numo-random 0.1.0 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d990f496714f1d2a594e3f9a919f65d4458d6e9ae455bbff9fc4a118aa059770
4
- data.tar.gz: 1017db53d848fb8e3c4d6724b51527d7d46974d813a93a2eb623270f24edb919
3
+ metadata.gz: 18a6bedc77eb910e04462508a925d336fe2e5e8c29f9c159643adea1e0988a88
4
+ data.tar.gz: 728c52eb3e9f390cae89d149e6d4305228be5330e90fa39494ac0a1ffa546126
5
5
  SHA512:
6
- metadata.gz: 7df9d692aa5222adb12ff53768eb804027333f381012e3c137232d847f05bc53514193f2c566092bceedc2ec863e14d100415a6a3fb70f1de08bbf8a78f89286
7
- data.tar.gz: 153d4fb9f6fc18f24e29c14b3f519dadfb0e8f979a1d4b60c31eac667c54e2d75cdaa937700f6fce9e73dc97f368dc08a4b7f2a92f77a241b909825cc573627a
6
+ metadata.gz: cd851012b81e6cec4d4dc7e37113ca9c6d5e0a56604107bba201a67cc4935f3618f887285a0c745adf3ad6c25493bbe6bd5fe4af49cac08eead625cb0c6afa78
7
+ data.tar.gz: 88f85185352601de72dbf8889095e2603c0b581750c11d683eddab26ab313f30c1b38577a1a3a099d2dc6834d29e0fbe2e53052e05918e5de00648adfcf9930d
data/CHANGELOG.md CHANGED
@@ -1,7 +1,13 @@
1
1
  ## [Unreleased]
2
- - Sampling distribution.
3
2
  - Bernoulli distribution.
4
3
  - Poisson distribution.
5
4
 
5
+ ## [0.2.0]
6
+
7
+ - Add discrete method.
8
+
9
+ ### Breaking Changes
10
+ - Change to return array for all methods that fill array with random numbers in Generator class.
11
+
6
12
  ## [0.1.0]
7
13
  - Initial release.
data/README.md CHANGED
@@ -33,14 +33,11 @@ require 'numo/gnuplot'
33
33
 
34
34
  require 'numo/random'
35
35
 
36
- # Prepareing array to be filled with random numbers.
37
- x = Numo::DFloat.new(5000, 2)
38
-
39
36
  # Creating random number generator.
40
37
  rng = Numo::Random::Generator.new(seed: 42)
41
38
 
42
39
  # Generating random numbers with a normal distribution.
43
- rng.normal(x, loc: 0.0, scale: 1.0)
40
+ x = rng.normal(shape: [5000, 2], loc: 0.0, scale: 1.0)
44
41
 
45
42
  # Plotting the generated result.
46
43
  Numo.gnuplot do
@@ -58,6 +58,7 @@ public:
58
58
  rb_define_method(rb_cPCG64, "seed=", RUBY_METHOD_FUNC(_numo_random_pcg64_set_seed), 1);
59
59
  rb_define_method(rb_cPCG64, "seed", RUBY_METHOD_FUNC(_numo_random_pcg64_get_seed), 0);
60
60
  rb_define_method(rb_cPCG64, "random", RUBY_METHOD_FUNC(_numo_random_pcg64_random), 0);
61
+ rb_define_method(rb_cPCG64, "discrete", RUBY_METHOD_FUNC(_numo_random_pcg64_discrete), -1);
61
62
  rb_define_method(rb_cPCG64, "uniform", RUBY_METHOD_FUNC(_numo_random_pcg64_uniform), -1);
62
63
  rb_define_method(rb_cPCG64, "cauchy", RUBY_METHOD_FUNC(_numo_random_pcg64_cauchy), -1);
63
64
  rb_define_method(rb_cPCG64, "chisquare", RUBY_METHOD_FUNC(_numo_random_pcg64_chisquare), -1);
@@ -143,6 +144,89 @@ private:
143
144
  }
144
145
  }
145
146
 
147
+ // #discrete
148
+
149
+ template<typename T, typename P> static void _rand_discrete(VALUE& self, VALUE& x, const std::vector<P>& weight) {
150
+ pcg64* ptr = get_pcg64(self);
151
+ ndfunc_arg_in_t ain[1] = { { OVERWRITE, 0 } };
152
+ std::discrete_distribution<T> discrete_dist(weight.begin(), weight.end());
153
+ ndfunc_t ndf = { _iter_rand<std::discrete_distribution<T>, T>, FULL_LOOP, 1, 0, ain, 0 };
154
+ rand_opt_t<std::discrete_distribution<T>> opt = { discrete_dist, ptr };
155
+ na_ndloop3(&ndf, &opt, 1, x);
156
+ }
157
+
158
+ static VALUE _numo_random_pcg64_discrete(int argc, VALUE* argv, VALUE self) {
159
+ VALUE x = Qnil;
160
+ VALUE kw_args = Qnil;
161
+ ID kw_table[1] = { rb_intern("weight") };
162
+ VALUE kw_values[1] = { Qundef };
163
+ rb_scan_args(argc, argv, "1:", &x, &kw_args);
164
+ rb_get_kwargs(kw_args, kw_table, 1, 0, kw_values);
165
+
166
+ VALUE klass = rb_obj_class(x);
167
+ if (klass != numo_cInt8 && klass != numo_cInt16 && klass != numo_cInt32 && klass != numo_cInt64
168
+ && klass != numo_cUInt8 && klass != numo_cUInt16 && klass != numo_cUInt32 && klass != numo_cUInt64)
169
+ rb_raise(rb_eTypeError, "invalid NArray class, it must be integer typed array");
170
+
171
+ VALUE w = kw_values[0];
172
+ VALUE w_klass = rb_obj_class(w);
173
+ if (w_klass != numo_cSFloat && w_klass != numo_cDFloat) rb_raise(rb_eTypeError, "weight must be Numo::DFloat or Numo::SFloat");
174
+
175
+ if (!RTEST(nary_check_contiguous(w))) w = nary_dup(w);
176
+ narray_t* w_nary;
177
+ GetNArray(w, w_nary);
178
+ if (NA_NDIM(w_nary) != 1) rb_raise(rb_eArgError, "weight must be 1-dimensional array");
179
+
180
+ const size_t w_len = NA_SHAPE(w_nary)[0];
181
+ if (w_len < 1) rb_raise(rb_eArgError, "length of weight must be > 0");
182
+
183
+ if (w_klass == numo_cSFloat) {
184
+ const float* w_ptr = (float*)na_get_pointer_for_read(w);
185
+ std::vector<float> w_vec(w_ptr, w_ptr + w_len);
186
+ if (klass == numo_cInt8) {
187
+ _rand_discrete<int8_t, float>(self, x, w_vec);
188
+ } else if (klass == numo_cInt16) {
189
+ _rand_discrete<int16_t, float>(self, x, w_vec);
190
+ } else if (klass == numo_cInt32) {
191
+ _rand_discrete<int32_t, float>(self, x, w_vec);
192
+ } else if (klass == numo_cInt64) {
193
+ _rand_discrete<int64_t, float>(self, x, w_vec);
194
+ } else if (klass == numo_cUInt8) {
195
+ _rand_discrete<uint8_t, float>(self, x, w_vec);
196
+ } else if (klass == numo_cUInt16) {
197
+ _rand_discrete<uint16_t, float>(self, x, w_vec);
198
+ } else if (klass == numo_cUInt32) {
199
+ _rand_discrete<uint32_t, float>(self, x, w_vec);
200
+ } else if (klass == numo_cUInt64) {
201
+ _rand_discrete<uint64_t, float>(self, x, w_vec);
202
+ }
203
+ } else {
204
+ const double* w_ptr = (double*)na_get_pointer_for_read(w);
205
+ std::vector<double> w_vec(w_ptr, w_ptr + w_len);
206
+ if (klass == numo_cInt8) {
207
+ _rand_discrete<int8_t, double>(self, x, w_vec);
208
+ } else if (klass == numo_cInt16) {
209
+ _rand_discrete<int16_t, double>(self, x, w_vec);
210
+ } else if (klass == numo_cInt32) {
211
+ _rand_discrete<int32_t, double>(self, x, w_vec);
212
+ } else if (klass == numo_cInt64) {
213
+ _rand_discrete<int64_t, double>(self, x, w_vec);
214
+ } else if (klass == numo_cUInt8) {
215
+ _rand_discrete<uint8_t, double>(self, x, w_vec);
216
+ } else if (klass == numo_cUInt16) {
217
+ _rand_discrete<uint16_t, double>(self, x, w_vec);
218
+ } else if (klass == numo_cUInt32) {
219
+ _rand_discrete<uint32_t, double>(self, x, w_vec);
220
+ } else if (klass == numo_cUInt64) {
221
+ _rand_discrete<uint64_t, double>(self, x, w_vec);
222
+ }
223
+ }
224
+
225
+ RB_GC_GUARD(w);
226
+ RB_GC_GUARD(x);
227
+ return Qnil;
228
+ }
229
+
146
230
  // #uniform
147
231
 
148
232
  template<typename T> static void _rand_uniform(VALUE& self, VALUE& x, const double& low, const double& high) {
@@ -0,0 +1,249 @@
1
+ # frozen_string_literal: true
2
+
3
+ # Ruby/Numo (NUmerical MOdules)
4
+ module Numo
5
+ # Numo::Random provides random number generation with several distributions for Numo::NArray.
6
+ module Random
7
+ # Generator is a class that generates random number with several distributions.
8
+ #
9
+ # @example
10
+ # require 'numo/random'
11
+ #
12
+ # rng = Numo::Random::Generator.new(seed: 496)
13
+ # x = rng.uniform(shape: [2, 5], low: -1, high: 2)
14
+ #
15
+ # p x
16
+ # # Numo::DFloat#shape=[2,5]
17
+ # # [[1.90546, -0.543299, 0.673332, 0.759583, -0.40945],
18
+ # # [0.334635, -0.0558342, 1.28115, 1.93644, -0.0689543]]
19
+ class Generator
20
+ # Returns random number generation algorithm.
21
+ # @return [String]
22
+ attr_accessor :algorithm
23
+
24
+ # Creates a new random number generator.
25
+ #
26
+ # @param seed [Integer] random seed used to initialize the random number generator.
27
+ # @param algorithm [String] random number generation algorithm.
28
+ def initialize(seed: nil, algorithm: 'pcg64') # rubocop:disable Lint/UnusedMethodArgument
29
+ @algorithm = 'pcg64'
30
+ @rng = PCG64.new(seed: seed)
31
+ end
32
+
33
+ # Returns the seed of random number generator.
34
+ #
35
+ # @return [Integer]
36
+ def seed
37
+ rng.seed
38
+ end
39
+
40
+ # Sets the seed of random number generator.
41
+ #
42
+ # @param val [Integer] random seed.
43
+ def seed=(val)
44
+ rng.seed = val
45
+ end
46
+
47
+ # Returns random number with uniform distribution in the half-open interval [0, 1).
48
+ #
49
+ # @example
50
+ # require 'numo/random'
51
+ #
52
+ # rng = Numo::Random::Generator.new
53
+ # v = rng.random
54
+ #
55
+ # @return [Float]
56
+ def random
57
+ rng.random
58
+ end
59
+
60
+ # Generates array consists of random integer values in the interval [0, n).
61
+ #
62
+ # @example
63
+ # require 'numo/random'
64
+ #
65
+ # rng = Numo::Random::Generator.new(seed: 42)
66
+ # w = Numo::DFloat[0.1, 0.6, 0.2]
67
+ # x = rng.discrete(shape: [3, 10], weight: w)
68
+ #
69
+ # p x
70
+ #
71
+ # # Numo::Int32#shape=[3,10]
72
+ # # [[1, 1, 1, 1, 1, 1, 1, 1, 2, 1],
73
+ # # [0, 1, 0, 1, 1, 0, 1, 1, 2, 1],
74
+ # # [2, 1, 1, 1, 1, 2, 2, 1, 1, 2]]
75
+ #
76
+ # @param shape [Integer | Array<Integer>] size of random array.
77
+ # @param weight [Numo::DFloat | Numo::SFloat] (shape: [n]) list of probabilities of each integer being generated.
78
+ # @param dtype [Symbol] data type of random array.
79
+ # @return [Numo::IntX | Numo::UIntX]
80
+ def discrete(shape:, weight:, dtype: :int32)
81
+ x = klass(dtype).new(shape)
82
+ rng.discrete(x, weight: weight)
83
+ x
84
+ end
85
+
86
+ # Generates array consists of uniformly distributed random values in the interval [low, high).
87
+ #
88
+ # @example
89
+ # require 'numo/random'
90
+ #
91
+ # rng = Numo::Random::Generator.new
92
+ # x = rng.uniform(shape: 100, low: -1.5, high: 1.5)
93
+ #
94
+ # @param shape [Integer | Array<Integer>] size of random array.
95
+ # @param low [Float] lower boundary.
96
+ # @param high [Float] upper boundary.
97
+ # @param dtype [Symbol] data type of random array.
98
+ # @return [Numo::DFloat | Numo::SFloat]
99
+ def uniform(shape:, low: 0.0, high: 1.0, dtype: :float64)
100
+ x = klass(dtype).new(shape)
101
+ rng.uniform(x, low: low, high: high)
102
+ x
103
+ end
104
+
105
+ # Generates array consists of random values according to the Cauchy (Lorentz) distribution.
106
+ #
107
+ # @example
108
+ # require 'numo/random'
109
+ #
110
+ # rng = Numo::Random::Generator.new
111
+ # x = rng.cauchy(shape: 100, loc: 0.0, scale: 1.0)
112
+ #
113
+ # @param shape [Integer | Array<Integer>] size of random array.
114
+ # @param loc [Float] location parameter.
115
+ # @param scale [Float] scale parameter.
116
+ # @param dtype [Symbol] data type of random array.
117
+ # @return [Numo::DFloat | Numo::SFloat]
118
+ def cauchy(shape:, loc: 0.0, scale: 1.0, dtype: :float64)
119
+ x = klass(dtype).new(shape)
120
+ rng.cauchy(x, loc: loc, scale: scale)
121
+ x
122
+ end
123
+
124
+ # Generates array consists of random values according to the Chi-squared distribution.
125
+ #
126
+ # @example
127
+ # require 'numo/random'
128
+ #
129
+ # rng = Numo::Random::Generator.new
130
+ # x = rng.chisquare(shape: 100, df: 2.0)
131
+ #
132
+ # @param shape [Integer | Array<Integer>] size of random array.
133
+ # @param df [Float] degrees of freedom, must be > 0.
134
+ # @param dtype [Symbol] data type of random array.
135
+ # @return [Numo::DFloat | Numo::SFloat]
136
+ def chisquare(shape:, df:, dtype: :float64)
137
+ x = klass(dtype).new(shape)
138
+ rng.chisquare(x, df: df)
139
+ x
140
+ end
141
+
142
+ # Generates array consists of random values according to the F-distribution.
143
+ #
144
+ # @example
145
+ # require 'numo/random'
146
+ #
147
+ # rng = Numo::Random::Generator.new
148
+ # x = rng.f(shape: 100, dfnum: 2.0, dfden: 4.0)
149
+ #
150
+ # @param shape [Integer | Array<Integer>] size of random array.
151
+ # @param dfnum [Float] degrees of freedom in numerator, must be > 0.
152
+ # @param dfden [Float] degrees of freedom in denominator, must be > 0.
153
+ # @param dtype [Symbol] data type of random array.
154
+ # @return [Numo::DFloat | Numo::SFloat]
155
+ def f(shape:, dfnum:, dfden:, dtype: :float64)
156
+ x = klass(dtype).new(shape)
157
+ rng.f(x, dfnum: dfnum, dfden: dfden)
158
+ x
159
+ end
160
+
161
+ # Generates array consists of random values according to a normal (Gaussian) distribution.
162
+ #
163
+ # @example
164
+ # require 'numo/random'
165
+ #
166
+ # rng = Numo::Random::Generator.new
167
+ # x = rng.normal(shape: 100, loc: 0.0, scale: 1.0)
168
+ #
169
+ # @param shape [Integer | Array<Integer>] size of random array.
170
+ # @param loc [Float] location parameter.
171
+ # @param scale [Float] scale parameter.
172
+ # @param dtype [Symbol] data type of random array.
173
+ # @return [Numo::DFloat | Numo::SFloat]
174
+ def normal(shape:, loc: 0.0, scale: 1.0, dtype: :float64)
175
+ x = klass(dtype).new(shape)
176
+ rng.normal(x, loc: loc, scale: scale)
177
+ x
178
+ end
179
+
180
+ # Generates array consists of random values according to a log-normal distribution.
181
+ #
182
+ # @example
183
+ # require 'numo/random'
184
+ #
185
+ # rng = Numo::Random::Generator.new
186
+ # x = rng.lognormal(shape: 100, mean: 0.0, sigma: 1.0)
187
+ #
188
+ # @param shape [Integer | Array<Integer>] size of random array.
189
+ # @param mean [Float] mean of normal distribution.
190
+ # @param sigma [Float] standard deviation of normal distribution.
191
+ # @param dtype [Symbol] data type of random array.
192
+ # @return [Numo::DFloat | Numo::SFloat]
193
+ def lognormal(shape:, mean: 0.0, sigma: 1.0, dtype: :float64)
194
+ x = klass(dtype).new(shape)
195
+ rng.lognormal(x, mean: mean, sigma: sigma)
196
+ x
197
+ end
198
+
199
+ # Generates array consists of random values according to the Student's t-distribution.
200
+ #
201
+ # @example
202
+ # require 'numo/random'
203
+ #
204
+ # rng = Numo::Random::Generator.new
205
+ # x = rng.standard_t(shape: 100, df: 8.0)
206
+ #
207
+ # @param shape [Integer | Array<Integer>] size of random array.
208
+ # @param df [Float] degrees of freedom, must be > 0.
209
+ # @param dtype [Symbol] data type of random array.
210
+ # @return [Numo::DFloat | Numo::SFloat]
211
+ def standard_t(shape:, df:, dtype: :float64)
212
+ x = klass(dtype).new(shape)
213
+ rng.standard_t(x, df: df)
214
+ x
215
+ end
216
+
217
+ private
218
+
219
+ attr_reader :rng
220
+
221
+ def klass(dtype) # rubocop:disable Metrics/CyclomaticComplexity, Metrics/MethodLength
222
+ case dtype.to_sym
223
+ when :int8
224
+ Numo::Int8
225
+ when :int16
226
+ Numo::Int16
227
+ when :int32
228
+ Numo::Int32
229
+ when :int64
230
+ Numo::Int64
231
+ when :uint8
232
+ Numo::UInt8
233
+ when :uint16
234
+ Numo::UInt16
235
+ when :uint32
236
+ Numo::UInt32
237
+ when :uint64
238
+ Numo::UInt64
239
+ when :float32, :sfloat
240
+ Numo::SFloat
241
+ when :float64, :dfloat
242
+ Numo::DFloat
243
+ else
244
+ raise ArgumentError, "wrong dtype is given: #{dtype}"
245
+ end
246
+ end
247
+ end
248
+ end
249
+ end
@@ -3,6 +3,6 @@
3
3
  module Numo
4
4
  module Random
5
5
  # The version of Numo::Random you install.
6
- VERSION = '0.1.0'
6
+ VERSION = '0.2.0'
7
7
  end
8
8
  end
data/lib/numo/random.rb CHANGED
@@ -4,181 +4,4 @@ require 'numo/narray'
4
4
 
5
5
  require_relative 'random/version'
6
6
  require_relative 'random/randomext'
7
-
8
- # Ruby/Numo (NUmerical MOdules)
9
- module Numo
10
- # Numo::Random provides random number generation with several distributions for Numo::NArray.
11
- module Random
12
- # Generator is a class that generates random number with several distributions.
13
- #
14
- # @example
15
- # require 'numo/random'
16
- #
17
- # x = Numo::DFloat.new(100)
18
- #
19
- # rng = Numo::Random::Generator.new
20
- # rng.uniform(x, low: -1, high: 2)
21
- class Generator
22
- # Returns random number generation algorithm.
23
- # @return [String]
24
- attr_accessor :algorithm
25
-
26
- # Creates a new random number generator.
27
- #
28
- # @param seed [Integer] random seed used to initialize the random number generator.
29
- # @param algorithm [String] random number generation algorithm.
30
- def initialize(seed: nil, algorithm: 'pcg64') # rubocop:disable Lint/UnusedMethodArgument
31
- @algorithm = 'pcg64'
32
- @rng = PCG64.new(seed: seed)
33
- end
34
-
35
- # Returns the seed of random number generator.
36
- #
37
- # @return [Integer]
38
- def seed
39
- rng.seed
40
- end
41
-
42
- # Sets the seed of random number generator.
43
- #
44
- # @param val [Integer] random seed.
45
- def seed=(val)
46
- rng.seed = val
47
- end
48
-
49
- # Returns random number with uniform distribution in the half-open interval [0, 1).
50
- #
51
- # @example
52
- # require 'numo/random'
53
- #
54
- # rng = Numo::Random::Generator.new
55
- # v = rng.random
56
- #
57
- # @return [Float]
58
- def random
59
- rng.random
60
- end
61
-
62
- # Fills given array with uniformly distributed random values in the interval [low, high).
63
- #
64
- # @example
65
- # require 'numo/random'
66
- #
67
- # x = Numo::DFloat.new(100)
68
- #
69
- # rng = Numo::Random::Generator.new
70
- # rng.uniform(x, low: -1.5, high: 1.5)
71
- #
72
- # @param x [Numo::DFloat | Numo::SFloat] array filled with random values.
73
- # @param low [Float] lower boundary.
74
- # @param high [Float] upper boundary.
75
- def uniform(x, low: 0.0, high: 1.0)
76
- rng.uniform(x, low: low, high: high)
77
- end
78
-
79
- # Fills given array with random values according to the Cauchy (Lorentz) distribution.
80
- #
81
- # @example
82
- # require 'numo/random'
83
- #
84
- # x = Numo::DFloat.new(100)
85
- #
86
- # rng = Numo::Random::Generator.new
87
- # rng.cauchy(x, loc: 0.0, scale: 1.0)
88
- #
89
- # @param x [Numo::DFloat | Numo::SFloat] array filled with random values.
90
- # @param loc [Float] location parameter.
91
- # @param scale [Float] scale parameter.
92
- def cauchy(x, loc: 0.0, scale: 1.0)
93
- rng.cauchy(x, loc: loc, scale: scale)
94
- end
95
-
96
- # Fills given array with random values according to the Chi-squared distribution.
97
- #
98
- # @example
99
- # require 'numo/random'
100
- #
101
- # x = Numo::DFloat.new(100)
102
- #
103
- # rng = Numo::Random::Generator.new
104
- # rng.chisquare(x, df: 2.0)
105
- #
106
- # @param x [Numo::DFloat | Numo::SFloat] array filled with random values.
107
- # @param df [Float] degrees of freedom, must be > 0.
108
- def chisquare(x, df:)
109
- rng.chisquare(x, df: df)
110
- end
111
-
112
- # Fills given array with random values according to the F-distribution.
113
- #
114
- # @example
115
- # require 'numo/random'
116
- #
117
- # x = Numo::DFloat.new(100)
118
- #
119
- # rng = Numo::Random::Generator.new
120
- # rng.f(x, dfnum: 2.0, dfden: 4.0)
121
- #
122
- # @param x [Numo::DFloat | Numo::SFloat] array filled with random values.
123
- # @param dfnum [Float] degrees of freedom in numerator, must be > 0.
124
- # @param dfden [Float] degrees of freedom in denominator, must be > 0.
125
- def f(x, dfnum:, dfden:)
126
- rng.f(x, dfnum: dfnum, dfden: dfden)
127
- end
128
-
129
- # Fills given array with random values according to a normal (Gaussian) distribution.
130
- #
131
- # @example
132
- # require 'numo/random'
133
- #
134
- # x = Numo::DFloat.new(100)
135
- #
136
- # rng = Numo::Random::Generator.new
137
- # rng.normal(x, loc: 0.0, scale: 1.0)
138
- #
139
- # @param x [Numo::DFloat | Numo::SFloat] array filled with random values.
140
- # @param loc [Float] location parameter.
141
- # @param scale [Float] scale parameter.
142
- def normal(x, loc: 0.0, scale: 1.0)
143
- rng.normal(x, loc: loc, scale: scale)
144
- end
145
-
146
- # Fills given array with random values according to a log-normal distribution.
147
- #
148
- # @example
149
- # require 'numo/random'
150
- #
151
- # x = Numo::DFloat.new(100)
152
- #
153
- # rng = Numo::Random::Generator.new
154
- # rng.lognormal(x, mean: 0.0, sigma: 1.0)
155
- #
156
- # @param x [Numo::DFloat | Numo::SFloat] array filled with random values.
157
- # @param mean [Float] mean of normal distribution.
158
- # @param sigma [Float] standard deviation of normal distribution.
159
- def lognormal(x, mean: 0.0, sigma: 1.0)
160
- rng.lognormal(x, mean: mean, sigma: sigma)
161
- end
162
-
163
- # Fills given array with random values according to the Student's t-distribution.
164
- #
165
- # @example
166
- # require 'numo/random'
167
- #
168
- # x = Numo::DFloat.new(100)
169
- #
170
- # rng = Numo::Random::Generator.new
171
- # rng.standard_t(x, df: 8.0)
172
- #
173
- # @param x [Numo::DFloat | Numo::SFloat] array filled with random values.
174
- # @param df [Float] degrees of freedom, must be > 0.
175
- def standard_t(x, df:)
176
- rng.standard_t(x, df: df)
177
- end
178
-
179
- private
180
-
181
- attr_reader :rng
182
- end
183
- end
184
- end
7
+ require_relative 'random/generator'
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: numo-random
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.0
4
+ version: 0.2.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2022-10-24 00:00:00.000000000 Z
11
+ date: 2022-10-30 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: numo-narray
@@ -45,6 +45,7 @@ files:
45
45
  - ext/numo/random/src/pcg_random.hpp
46
46
  - ext/numo/random/src/pcg_uint128.hpp
47
47
  - lib/numo/random.rb
48
+ - lib/numo/random/generator.rb
48
49
  - lib/numo/random/version.rb
49
50
  homepage: https://github.com/yoshoku/numo-random
50
51
  licenses:
@@ -53,7 +54,7 @@ metadata:
53
54
  homepage_uri: https://github.com/yoshoku/numo-random
54
55
  source_code_uri: https://github.com/yoshoku/numo-random
55
56
  changelog_uri: https://github.com/yoshoku/numo-random/blob/main/CHANGELOG.md
56
- documentation_uri: https://www.rubydoc.info/gems/numo-random
57
+ documentation_uri: https://yoshoku.github.io/numo-random/doc/
57
58
  rubygems_mfa_required: 'true'
58
59
  post_install_message:
59
60
  rdoc_options: []