcg64_negative_binomial), -1);
63
+ rb_define_method(rb_cPCG64, "geometric", RUBY_METHOD_FUNC(_numo_random_pcg64_geometric), -1);
64
+ rb_define_method(rb_cPCG64, "exponential", RUBY_METHOD_FUNC(_numo_random_pcg64_exponential), -1);
65
+ rb_define_method(rb_cPCG64, "gamma", RUBY_METHOD_FUNC(_numo_random_pcg64_gamma), -1);
66
+ rb_define_method(rb_cPCG64, "gumbel", RUBY_METHOD_FUNC(_numo_random_pcg64_gumbel), -1);
67
+ rb_define_method(rb_cPCG64, "poisson", RUBY_METHOD_FUNC(_numo_random_pcg64_poisson), -1);
68
+ rb_define_method(rb_cPCG64, "weibull", RUBY_METHOD_FUNC(_numo_random_pcg64_weibull), -1);
61
69
  rb_define_method(rb_cPCG64, "discrete", RUBY_METHOD_FUNC(_numo_random_pcg64_discrete), -1);
62
70
  rb_define_method(rb_cPCG64, "uniform", RUBY_METHOD_FUNC(_numo_random_pcg64_uniform), -1);
63
71
  rb_define_method(rb_cPCG64, "cauchy", RUBY_METHOD_FUNC(_numo_random_pcg64_cauchy), -1);
@@ -144,6 +152,352 @@ private:
144
152
  }
145
153
  }
146
154
 
155
+ // #binomial
156
+
157
+ template<typename T> static void _rand_binomial(VALUE& self, VALUE& x, const long n, const double& p) {
158
+ pcg64* ptr = get_pcg64(self);
159
+ ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
160
+ std::binomial_distribution<T> binomial_dist(n, p);
161
+ ndfunc_t ndf = { _iter_rand<std::binomial_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
162
+ rand_opt_t<std::binomial_distribution<T>> opt = { binomial_dist, ptr };
163
+ na_ndloop3(&ndf, &opt, 1, x);
164
+ }
165
+
166
+ static VALUE _numo_random_pcg64_binomial(int argc, VALUE* argv, VALUE self) {
167
+ VALUE x = Qnil;
168
+ VALUE kw_args = Qnil;
169
+ ID kw_table[2] = { rb_intern("n"), rb_intern("p") };
170
+ VALUE kw_values[2] = { Qundef, Qundef };
171
+ rb_scan_args(argc, argv, "1:", &x, &kw_args);
172
+ rb_get_kwargs(kw_args, kw_table, 2, 0, kw_values);
173
+
174
+ const VALUE klass = rb_obj_class(x);
175
+ if (klass != numo_cInt8 && klass != numo_cInt16 && klass != numo_cInt32 && klass != numo_cInt64
176
+ && klass != numo_cUInt8 && klass != numo_cUInt16 && klass != numo_cUInt32 && klass != numo_cUInt64)
177
+ rb_raise(rb_eTypeError, "invalid NArray class, it must be integer typed array");
178
+
179
+ const long n = NUM2LONG(kw_values[0]);
180
+ const double p = NUM2DBL(kw_values[1]);
181
+ if (n < 0) rb_raise(rb_eArgError, "n must be a non-negative value");
182
+ if (p < 0.0 || p > 1.0) rb_raise(rb_eArgError, "p must be >= 0 and <= 1");
183
+
184
+ if (klass == numo_cInt8) {
185
+ _rand_binomial<int8_t>(self, x, n, p);
186
+ } else if (klass == numo_cInt16) {
187
+ _rand_binomial<int16_t>(self, x, n, p);
188
+ } else if (klass == numo_cInt32) {
189
+ _rand_binomial<int32_t>(self, x, n, p);
190
+ } else if (klass == numo_cInt64) {
191
+ _rand_binomial<int64_t>(self, x, n, p);
192
+ } else if (klass == numo_cUInt8) {
193
+ _rand_binomial<uint8_t>(self, x, n, p);
194
+ } else if (klass == numo_cUInt16) {
195
+ _rand_binomial<uint16_t>(self, x, n, p);
196
+ } else if (klass == numo_cUInt32) {
197
+ _rand_binomial<uint32_t>(self, x, n, p);
198
+ } else if (klass == numo_cUInt64) {
199
+ _rand_binomial<uint64_t>(self, x, n, p);
200
+ }
201
+
202
+ RB_GC_GUARD(x);
203
+ return Qnil;
204
+ }
205
+
206
+ // #negative_binomial
207
+
208
+ template<typename T> static void _rand_negative_binomial(VALUE& self, VALUE& x, const long n, const double& p) {
209
+ pcg64* ptr = get_pcg64(self);
210
+ ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
211
+ std::negative_binomial_distribution<T> negative_binomial_dist(n, p);
212
+ ndfunc_t ndf = { _iter_rand<std::negative_binomial_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
213
+ rand_opt_t<std::negative_binomial_distribution<T>> opt = { negative_binomial_dist, ptr };
214
+ na_ndloop3(&ndf, &opt, 1, x);
215
+ }
216
+
217
+ static VALUE _numo_random_pcg64_negative_binomial(int argc, VALUE* argv, VALUE self) {
218
+ VALUE x = Qnil;
219
+ VALUE kw_args = Qnil;
220
+ ID kw_table[2] = { rb_intern("n"), rb_intern("p") };
221
+ VALUE kw_values[2] = { Qundef, Qundef };
222
+ rb_scan_args(argc, argv, "1:", &x, &kw_args);
223
+ rb_get_kwargs(kw_args, kw_table, 2, 0, kw_values);
224
+
225
+ const VALUE klass = rb_obj_class(x);
226
+ if (klass != numo_cInt8 && klass != numo_cInt16 && klass != numo_cInt32 && klass != numo_cInt64
227
+ && klass != numo_cUInt8 && klass != numo_cUInt16 && klass != numo_cUInt32 && klass != numo_cUInt64)
228
+ rb_raise(rb_eTypeError, "invalid NArray class, it must be integer typed array");
229
+
230
+ const long n = NUM2LONG(kw_values[0]);
231
+ const double p = NUM2DBL(kw_values[1]);
232
+ if (n < 0) rb_raise(rb_eArgError, "n must be a non-negative value");
233
+ if (p <= 0.0 || p > 1.0) rb_raise(rb_eArgError, "p must be > 0 and <= 1");
234
+
235
+ if (klass == numo_cInt8) {
236
+ _rand_negative_binomial<int8_t>(self, x, n, p);
237
+ } else if (klass == numo_cInt16) {
238
+ _rand_negative_binomial<int16_t>(self, x, n, p);
239
+ } else if (klass == numo_cInt32) {
240
+ _rand_negative_binomial<int32_t>(self, x, n, p);
241
+ } else if (klass == numo_cInt64) {
242
+ _rand_negative_binomial<int64_t>(self, x, n, p);
243
+ } else if (klass == numo_cUInt8) {
244
+ _rand_negative_binomial<uint8_t>(self, x, n, p);
245
+ } else if (klass == numo_cUInt16) {
246
+ _rand_negative_binomial<uint16_t>(self, x, n, p);
247
+ } else if (klass == numo_cUInt32) {
248
+ _rand_negative_binomial<uint32_t>(self, x, n, p);
249
+ } else if (klass == numo_cUInt64) {
250
+ _rand_negative_binomial<uint64_t>(self, x, n, p);
251
+ }
252
+
253
+ RB_GC_GUARD(x);
254
+ return Qnil;
255
+ }
256
+
257
+ // #geometric
258
+
259
+ template<typename T> static void _rand_geometric(VALUE& self, VALUE& x, const double& p) {
260
+ pcg64* ptr = get_pcg64(self);
261
+ ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
262
+ std::geometric_distribution<T> geometric_dist(p);
263
+ ndfunc_t ndf = { _iter_rand<std::geometric_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
264
+ rand_opt_t<std::geometric_distribution<T>> opt = { geometric_dist, ptr };
265
+ na_ndloop3(&ndf, &opt, 1, x);
266
+ }
267
+
268
+ static VALUE _numo_random_pcg64_geometric(int argc, VALUE* argv, VALUE self) {
269
+ VALUE x = Qnil;
270
+ VALUE kw_args = Qnil;
271
+ ID kw_table[1] = { rb_intern("p") };
272
+ VALUE kw_values[1] = { Qundef };
273
+ rb_scan_args(argc, argv, "1:", &x, &kw_args);
274
+ rb_get_kwargs(kw_args, kw_table, 1, 0, kw_values);
275
+
276
+ const VALUE klass = rb_obj_class(x);
277
+ if (klass != numo_cInt8 && klass != numo_cInt16 && klass != numo_cInt32 && klass != numo_cInt64
278
+ && klass != numo_cUInt8 && klass != numo_cUInt16 && klass != numo_cUInt32 && klass != numo_cUInt64)
279
+ rb_raise(rb_eTypeError, "invalid NArray class, it must be integer typed array");
280
+
281
+ const double p = NUM2DBL(kw_values[0]);
282
+ if (p <= 0.0 || p >= 1.0) rb_raise(rb_eArgError, "p must be > 0 and < 1");
283
+
284
+ if (klass == numo_cInt8) {
285
+ _rand_geometric<int8_t>(self, x, p);
286
+ } else if (klass == numo_cInt16) {
287
+ _rand_geometric<int16_t>(self, x, p);
288
+ } else if (klass == numo_cInt32) {
289
+ _rand_geometric<int32_t>(self, x, p);
290
+ } else if (klass == numo_cInt64) {
291
+ _rand_geometric<int64_t>(self, x, p);
292
+ } else if (klass == numo_cUInt8) {
293
+ _rand_geometric<uint8_t>(self, x, p);
294
+ } else if (klass == numo_cUInt16) {
295
+ _rand_geometric<uint16_t>(self, x, p);
296
+ } else if (klass == numo_cUInt32) {
297
+ _rand_geometric<uint32_t>(self, x, p);
298
+ } else if (klass == numo_cUInt64) {
299
+ _rand_geometric<uint64_t>(self, x, p);
300
+ }
301
+
302
+ RB_GC_GUARD(x);
303
+ return Qnil;
304
+ }
305
+
306
+ // #exponential
307
+
308
+ template<typename T> static void _rand_exponential(VALUE& self, VALUE& x, const double& lam) {
309
+ pcg64* ptr = get_pcg64(self);
310
+ ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
311
+ std::exponential_distribution<T> exponential_dist(lam);
312
+ ndfunc_t ndf = { _iter_rand<std::exponential_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
313
+ rand_opt_t<std::exponential_distribution<T>> opt = { exponential_dist, ptr };
314
+ na_ndloop3(&ndf, &opt, 1, x);
315
+ }
316
+
317
+ static VALUE _numo_random_pcg64_exponential(int argc, VALUE* argv, VALUE self) {
318
+ VALUE x = Qnil;
319
+ VALUE kw_args = Qnil;
320
+ ID kw_table[1] = { rb_intern("scale") };
321
+ VALUE kw_values[1] = { Qundef };
322
+ rb_scan_args(argc, argv, "1:", &x, &kw_args);
323
+ rb_get_kwargs(kw_args, kw_table, 0, 1, kw_values);
324
+
325
+ const VALUE klass = rb_obj_class(x);
326
+ if (klass != numo_cSFloat && klass != numo_cDFloat) rb_raise(rb_eTypeError, "invalid NArray class, it must be DFloat or SFloat");
327
+
328
+ const double scale = kw_values[0] == Qundef ? 1.0 : NUM2DBL(kw_values[0]);
329
+ if (scale <= 0) rb_raise(rb_eArgError, "scale must be > 0");
330
+
331
+ const double lam = 1.0 / scale;
332
+ if (klass == numo_cSFloat) {
333
+ _rand_exponential<float>(self, x, lam);
334
+ } else {
335
+ _rand_exponential<double>(self, x, lam);
336
+ }
337
+
338
+ RB_GC_GUARD(x);
339
+ return Qnil;
340
+ }
341
+
342
+ // #gamma
343
+
344
+ template<typename T> static void _rand_gamma(VALUE& self, VALUE& x, const double& k, const double&scale) {
345
+ pcg64* ptr = get_pcg64(self);
346
+ ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
347
+ std::gamma_distribution<T> gamma_dist(k, scale);
348
+ ndfunc_t ndf = { _iter_rand<std::gamma_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
349
+ rand_opt_t<std::gamma_distribution<T>> opt = { gamma_dist, ptr };
350
+ na_ndloop3(&ndf, &opt, 1, x);
351
+ }
352
+
353
+ static VALUE _numo_random_pcg64_gamma(int argc, VALUE* argv, VALUE self) {
354
+ VALUE x = Qnil;
355
+ VALUE kw_args = Qnil;
356
+ ID kw_table[2] = { rb_intern("k"), rb_intern("scale") };
357
+ VALUE kw_values[2] = { Qundef, Qundef };
358
+ rb_scan_args(argc, argv, "1:", &x, &kw_args);
359
+ rb_get_kwargs(kw_args, kw_table, 1, 1, kw_values);
360
+
361
+ const VALUE klass = rb_obj_class(x);
362
+ if (klass != numo_cSFloat && klass != numo_cDFloat) rb_raise(rb_eTypeError, "invalid NArray class, it must be DFloat or SFloat");
363
+
364
+ const double k = NUM2DBL(kw_values[0]);
365
+ if (k <= 0) rb_raise(rb_eArgError, "k must be > 0");
366
+ const double scale = kw_values[1] == Qundef ? 1.0 : NUM2DBL(kw_values[1]);
367
+ if (scale <= 0) rb_raise(rb_eArgError, "scale must be > 0");
368
+
369
+ if (klass == numo_cSFloat) {
370
+ _rand_gamma<float>(self, x, k, scale);
371
+ } else {
372
+ _rand_gamma<double>(self, x, k, scale);
373
+ }
374
+
375
+ RB_GC_GUARD(x);
376
+ return Qnil;
377
+ }
378
+
379
+ // #gumbel
380
+
381
+ template<typename T> static void _rand_gumbel(VALUE& self, VALUE& x, const double& loc, const double&scale) {
382
+ pcg64* ptr = get_pcg64(self);
383
+ ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
384
+ std::extreme_value_distribution<T> extreme_value_dist(loc, scale);
385
+ ndfunc_t ndf = { _iter_rand<std::extreme_value_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
386
+ rand_opt_t<std::extreme_value_distribution<T>> opt = { extreme_value_dist, ptr };
387
+ na_ndloop3(&ndf, &opt, 1, x);
388
+ }
389
+
390
+ static VALUE _numo_random_pcg64_gumbel(int argc, VALUE* argv, VALUE self) {
391
+ VALUE x = Qnil;
392
+ VALUE kw_args = Qnil;
393
+ ID kw_table[2] = { rb_intern("loc"), rb_intern("scale") };
394
+ VALUE kw_values[2] = { Qundef, Qundef };
395
+ rb_scan_args(argc, argv, "1:", &x, &kw_args);
396
+ rb_get_kwargs(kw_args, kw_table, 0, 2, kw_values);
397
+
398
+ const VALUE klass = rb_obj_class(x);
399
+ if (klass != numo_cSFloat && klass != numo_cDFloat) rb_raise(rb_eTypeError, "invalid NArray class, it must be DFloat or SFloat");
400
+
401
+ const double loc = kw_values[0] == Qundef ? 0.0 : NUM2DBL(kw_values[0]);
402
+ const double scale = kw_values[1] == Qundef ? 1.0 : NUM2DBL(kw_values[1]);
403
+ if (scale <= 0) rb_raise(rb_eArgError, "scale must be > 0");
404
+
405
+ if (klass == numo_cSFloat) {
406
+ _rand_gumbel<float>(self, x, loc, scale);
407
+ } else {
408
+ _rand_gumbel<double>(self, x, loc, scale);
409
+ }
410
+
411
+ RB_GC_GUARD(x);
412
+ return Qnil;
413
+ }
414
+
415
+ // #poisson
416
+
417
+ template<typename T> static void _rand_poisson(VALUE& self, VALUE& x, const double& mean) {
418
+ pcg64* ptr = get_pcg64(self);
419
+ ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
420
+ std::poisson_distribution<T> poisson_dist(mean);
421
+ ndfunc_t ndf = { _iter_rand<std::poisson_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
422
+ rand_opt_t<std::poisson_distribution<T>> opt = { poisson_dist, ptr };
423
+ na_ndloop3(&ndf, &opt, 1, x);
424
+ }
425
+
426
+ static VALUE _numo_random_pcg64_poisson(int argc, VALUE* argv, VALUE self) {
427
+ VALUE x = Qnil;
428
+ VALUE kw_args = Qnil;
429
+ ID kw_table[1] = { rb_intern("mean") };
430
+ VALUE kw_values[1] = { Qundef };
431
+ rb_scan_args(argc, argv, "1:", &x, &kw_args);
432
+ rb_get_kwargs(kw_args, kw_table, 0, 1, kw_values);
433
+
434
+ const VALUE klass = rb_obj_class(x);
435
+ if (klass != numo_cInt8 && klass != numo_cInt16 && klass != numo_cInt32 && klass != numo_cInt64
436
+ && klass != numo_cUInt8 && klass != numo_cUInt16 && klass != numo_cUInt32 && klass != numo_cUInt64)
437
+ rb_raise(rb_eTypeError, "invalid NArray class, it must be integer typed array");
438
+
439
+ const double mean = kw_values[0] == Qundef ? 0.0 : NUM2DBL(kw_values[0]);
440
+ if (mean <= 0.0) rb_raise(rb_eArgError, "mean must be > 0");
441
+
442
+ if (klass == numo_cInt8) {
443
+ _rand_poisson<int8_t>(self, x, mean);
444
+ } else if (klass == numo_cInt16) {
445
+ _rand_poisson<int16_t>(self, x, mean);
446
+ } else if (klass == numo_cInt32) {
447
+ _rand_poisson<int32_t>(self, x, mean);
448
+ } else if (klass == numo_cInt64) {
449
+ _rand_poisson<int64_t>(self, x, mean);
450
+ } else if (klass == numo_cUInt8) {
451
+ _rand_poisson<uint8_t>(self, x, mean);
452
+ } else if (klass == numo_cUInt16) {
453
+ _rand_poisson<uint16_t>(self, x, mean);
454
+ } else if (klass == numo_cUInt32) {
455
+ _rand_poisson<uint32_t>(self, x, mean);
456
+ } else if (klass == numo_cUInt64) {
457
+ _rand_poisson<uint64_t>(self, x, mean);
458
+ }
459
+
460
+ RB_GC_GUARD(x);
461
+ return Qnil;
462
+ }
463
+
464
+ // #weibull
465
+
466
+ template<typename T> static void _rand_weibull(VALUE& self, VALUE& x, const double& k, const double&scale) {
467
+ pcg64* ptr = get_pcg64(self);
468
+ ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
469
+ std::weibull_distribution<T> weibull_dist(k, scale);
470
+ ndfunc_t ndf = { _iter_rand<std::weibull_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
471
+ rand_opt_t<std::weibull_distribution<T>> opt = { weibull_dist, ptr };
472
+ na_ndloop3(&ndf, &opt, 1, x);
473
+ }
474
+
475
+ static VALUE _numo_random_pcg64_weibull(int argc, VALUE* argv, VALUE self) {
476
+ VALUE x = Qnil;
477
+ VALUE kw_args = Qnil;
478
+ ID kw_table[2] = { rb_intern("k"), rb_intern("scale") };
479
+ VALUE kw_values[2] = { Qundef, Qundef };
480
+ rb_scan_args(argc, argv, "1:", &x, &kw_args);
481
+ rb_get_kwargs(kw_args, kw_table, 1, 1, kw_values);
482
+
483
+ const VALUE klass = rb_obj_class(x);
484
+ if (klass != numo_cSFloat && klass != numo_cDFloat) rb_raise(rb_eTypeError, "invalid NArray class, it must be DFloat or SFloat");
485
+
486
+ const double k = NUM2DBL(kw_values[0]);
487
+ if (k <= 0) rb_raise(rb_eArgError, "k must be > 0");
488
+ const double scale = kw_values[1] == Qundef ? 1.0 : NUM2DBL(kw_values[1]);
489
+ if (scale <= 0) rb_raise(rb_eArgError, "scale must be > 0");
490
+
491
+ if (klass == numo_cSFloat) {
492
+ _rand_weibull<float>(self, x, k, scale);
493
+ } else {
494
+ _rand_weibull<double>(self, x, k, scale);
495
+ }
496
+
497
+ RB_GC_GUARD(x);
498
+ return Qnil;
499
+ }
500
+
147
501
  // #discrete
148
502
 
149
503
  template<typename T, typename P> static void _rand_discrete(VALUE& self, VALUE& x, const std::vector<P>& weight) {
@@ -491,4 +845,4 @@ const rb_data_type_t RbNumoRandomPCG64::pcg64_type = {
491
845
  RUBY_TYPED_FREE_IMMEDIATELY
492
846
  };
493
847
 
494
- #endif /* NUMO_RANDOMEXT_HPP */
848
+ #endif /* NUMO_RANDOM_EXT_HPP */
@@ -26,4 +26,4 @@ $CXXFLAGS << " -std=c++11"
26
26
  $INCFLAGS << " -I$(srcdir)/src"
27
27
  $VPATH << "$(srcdir)/src"
28
28
 
29
- create_makefile("numo/random/randomext")
29
+ create_makefile("numo/random/ext")
@@ -16,7 +16,7 @@ module Numo
16
16
  # # Numo::DFloat#shape=[2,5]
17
17
  # # [[1.90546, -0.543299, 0.673332, 0.759583, -0.40945],
18
18
  # # [0.334635, -0.0558342, 1.28115, 1.93644, -0.0689543]]
19
- class Generator
19
+ class Generator # rubocop:disable Metrics/ClassLength
20
20
  # Returns random number generation algorithm.
21
21
  # @return [String]
22
22
  attr_accessor :algorithm
@@ -57,6 +57,171 @@ module Numo
57
57
  rng.random
58
58
  end
59
59
 
60
+ # Generates array consists of random values according to the Bernoulli distribution.
61
+ #
62
+ # @example
63
+ # require 'numo/random'
64
+ #
65
+ # rng = Numo::Random::Generator.new(seed: 42)
66
+ # x = rng.bernoulli(shape: 1000, p: 0.4)
67
+ #
68
+ # @param shape [Integer | Array<Integer>] size of random array.
69
+ # @param p [Float] probability of success.
70
+ # @param dtype [Symbol] data type of random array.
71
+ # @return [Numo::IntX | Numo::UIntX]
72
+ def bernoulli(shape:, p:, dtype: :int32)
73
+ binomial(shape: shape, n: 1, p: p, dtype: dtype)
74
+ end
75
+
76
+ # Generates array consists of random values according to a binomial distribution.
77
+ #
78
+ # @example
79
+ # require 'numo/random'
80
+ #
81
+ # rng = Numo::Random::Generator.new(seed: 42)
82
+ # x = rng.binomial(shape: 1000, n: 10, p: 0.4)
83
+ #
84
+ # @param shape [Integer | Array<Integer>] size of random array.
85
+ # @param n [Integer] number of trials.
86
+ # @param p [Float] probability of success.
87
+ # @param dtype [Symbol] data type of random array.
88
+ # @return [Numo::IntX | Numo::UIntX]
89
+ def binomial(shape:, n:, p:, dtype: :int32)
90
+ x = klass(dtype).new(shape)
91
+ rng.binomial(x, n: n, p: p)
92
+ x
93
+ end
94
+
95
+ # Generates array consists of random values according to a negative binomial distribution.
96
+ #
97
+ # @example
98
+ # require 'numo/random'
99
+ #
100
+ # rng = Numo::Random::Generator.new(seed: 42)
101
+ # x = rng.negative_binomial(shape: 1000, n: 10, p: 0.4)
102
+ #
103
+ # @param shape [Integer | Array<Integer>] size of random array.
104
+ # @param n [Integer] number of trials.
105
+ # @param p [Float] probability of success.
106
+ # @param dtype [Symbol] data type of random array.
107
+ # @return [Numo::IntX | Numo::UIntX]
108
+ def negative_binomial(shape:, n:, p:, dtype: :int32)
109
+ x = klass(dtype).new(shape)
110
+ rng.negative_binomial(x, n: n, p: p)
111
+ x
112
+ end
113
+
114
+ # Generates array consists of random values according to a geometric distribution.
115
+ #
116
+ # @example
117
+ # require 'numo/random'
118
+ #
119
+ # rng = Numo::Random::Generator.new(seed: 42)
120
+ # x = rng.geometric(shape: 1000, p: 0.4)
121
+ #
122
+ # @param shape [Integer | Array<Integer>] size of random array.
123
+ # @param p [Float] probability of success on each trial.
124
+ # @param dtype [Symbol] data type of random array.
125
+ # @return [Numo::IntX | Numo::UIntX]
126
+ def geometric(shape:, p:, dtype: :int32)
127
+ x = klass(dtype).new(shape)
128
+ rng.geometric(x, p: p)
129
+ x
130
+ end
131
+
132
+ # Generates array consists of random values with an exponential distribution.
133
+ #
134
+ # @example
135
+ # require 'numo/random'
136
+ #
137
+ # rng = Numo::Random::Generator.new
138
+ # x = rng.exponential(shape: 100, scale: 2)
139
+ #
140
+ # @param shape [Integer | Array<Integer>] size of random array.
141
+ # @param scale [Float] scale parameter, lambda = 1.fdiv(scale).
142
+ # @param dtype [Symbol] data type of random array.
143
+ # @return [Numo::DFloat | Numo::SFloat]
144
+ def exponential(shape:, scale: 1.0, dtype: :float64)
145
+ x = klass(dtype).new(shape)
146
+ rng.exponential(x, scale: scale)
147
+ x
148
+ end
149
+
150
+ # Generates array consists of random values with a gamma distribution.
151
+ #
152
+ # @example
153
+ # require 'numo/random'
154
+ #
155
+ # rng = Numo::Random::Generator.new
156
+ # x = rng.gamma(shape: 100, k: 9, scale: 0.5)
157
+ #
158
+ # @param shape [Integer | Array<Integer>] size of random array.
159
+ # @param k [Float] shape parameter.
160
+ # @param scale [Float] scale parameter.
161
+ # @param dtype [Symbol] data type of random array.
162
+ # @return [Numo::DFloat | Numo::SFloat]
163
+ def gamma(shape:, k:, scale: 1.0, dtype: :float64)
164
+ x = klass(dtype).new(shape)
165
+ rng.gamma(x, k: k, scale: scale)
166
+ x
167
+ end
168
+
169
+ # Generates array consists of random values according to the Gumbel distribution.
170
+ #
171
+ # @example
172
+ # require 'numo/random'
173
+ #
174
+ # rng = Numo::Random::Generator.new
175
+ # x = rng.gumbel(shape: 100, loc: 0.0, scale: 1.0)
176
+ #
177
+ # @param shape [Integer | Array<Integer>] size of random array.
178
+ # @param loc [Float] location parameter.
179
+ # @param scale [Float] scale parameter.
180
+ # @param dtype [Symbol] data type of random array.
181
+ # @return [Numo::DFloat | Numo::SFloat]
182
+ def gumbel(shape:, loc: 0.0, scale: 1.0, dtype: :float64)
183
+ x = klass(dtype).new(shape)
184
+ rng.gumbel(x, loc: loc, scale: scale)
185
+ x
186
+ end
187
+
188
+ # Generates array consists of random values according to the Poisson distribution.
189
+ #
190
+ # @example
191
+ # require 'numo/random'
192
+ #
193
+ # rng = Numo::Random::Generator.new(seed: 42)
194
+ # x = rng.poisson(shape: 1000, mean: 4)
195
+ #
196
+ # @param shape [Integer | Array<Integer>] size of random array.
197
+ # @param mean [Float] mean of poisson distribution.
198
+ # @param dtype [Symbol] data type of random array.
199
+ # @return [Numo::IntX | Numo::UIntX]
200
+ def poisson(shape:, mean: 1.0, dtype: :int32)
201
+ x = klass(dtype).new(shape)
202
+ rng.poisson(x, mean: mean)
203
+ x
204
+ end
205
+
206
+ # Generates array consists of random values with the Weibull distribution.
207
+ #
208
+ # @example
209
+ # require 'numo/random'
210
+ #
211
+ # rng = Numo::Random::Generator.new
212
+ # x = rng.weibull(shape: 100, k: 5, scale: 2)
213
+ #
214
+ # @param shape [Integer | Array<Integer>] size of random array.
215
+ # @param k [Float] shape parameter.
216
+ # @param scale [Float] scale parameter.
217
+ # @param dtype [Symbol] data type of random array.
218
+ # @return [Numo::DFloat | Numo::SFloat]
219
+ def weibull(shape:, k:, scale: 1.0, dtype: :float64)
220
+ x = klass(dtype).new(shape)
221
+ rng.weibull(x, k: k, scale: scale)
222
+ x
223
+ end
224
+
60
225
  # Generates array consists of random integer values in the interval [0, n).
61
226
  #
62
227
  # @example
@@ -3,6 +3,6 @@
3
3
  module Numo
4
4
  module Random
5
5
  # The version of Numo::Random you install.
6
- VERSION = '0.2.0'
6
+ VERSION = '0.4.0'
7
7
  end
8
8
  end
data/lib/numo/random.rb CHANGED
@@ -3,5 +3,5 @@
3
3
  require 'numo/narray'
4
4
 
5
5
  require_relative 'random/version'
6
- require_relative 'random/randomext'
6
+ require_relative 'random/ext'
7
7
  require_relative 'random/generator'
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: numo-random
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.2.0
4
+ version: 0.4.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2022-10-30 00:00:00.000000000 Z
11
+ date: 2022-11-09 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: numo-narray
@@ -37,9 +37,9 @@ files:
37
37
  - CODE_OF_CONDUCT.md
38
38
  - LICENSE.txt
39
39
  - README.md
40
+ - ext/numo/random/ext.cpp
41
+ - ext/numo/random/ext.hpp
40
42
  - ext/numo/random/extconf.rb
41
- - ext/numo/random/randomext.cpp
42
- - ext/numo/random/randomext.hpp
43
43
  - ext/numo/random/src/LICENSE.txt
44
44
  - ext/numo/random/src/pcg_extras.hpp
45
45
  - ext/numo/random/src/pcg_random.hpp