numo-pocketfft 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.coveralls.yml +1 -0
- data/.gitignore +20 -0
- data/.gitmodules +4 -0
- data/.rspec +3 -0
- data/.travis.yml +13 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +27 -0
- data/README.md +76 -0
- data/Rakefile +16 -0
- data/ext/numo/pocketfft/extconf.rb +39 -0
- data/ext/numo/pocketfft/pocketfft/.gitlab-ci.yml +12 -0
- data/ext/numo/pocketfft/pocketfft/LICENSE.md +25 -0
- data/ext/numo/pocketfft/pocketfft/README.md +55 -0
- data/ext/numo/pocketfft/pocketfft/TESTING +6 -0
- data/ext/numo/pocketfft/pocketfft/ffttest.c +96 -0
- data/ext/numo/pocketfft/pocketfft/pocketfft.c +2190 -0
- data/ext/numo/pocketfft/pocketfft/pocketfft.h +34 -0
- data/ext/numo/pocketfft/pocketfftext.c +214 -0
- data/ext/numo/pocketfft/pocketfftext.h +13 -0
- data/lib/numo/pocketfft.rb +149 -0
- data/lib/numo/pocketfft/version.rb +10 -0
- data/numo-pocketfft.gemspec +47 -0
- metadata +158 -0
@@ -0,0 +1,2190 @@
|
|
1
|
+
/*
|
2
|
+
* This file is part of pocketfft.
|
3
|
+
* Licensed under a 3-clause BSD style license - see LICENSE.md
|
4
|
+
*/
|
5
|
+
|
6
|
+
/*
|
7
|
+
* Main implementation file.
|
8
|
+
*
|
9
|
+
* Copyright (C) 2004-2018 Max-Planck-Society
|
10
|
+
* \author Martin Reinecke
|
11
|
+
*/
|
12
|
+
|
13
|
+
#include <math.h>
|
14
|
+
#include <string.h>
|
15
|
+
|
16
|
+
#include "pocketfft.h"
|
17
|
+
|
18
|
+
#define RALLOC(type,num) \
|
19
|
+
((type *)malloc((num)*sizeof(type)))
|
20
|
+
#define DEALLOC(ptr) \
|
21
|
+
do { free(ptr); (ptr)=NULL; } while(0)
|
22
|
+
|
23
|
+
#define SWAP(a,b,type) \
|
24
|
+
do { type tmp_=(a); (a)=(b); (b)=tmp_; } while(0)
|
25
|
+
|
26
|
+
#ifdef __GNUC__
|
27
|
+
#define NOINLINE __attribute__((noinline))
|
28
|
+
#define WARN_UNUSED_RESULT __attribute__ ((warn_unused_result))
|
29
|
+
#else
|
30
|
+
#define NOINLINE
|
31
|
+
#define WARN_UNUSED_RESULT
|
32
|
+
#endif
|
33
|
+
|
34
|
+
// adapted from https://stackoverflow.com/questions/42792939/
|
35
|
+
// CAUTION: this function only works for arguments in the range [-0.25; 0.25]!
|
36
|
+
static void my_sincosm1pi (double a, double *restrict res)
|
37
|
+
{
|
38
|
+
double s = a * a;
|
39
|
+
/* Approximate cos(pi*x)-1 for x in [-0.25,0.25] */
|
40
|
+
double r = -1.0369917389758117e-4;
|
41
|
+
r = fma (r, s, 1.9294935641298806e-3);
|
42
|
+
r = fma (r, s, -2.5806887942825395e-2);
|
43
|
+
r = fma (r, s, 2.3533063028328211e-1);
|
44
|
+
r = fma (r, s, -1.3352627688538006e+0);
|
45
|
+
r = fma (r, s, 4.0587121264167623e+0);
|
46
|
+
r = fma (r, s, -4.9348022005446790e+0);
|
47
|
+
double c = r*s;
|
48
|
+
/* Approximate sin(pi*x) for x in [-0.25,0.25] */
|
49
|
+
r = 4.6151442520157035e-4;
|
50
|
+
r = fma (r, s, -7.3700183130883555e-3);
|
51
|
+
r = fma (r, s, 8.2145868949323936e-2);
|
52
|
+
r = fma (r, s, -5.9926452893214921e-1);
|
53
|
+
r = fma (r, s, 2.5501640398732688e+0);
|
54
|
+
r = fma (r, s, -5.1677127800499516e+0);
|
55
|
+
s = s * a;
|
56
|
+
r = r * s;
|
57
|
+
s = fma (a, 3.1415926535897931e+0, r);
|
58
|
+
res[0] = c;
|
59
|
+
res[1] = s;
|
60
|
+
}
|
61
|
+
|
62
|
+
NOINLINE static void calc_first_octant(size_t den, double * restrict res)
|
63
|
+
{
|
64
|
+
size_t n = (den+4)>>3;
|
65
|
+
if (n==0) return;
|
66
|
+
res[0]=1.; res[1]=0.;
|
67
|
+
if (n==1) return;
|
68
|
+
size_t l1=(size_t)sqrt(n);
|
69
|
+
for (size_t i=1; i<l1; ++i)
|
70
|
+
my_sincosm1pi((2.*i)/den,&res[2*i]);
|
71
|
+
size_t start=l1;
|
72
|
+
while(start<n)
|
73
|
+
{
|
74
|
+
double cs[2];
|
75
|
+
my_sincosm1pi((2.*start)/den,cs);
|
76
|
+
res[2*start] = cs[0]+1.;
|
77
|
+
res[2*start+1] = cs[1];
|
78
|
+
size_t end = l1;
|
79
|
+
if (start+end>n) end = n-start;
|
80
|
+
for (size_t i=1; i<end; ++i)
|
81
|
+
{
|
82
|
+
double csx[2]={res[2*i], res[2*i+1]};
|
83
|
+
res[2*(start+i)] = ((cs[0]*csx[0] - cs[1]*csx[1] + cs[0]) + csx[0]) + 1.;
|
84
|
+
res[2*(start+i)+1] = (cs[0]*csx[1] + cs[1]*csx[0]) + cs[1] + csx[1];
|
85
|
+
}
|
86
|
+
start += l1;
|
87
|
+
}
|
88
|
+
for (size_t i=1; i<l1; ++i)
|
89
|
+
res[2*i] += 1.;
|
90
|
+
}
|
91
|
+
|
92
|
+
NOINLINE static void calc_first_quadrant(size_t n, double * restrict res)
|
93
|
+
{
|
94
|
+
double * restrict p = res+n;
|
95
|
+
calc_first_octant(n<<1, p);
|
96
|
+
size_t ndone=(n+2)>>2;
|
97
|
+
size_t i=0, idx1=0, idx2=2*ndone-2;
|
98
|
+
for (; i+1<ndone; i+=2, idx1+=2, idx2-=2)
|
99
|
+
{
|
100
|
+
res[idx1] = p[2*i];
|
101
|
+
res[idx1+1] = p[2*i+1];
|
102
|
+
res[idx2] = p[2*i+3];
|
103
|
+
res[idx2+1] = p[2*i+2];
|
104
|
+
}
|
105
|
+
if (i!=ndone)
|
106
|
+
{
|
107
|
+
res[idx1 ] = p[2*i];
|
108
|
+
res[idx1+1] = p[2*i+1];
|
109
|
+
}
|
110
|
+
}
|
111
|
+
|
112
|
+
NOINLINE static void calc_first_half(size_t n, double * restrict res)
|
113
|
+
{
|
114
|
+
int ndone=(n+1)>>1;
|
115
|
+
double * p = res+n-1;
|
116
|
+
calc_first_octant(n<<2, p);
|
117
|
+
int i4=0, in=n, i=0;
|
118
|
+
for (; i4<=in-i4; ++i, i4+=4) // octant 0
|
119
|
+
{
|
120
|
+
res[2*i] = p[2*i4]; res[2*i+1] = p[2*i4+1];
|
121
|
+
}
|
122
|
+
for (; i4-in <= 0; ++i, i4+=4) // octant 1
|
123
|
+
{
|
124
|
+
int xm = in-i4;
|
125
|
+
res[2*i] = p[2*xm+1]; res[2*i+1] = p[2*xm];
|
126
|
+
}
|
127
|
+
for (; i4<=3*in-i4; ++i, i4+=4) // octant 2
|
128
|
+
{
|
129
|
+
int xm = i4-in;
|
130
|
+
res[2*i] = -p[2*xm+1]; res[2*i+1] = p[2*xm];
|
131
|
+
}
|
132
|
+
for (; i<ndone; ++i, i4+=4) // octant 3
|
133
|
+
{
|
134
|
+
int xm = 2*in-i4;
|
135
|
+
res[2*i] = -p[2*xm]; res[2*i+1] = p[2*xm+1];
|
136
|
+
}
|
137
|
+
}
|
138
|
+
|
139
|
+
NOINLINE static void fill_first_quadrant(size_t n, double * restrict res)
|
140
|
+
{
|
141
|
+
const double hsqt2 = 0.707106781186547524400844362104849;
|
142
|
+
size_t quart = n>>2;
|
143
|
+
if ((n&7)==0)
|
144
|
+
res[quart] = res[quart+1] = hsqt2;
|
145
|
+
for (size_t i=2, j=2*quart-2; i<quart; i+=2, j-=2)
|
146
|
+
{
|
147
|
+
res[j ] = res[i+1];
|
148
|
+
res[j+1] = res[i ];
|
149
|
+
}
|
150
|
+
}
|
151
|
+
|
152
|
+
NOINLINE static void fill_first_half(size_t n, double * restrict res)
|
153
|
+
{
|
154
|
+
size_t half = n>>1;
|
155
|
+
if ((n&3)==0)
|
156
|
+
for (size_t i=0; i<half; i+=2)
|
157
|
+
{
|
158
|
+
res[i+half] = -res[i+1];
|
159
|
+
res[i+half+1] = res[i ];
|
160
|
+
}
|
161
|
+
else
|
162
|
+
for (size_t i=2, j=2*half-2; i<half; i+=2, j-=2)
|
163
|
+
{
|
164
|
+
res[j ] = -res[i ];
|
165
|
+
res[j+1] = res[i+1];
|
166
|
+
}
|
167
|
+
}
|
168
|
+
|
169
|
+
NOINLINE static void fill_second_half(size_t n, double * restrict res)
|
170
|
+
{
|
171
|
+
if ((n&1)==0)
|
172
|
+
for (size_t i=0; i<n; ++i)
|
173
|
+
res[i+n] = -res[i];
|
174
|
+
else
|
175
|
+
for (size_t i=2, j=2*n-2; i<n; i+=2, j-=2)
|
176
|
+
{
|
177
|
+
res[j ] = res[i ];
|
178
|
+
res[j+1] = -res[i+1];
|
179
|
+
}
|
180
|
+
}
|
181
|
+
|
182
|
+
NOINLINE static void sincos_2pibyn_half(size_t n, double * restrict res)
|
183
|
+
{
|
184
|
+
if ((n&3)==0)
|
185
|
+
{
|
186
|
+
calc_first_octant(n, res);
|
187
|
+
fill_first_quadrant(n, res);
|
188
|
+
fill_first_half(n, res);
|
189
|
+
}
|
190
|
+
else if ((n&1)==0)
|
191
|
+
{
|
192
|
+
calc_first_quadrant(n, res);
|
193
|
+
fill_first_half(n, res);
|
194
|
+
}
|
195
|
+
else
|
196
|
+
calc_first_half(n, res);
|
197
|
+
}
|
198
|
+
|
199
|
+
NOINLINE static void sincos_2pibyn(size_t n, double * restrict res)
|
200
|
+
{
|
201
|
+
sincos_2pibyn_half(n, res);
|
202
|
+
fill_second_half(n, res);
|
203
|
+
}
|
204
|
+
|
205
|
+
NOINLINE static size_t largest_prime_factor (size_t n)
|
206
|
+
{
|
207
|
+
size_t res=1;
|
208
|
+
size_t tmp;
|
209
|
+
while (((tmp=(n>>1))<<1)==n)
|
210
|
+
{ res=2; n=tmp; }
|
211
|
+
|
212
|
+
size_t limit=(size_t)sqrt(n+0.01);
|
213
|
+
for (size_t x=3; x<=limit; x+=2)
|
214
|
+
while (((tmp=(n/x))*x)==n)
|
215
|
+
{
|
216
|
+
res=x;
|
217
|
+
n=tmp;
|
218
|
+
limit=(size_t)sqrt(n+0.01);
|
219
|
+
}
|
220
|
+
if (n>1) res=n;
|
221
|
+
|
222
|
+
return res;
|
223
|
+
}
|
224
|
+
|
225
|
+
NOINLINE static double cost_guess (size_t n)
|
226
|
+
{
|
227
|
+
const double lfp=1.1; // penalty for non-hardcoded larger factors
|
228
|
+
size_t ni=n;
|
229
|
+
double result=0.;
|
230
|
+
size_t tmp;
|
231
|
+
while (((tmp=(n>>1))<<1)==n)
|
232
|
+
{ result+=2; n=tmp; }
|
233
|
+
|
234
|
+
size_t limit=(size_t)sqrt(n+0.01);
|
235
|
+
for (size_t x=3; x<=limit; x+=2)
|
236
|
+
while ((tmp=(n/x))*x==n)
|
237
|
+
{
|
238
|
+
result+= (x<=5) ? x : lfp*x; // penalize larger prime factors
|
239
|
+
n=tmp;
|
240
|
+
limit=(size_t)sqrt(n+0.01);
|
241
|
+
}
|
242
|
+
if (n>1) result+=(n<=5) ? n : lfp*n;
|
243
|
+
|
244
|
+
return result*ni;
|
245
|
+
}
|
246
|
+
|
247
|
+
/* returns the smallest composite of 2, 3, 5, 7 and 11 which is >= n */
|
248
|
+
NOINLINE static size_t good_size(size_t n)
|
249
|
+
{
|
250
|
+
if (n<=6) return n;
|
251
|
+
|
252
|
+
size_t bestfac=2*n;
|
253
|
+
for (size_t f2=1; f2<bestfac; f2*=2)
|
254
|
+
for (size_t f23=f2; f23<bestfac; f23*=3)
|
255
|
+
for (size_t f235=f23; f235<bestfac; f235*=5)
|
256
|
+
for (size_t f2357=f235; f2357<bestfac; f2357*=7)
|
257
|
+
for (size_t f235711=f2357; f235711<bestfac; f235711*=11)
|
258
|
+
if (f235711>=n) bestfac=f235711;
|
259
|
+
return bestfac;
|
260
|
+
}
|
261
|
+
|
262
|
+
typedef struct cmplx {
|
263
|
+
double r,i;
|
264
|
+
} cmplx;
|
265
|
+
|
266
|
+
#define NFCT 25
|
267
|
+
typedef struct cfftp_fctdata
|
268
|
+
{
|
269
|
+
size_t fct;
|
270
|
+
cmplx *tw, *tws;
|
271
|
+
} cfftp_fctdata;
|
272
|
+
|
273
|
+
typedef struct cfftp_plan_i
|
274
|
+
{
|
275
|
+
size_t length, nfct;
|
276
|
+
cmplx *mem;
|
277
|
+
cfftp_fctdata fct[NFCT];
|
278
|
+
} cfftp_plan_i;
|
279
|
+
typedef struct cfftp_plan_i * cfftp_plan;
|
280
|
+
|
281
|
+
#define PMC(a,b,c,d) { a.r=c.r+d.r; a.i=c.i+d.i; b.r=c.r-d.r; b.i=c.i-d.i; }
|
282
|
+
#define ADDC(a,b,c) { a.r=b.r+c.r; a.i=b.i+c.i; }
|
283
|
+
#define SCALEC(a,b) { a.r*=b; a.i*=b; }
|
284
|
+
#define ROT90(a) { double tmp_=a.r; a.r=-a.i; a.i=tmp_; }
|
285
|
+
#define ROTM90(a) { double tmp_=-a.r; a.r=a.i; a.i=tmp_; }
|
286
|
+
#define CH(a,b,c) ch[(a)+ido*((b)+l1*(c))]
|
287
|
+
#define CC(a,b,c) cc[(a)+ido*((b)+cdim*(c))]
|
288
|
+
#define WA(x,i) wa[(i)-1+(x)*(ido-1)]
|
289
|
+
/* a = b*c */
|
290
|
+
#define A_EQ_B_MUL_C(a,b,c) { a.r=b.r*c.r-b.i*c.i; a.i=b.r*c.i+b.i*c.r; }
|
291
|
+
/* a = conj(b)*c*/
|
292
|
+
#define A_EQ_CB_MUL_C(a,b,c) { a.r=b.r*c.r+b.i*c.i; a.i=b.r*c.i-b.i*c.r; }
|
293
|
+
|
294
|
+
#define PMSIGNC(a,b,c,d) { a.r=c.r+sign*d.r; a.i=c.i+sign*d.i; b.r=c.r-sign*d.r; b.i=c.i-sign*d.i; }
|
295
|
+
/* a = b*c */
|
296
|
+
#define MULPMSIGNC(a,b,c) { a.r=b.r*c.r-sign*b.i*c.i; a.i=b.r*c.i+sign*b.i*c.r; }
|
297
|
+
/* a *= b */
|
298
|
+
#define MULPMSIGNCEQ(a,b) { double xtmp=a.r; a.r=b.r*a.r-sign*b.i*a.i; a.i=b.r*a.i+sign*b.i*xtmp; }
|
299
|
+
|
300
|
+
NOINLINE static void pass2b (size_t ido, size_t l1, const cmplx * restrict cc,
|
301
|
+
cmplx * restrict ch, const cmplx * restrict wa)
|
302
|
+
{
|
303
|
+
const size_t cdim=2;
|
304
|
+
|
305
|
+
if (ido==1)
|
306
|
+
for (size_t k=0; k<l1; ++k)
|
307
|
+
PMC (CH(0,k,0),CH(0,k,1),CC(0,0,k),CC(0,1,k))
|
308
|
+
else
|
309
|
+
for (size_t k=0; k<l1; ++k)
|
310
|
+
{
|
311
|
+
PMC (CH(0,k,0),CH(0,k,1),CC(0,0,k),CC(0,1,k))
|
312
|
+
for (size_t i=1; i<ido; ++i)
|
313
|
+
{
|
314
|
+
cmplx t;
|
315
|
+
PMC (CH(i,k,0),t,CC(i,0,k),CC(i,1,k))
|
316
|
+
A_EQ_B_MUL_C (CH(i,k,1),WA(0,i),t)
|
317
|
+
}
|
318
|
+
}
|
319
|
+
}
|
320
|
+
|
321
|
+
NOINLINE static void pass2f (size_t ido, size_t l1, const cmplx * restrict cc,
|
322
|
+
cmplx * restrict ch, const cmplx * restrict wa)
|
323
|
+
{
|
324
|
+
const size_t cdim=2;
|
325
|
+
|
326
|
+
if (ido==1)
|
327
|
+
for (size_t k=0; k<l1; ++k)
|
328
|
+
PMC (CH(0,k,0),CH(0,k,1),CC(0,0,k),CC(0,1,k))
|
329
|
+
else
|
330
|
+
for (size_t k=0; k<l1; ++k)
|
331
|
+
{
|
332
|
+
PMC (CH(0,k,0),CH(0,k,1),CC(0,0,k),CC(0,1,k))
|
333
|
+
for (size_t i=1; i<ido; ++i)
|
334
|
+
{
|
335
|
+
cmplx t;
|
336
|
+
PMC (CH(i,k,0),t,CC(i,0,k),CC(i,1,k))
|
337
|
+
A_EQ_CB_MUL_C (CH(i,k,1),WA(0,i),t)
|
338
|
+
}
|
339
|
+
}
|
340
|
+
}
|
341
|
+
|
342
|
+
#define PREP3(idx) \
|
343
|
+
cmplx t0 = CC(idx,0,k), t1, t2; \
|
344
|
+
PMC (t1,t2,CC(idx,1,k),CC(idx,2,k)) \
|
345
|
+
CH(idx,k,0).r=t0.r+t1.r; \
|
346
|
+
CH(idx,k,0).i=t0.i+t1.i;
|
347
|
+
#define PARTSTEP3a(u1,u2,twr,twi) \
|
348
|
+
{ \
|
349
|
+
cmplx ca,cb; \
|
350
|
+
ca.r=t0.r+twr*t1.r; \
|
351
|
+
ca.i=t0.i+twr*t1.i; \
|
352
|
+
cb.i=twi*t2.r; \
|
353
|
+
cb.r=-(twi*t2.i); \
|
354
|
+
PMC(CH(0,k,u1),CH(0,k,u2),ca,cb) \
|
355
|
+
}
|
356
|
+
|
357
|
+
#define PARTSTEP3b(u1,u2,twr,twi) \
|
358
|
+
{ \
|
359
|
+
cmplx ca,cb,da,db; \
|
360
|
+
ca.r=t0.r+twr*t1.r; \
|
361
|
+
ca.i=t0.i+twr*t1.i; \
|
362
|
+
cb.i=twi*t2.r; \
|
363
|
+
cb.r=-(twi*t2.i); \
|
364
|
+
PMC(da,db,ca,cb) \
|
365
|
+
A_EQ_B_MUL_C (CH(i,k,u1),WA(u1-1,i),da) \
|
366
|
+
A_EQ_B_MUL_C (CH(i,k,u2),WA(u2-1,i),db) \
|
367
|
+
}
|
368
|
+
NOINLINE static void pass3b (size_t ido, size_t l1, const cmplx * restrict cc,
|
369
|
+
cmplx * restrict ch, const cmplx * restrict wa)
|
370
|
+
{
|
371
|
+
const size_t cdim=3;
|
372
|
+
const double tw1r=-0.5, tw1i= 0.86602540378443864676;
|
373
|
+
|
374
|
+
if (ido==1)
|
375
|
+
for (size_t k=0; k<l1; ++k)
|
376
|
+
{
|
377
|
+
PREP3(0)
|
378
|
+
PARTSTEP3a(1,2,tw1r,tw1i)
|
379
|
+
}
|
380
|
+
else
|
381
|
+
for (size_t k=0; k<l1; ++k)
|
382
|
+
{
|
383
|
+
{
|
384
|
+
PREP3(0)
|
385
|
+
PARTSTEP3a(1,2,tw1r,tw1i)
|
386
|
+
}
|
387
|
+
for (size_t i=1; i<ido; ++i)
|
388
|
+
{
|
389
|
+
PREP3(i)
|
390
|
+
PARTSTEP3b(1,2,tw1r,tw1i)
|
391
|
+
}
|
392
|
+
}
|
393
|
+
}
|
394
|
+
#define PARTSTEP3f(u1,u2,twr,twi) \
|
395
|
+
{ \
|
396
|
+
cmplx ca,cb,da,db; \
|
397
|
+
ca.r=t0.r+twr*t1.r; \
|
398
|
+
ca.i=t0.i+twr*t1.i; \
|
399
|
+
cb.i=twi*t2.r; \
|
400
|
+
cb.r=-(twi*t2.i); \
|
401
|
+
PMC(da,db,ca,cb) \
|
402
|
+
A_EQ_CB_MUL_C (CH(i,k,u1),WA(u1-1,i),da) \
|
403
|
+
A_EQ_CB_MUL_C (CH(i,k,u2),WA(u2-1,i),db) \
|
404
|
+
}
|
405
|
+
NOINLINE static void pass3f (size_t ido, size_t l1, const cmplx * restrict cc,
|
406
|
+
cmplx * restrict ch, const cmplx * restrict wa)
|
407
|
+
{
|
408
|
+
const size_t cdim=3;
|
409
|
+
const double tw1r=-0.5, tw1i= -0.86602540378443864676;
|
410
|
+
|
411
|
+
if (ido==1)
|
412
|
+
for (size_t k=0; k<l1; ++k)
|
413
|
+
{
|
414
|
+
PREP3(0)
|
415
|
+
PARTSTEP3a(1,2,tw1r,tw1i)
|
416
|
+
}
|
417
|
+
else
|
418
|
+
for (size_t k=0; k<l1; ++k)
|
419
|
+
{
|
420
|
+
{
|
421
|
+
PREP3(0)
|
422
|
+
PARTSTEP3a(1,2,tw1r,tw1i)
|
423
|
+
}
|
424
|
+
for (size_t i=1; i<ido; ++i)
|
425
|
+
{
|
426
|
+
PREP3(i)
|
427
|
+
PARTSTEP3f(1,2,tw1r,tw1i)
|
428
|
+
}
|
429
|
+
}
|
430
|
+
}
|
431
|
+
|
432
|
+
NOINLINE static void pass4b (size_t ido, size_t l1, const cmplx * restrict cc,
|
433
|
+
cmplx * restrict ch, const cmplx * restrict wa)
|
434
|
+
{
|
435
|
+
const size_t cdim=4;
|
436
|
+
|
437
|
+
if (ido==1)
|
438
|
+
for (size_t k=0; k<l1; ++k)
|
439
|
+
{
|
440
|
+
cmplx t1, t2, t3, t4;
|
441
|
+
PMC(t2,t1,CC(0,0,k),CC(0,2,k))
|
442
|
+
PMC(t3,t4,CC(0,1,k),CC(0,3,k))
|
443
|
+
ROT90(t4)
|
444
|
+
PMC(CH(0,k,0),CH(0,k,2),t2,t3)
|
445
|
+
PMC(CH(0,k,1),CH(0,k,3),t1,t4)
|
446
|
+
}
|
447
|
+
else
|
448
|
+
for (size_t k=0; k<l1; ++k)
|
449
|
+
{
|
450
|
+
{
|
451
|
+
cmplx t1, t2, t3, t4;
|
452
|
+
PMC(t2,t1,CC(0,0,k),CC(0,2,k))
|
453
|
+
PMC(t3,t4,CC(0,1,k),CC(0,3,k))
|
454
|
+
ROT90(t4)
|
455
|
+
PMC(CH(0,k,0),CH(0,k,2),t2,t3)
|
456
|
+
PMC(CH(0,k,1),CH(0,k,3),t1,t4)
|
457
|
+
}
|
458
|
+
for (size_t i=1; i<ido; ++i)
|
459
|
+
{
|
460
|
+
cmplx c2, c3, c4, t1, t2, t3, t4;
|
461
|
+
cmplx cc0=CC(i,0,k), cc1=CC(i,1,k),cc2=CC(i,2,k),cc3=CC(i,3,k);
|
462
|
+
PMC(t2,t1,cc0,cc2)
|
463
|
+
PMC(t3,t4,cc1,cc3)
|
464
|
+
ROT90(t4)
|
465
|
+
cmplx wa0=WA(0,i), wa1=WA(1,i),wa2=WA(2,i);
|
466
|
+
PMC(CH(i,k,0),c3,t2,t3)
|
467
|
+
PMC(c2,c4,t1,t4)
|
468
|
+
A_EQ_B_MUL_C (CH(i,k,1),wa0,c2)
|
469
|
+
A_EQ_B_MUL_C (CH(i,k,2),wa1,c3)
|
470
|
+
A_EQ_B_MUL_C (CH(i,k,3),wa2,c4)
|
471
|
+
}
|
472
|
+
}
|
473
|
+
}
|
474
|
+
NOINLINE static void pass4f (size_t ido, size_t l1, const cmplx * restrict cc,
|
475
|
+
cmplx * restrict ch, const cmplx * restrict wa)
|
476
|
+
{
|
477
|
+
const size_t cdim=4;
|
478
|
+
|
479
|
+
if (ido==1)
|
480
|
+
for (size_t k=0; k<l1; ++k)
|
481
|
+
{
|
482
|
+
cmplx t1, t2, t3, t4;
|
483
|
+
PMC(t2,t1,CC(0,0,k),CC(0,2,k))
|
484
|
+
PMC(t3,t4,CC(0,1,k),CC(0,3,k))
|
485
|
+
ROTM90(t4)
|
486
|
+
PMC(CH(0,k,0),CH(0,k,2),t2,t3)
|
487
|
+
PMC(CH(0,k,1),CH(0,k,3),t1,t4)
|
488
|
+
}
|
489
|
+
else
|
490
|
+
for (size_t k=0; k<l1; ++k)
|
491
|
+
{
|
492
|
+
{
|
493
|
+
cmplx t1, t2, t3, t4;
|
494
|
+
PMC(t2,t1,CC(0,0,k),CC(0,2,k))
|
495
|
+
PMC(t3,t4,CC(0,1,k),CC(0,3,k))
|
496
|
+
ROTM90(t4)
|
497
|
+
PMC(CH(0,k,0),CH(0,k,2),t2,t3)
|
498
|
+
PMC (CH(0,k,1),CH(0,k,3),t1,t4)
|
499
|
+
}
|
500
|
+
for (size_t i=1; i<ido; ++i)
|
501
|
+
{
|
502
|
+
cmplx c2, c3, c4, t1, t2, t3, t4;
|
503
|
+
cmplx cc0=CC(i,0,k), cc1=CC(i,1,k),cc2=CC(i,2,k),cc3=CC(i,3,k);
|
504
|
+
PMC(t2,t1,cc0,cc2)
|
505
|
+
PMC(t3,t4,cc1,cc3)
|
506
|
+
ROTM90(t4)
|
507
|
+
cmplx wa0=WA(0,i), wa1=WA(1,i),wa2=WA(2,i);
|
508
|
+
PMC(CH(i,k,0),c3,t2,t3)
|
509
|
+
PMC(c2,c4,t1,t4)
|
510
|
+
A_EQ_CB_MUL_C (CH(i,k,1),wa0,c2)
|
511
|
+
A_EQ_CB_MUL_C (CH(i,k,2),wa1,c3)
|
512
|
+
A_EQ_CB_MUL_C (CH(i,k,3),wa2,c4)
|
513
|
+
}
|
514
|
+
}
|
515
|
+
}
|
516
|
+
|
517
|
+
#define PREP5(idx) \
|
518
|
+
cmplx t0 = CC(idx,0,k), t1, t2, t3, t4; \
|
519
|
+
PMC (t1,t4,CC(idx,1,k),CC(idx,4,k)) \
|
520
|
+
PMC (t2,t3,CC(idx,2,k),CC(idx,3,k)) \
|
521
|
+
CH(idx,k,0).r=t0.r+t1.r+t2.r; \
|
522
|
+
CH(idx,k,0).i=t0.i+t1.i+t2.i;
|
523
|
+
|
524
|
+
#define PARTSTEP5a(u1,u2,twar,twbr,twai,twbi) \
|
525
|
+
{ \
|
526
|
+
cmplx ca,cb; \
|
527
|
+
ca.r=t0.r+twar*t1.r+twbr*t2.r; \
|
528
|
+
ca.i=t0.i+twar*t1.i+twbr*t2.i; \
|
529
|
+
cb.i=twai*t4.r twbi*t3.r; \
|
530
|
+
cb.r=-(twai*t4.i twbi*t3.i); \
|
531
|
+
PMC(CH(0,k,u1),CH(0,k,u2),ca,cb) \
|
532
|
+
}
|
533
|
+
|
534
|
+
#define PARTSTEP5b(u1,u2,twar,twbr,twai,twbi) \
|
535
|
+
{ \
|
536
|
+
cmplx ca,cb,da,db; \
|
537
|
+
ca.r=t0.r+twar*t1.r+twbr*t2.r; \
|
538
|
+
ca.i=t0.i+twar*t1.i+twbr*t2.i; \
|
539
|
+
cb.i=twai*t4.r twbi*t3.r; \
|
540
|
+
cb.r=-(twai*t4.i twbi*t3.i); \
|
541
|
+
PMC(da,db,ca,cb) \
|
542
|
+
A_EQ_B_MUL_C (CH(i,k,u1),WA(u1-1,i),da) \
|
543
|
+
A_EQ_B_MUL_C (CH(i,k,u2),WA(u2-1,i),db) \
|
544
|
+
}
|
545
|
+
NOINLINE static void pass5b (size_t ido, size_t l1, const cmplx * restrict cc,
|
546
|
+
cmplx * restrict ch, const cmplx * restrict wa)
|
547
|
+
{
|
548
|
+
const size_t cdim=5;
|
549
|
+
const double tw1r= 0.3090169943749474241,
|
550
|
+
tw1i= 0.95105651629515357212,
|
551
|
+
tw2r= -0.8090169943749474241,
|
552
|
+
tw2i= 0.58778525229247312917;
|
553
|
+
|
554
|
+
if (ido==1)
|
555
|
+
for (size_t k=0; k<l1; ++k)
|
556
|
+
{
|
557
|
+
PREP5(0)
|
558
|
+
PARTSTEP5a(1,4,tw1r,tw2r,+tw1i,+tw2i)
|
559
|
+
PARTSTEP5a(2,3,tw2r,tw1r,+tw2i,-tw1i)
|
560
|
+
}
|
561
|
+
else
|
562
|
+
for (size_t k=0; k<l1; ++k)
|
563
|
+
{
|
564
|
+
{
|
565
|
+
PREP5(0)
|
566
|
+
PARTSTEP5a(1,4,tw1r,tw2r,+tw1i,+tw2i)
|
567
|
+
PARTSTEP5a(2,3,tw2r,tw1r,+tw2i,-tw1i)
|
568
|
+
}
|
569
|
+
for (size_t i=1; i<ido; ++i)
|
570
|
+
{
|
571
|
+
PREP5(i)
|
572
|
+
PARTSTEP5b(1,4,tw1r,tw2r,+tw1i,+tw2i)
|
573
|
+
PARTSTEP5b(2,3,tw2r,tw1r,+tw2i,-tw1i)
|
574
|
+
}
|
575
|
+
}
|
576
|
+
}
|
577
|
+
#define PARTSTEP5f(u1,u2,twar,twbr,twai,twbi) \
|
578
|
+
{ \
|
579
|
+
cmplx ca,cb,da,db; \
|
580
|
+
ca.r=t0.r+twar*t1.r+twbr*t2.r; \
|
581
|
+
ca.i=t0.i+twar*t1.i+twbr*t2.i; \
|
582
|
+
cb.i=twai*t4.r twbi*t3.r; \
|
583
|
+
cb.r=-(twai*t4.i twbi*t3.i); \
|
584
|
+
PMC(da,db,ca,cb) \
|
585
|
+
A_EQ_CB_MUL_C (CH(i,k,u1),WA(u1-1,i),da) \
|
586
|
+
A_EQ_CB_MUL_C (CH(i,k,u2),WA(u2-1,i),db) \
|
587
|
+
}
|
588
|
+
NOINLINE static void pass5f (size_t ido, size_t l1, const cmplx * restrict cc,
|
589
|
+
cmplx * restrict ch, const cmplx * restrict wa)
|
590
|
+
{
|
591
|
+
const size_t cdim=5;
|
592
|
+
const double tw1r= 0.3090169943749474241,
|
593
|
+
tw1i= -0.95105651629515357212,
|
594
|
+
tw2r= -0.8090169943749474241,
|
595
|
+
tw2i= -0.58778525229247312917;
|
596
|
+
|
597
|
+
if (ido==1)
|
598
|
+
for (size_t k=0; k<l1; ++k)
|
599
|
+
{
|
600
|
+
PREP5(0)
|
601
|
+
PARTSTEP5a(1,4,tw1r,tw2r,+tw1i,+tw2i)
|
602
|
+
PARTSTEP5a(2,3,tw2r,tw1r,+tw2i,-tw1i)
|
603
|
+
}
|
604
|
+
else
|
605
|
+
for (size_t k=0; k<l1; ++k)
|
606
|
+
{
|
607
|
+
{
|
608
|
+
PREP5(0)
|
609
|
+
PARTSTEP5a(1,4,tw1r,tw2r,+tw1i,+tw2i)
|
610
|
+
PARTSTEP5a(2,3,tw2r,tw1r,+tw2i,-tw1i)
|
611
|
+
}
|
612
|
+
for (size_t i=1; i<ido; ++i)
|
613
|
+
{
|
614
|
+
PREP5(i)
|
615
|
+
PARTSTEP5f(1,4,tw1r,tw2r,+tw1i,+tw2i)
|
616
|
+
PARTSTEP5f(2,3,tw2r,tw1r,+tw2i,-tw1i)
|
617
|
+
}
|
618
|
+
}
|
619
|
+
}
|
620
|
+
|
621
|
+
#define PREP7(idx) \
|
622
|
+
cmplx t1 = CC(idx,0,k), t2, t3, t4, t5, t6, t7; \
|
623
|
+
PMC (t2,t7,CC(idx,1,k),CC(idx,6,k)) \
|
624
|
+
PMC (t3,t6,CC(idx,2,k),CC(idx,5,k)) \
|
625
|
+
PMC (t4,t5,CC(idx,3,k),CC(idx,4,k)) \
|
626
|
+
CH(idx,k,0).r=t1.r+t2.r+t3.r+t4.r; \
|
627
|
+
CH(idx,k,0).i=t1.i+t2.i+t3.i+t4.i;
|
628
|
+
|
629
|
+
#define PARTSTEP7a0(u1,u2,x1,x2,x3,y1,y2,y3,out1,out2) \
|
630
|
+
{ \
|
631
|
+
cmplx ca,cb; \
|
632
|
+
ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r; \
|
633
|
+
ca.i=t1.i+x1*t2.i+x2*t3.i+x3*t4.i; \
|
634
|
+
cb.i=y1*t7.r y2*t6.r y3*t5.r; \
|
635
|
+
cb.r=-(y1*t7.i y2*t6.i y3*t5.i); \
|
636
|
+
PMC(out1,out2,ca,cb) \
|
637
|
+
}
|
638
|
+
#define PARTSTEP7a(u1,u2,x1,x2,x3,y1,y2,y3) \
|
639
|
+
PARTSTEP7a0(u1,u2,x1,x2,x3,y1,y2,y3,CH(0,k,u1),CH(0,k,u2))
|
640
|
+
#define PARTSTEP7(u1,u2,x1,x2,x3,y1,y2,y3) \
|
641
|
+
{ \
|
642
|
+
cmplx da,db; \
|
643
|
+
PARTSTEP7a0(u1,u2,x1,x2,x3,y1,y2,y3,da,db) \
|
644
|
+
MULPMSIGNC (CH(i,k,u1),WA(u1-1,i),da) \
|
645
|
+
MULPMSIGNC (CH(i,k,u2),WA(u2-1,i),db) \
|
646
|
+
}
|
647
|
+
|
648
|
+
NOINLINE static void pass7(size_t ido, size_t l1, const cmplx * restrict cc,
|
649
|
+
cmplx * restrict ch, const cmplx * restrict wa, const int sign)
|
650
|
+
{
|
651
|
+
const size_t cdim=7;
|
652
|
+
const double tw1r= 0.623489801858733530525,
|
653
|
+
tw1i= sign * 0.7818314824680298087084,
|
654
|
+
tw2r= -0.222520933956314404289,
|
655
|
+
tw2i= sign * 0.9749279121818236070181,
|
656
|
+
tw3r= -0.9009688679024191262361,
|
657
|
+
tw3i= sign * 0.4338837391175581204758;
|
658
|
+
|
659
|
+
if (ido==1)
|
660
|
+
for (size_t k=0; k<l1; ++k)
|
661
|
+
{
|
662
|
+
PREP7(0)
|
663
|
+
PARTSTEP7a(1,6,tw1r,tw2r,tw3r,+tw1i,+tw2i,+tw3i)
|
664
|
+
PARTSTEP7a(2,5,tw2r,tw3r,tw1r,+tw2i,-tw3i,-tw1i)
|
665
|
+
PARTSTEP7a(3,4,tw3r,tw1r,tw2r,+tw3i,-tw1i,+tw2i)
|
666
|
+
}
|
667
|
+
else
|
668
|
+
for (size_t k=0; k<l1; ++k)
|
669
|
+
{
|
670
|
+
{
|
671
|
+
PREP7(0)
|
672
|
+
PARTSTEP7a(1,6,tw1r,tw2r,tw3r,+tw1i,+tw2i,+tw3i)
|
673
|
+
PARTSTEP7a(2,5,tw2r,tw3r,tw1r,+tw2i,-tw3i,-tw1i)
|
674
|
+
PARTSTEP7a(3,4,tw3r,tw1r,tw2r,+tw3i,-tw1i,+tw2i)
|
675
|
+
}
|
676
|
+
for (size_t i=1; i<ido; ++i)
|
677
|
+
{
|
678
|
+
PREP7(i)
|
679
|
+
PARTSTEP7(1,6,tw1r,tw2r,tw3r,+tw1i,+tw2i,+tw3i)
|
680
|
+
PARTSTEP7(2,5,tw2r,tw3r,tw1r,+tw2i,-tw3i,-tw1i)
|
681
|
+
PARTSTEP7(3,4,tw3r,tw1r,tw2r,+tw3i,-tw1i,+tw2i)
|
682
|
+
}
|
683
|
+
}
|
684
|
+
}
|
685
|
+
|
686
|
+
#define PREP11(idx) \
|
687
|
+
cmplx t1 = CC(idx,0,k), t2, t3, t4, t5, t6, t7, t8, t9, t10, t11; \
|
688
|
+
PMC (t2,t11,CC(idx,1,k),CC(idx,10,k)) \
|
689
|
+
PMC (t3,t10,CC(idx,2,k),CC(idx, 9,k)) \
|
690
|
+
PMC (t4,t9 ,CC(idx,3,k),CC(idx, 8,k)) \
|
691
|
+
PMC (t5,t8 ,CC(idx,4,k),CC(idx, 7,k)) \
|
692
|
+
PMC (t6,t7 ,CC(idx,5,k),CC(idx, 6,k)) \
|
693
|
+
CH(idx,k,0).r=t1.r+t2.r+t3.r+t4.r+t5.r+t6.r; \
|
694
|
+
CH(idx,k,0).i=t1.i+t2.i+t3.i+t4.i+t5.i+t6.i;
|
695
|
+
|
696
|
+
#define PARTSTEP11a0(u1,u2,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5,out1,out2) \
|
697
|
+
{ \
|
698
|
+
cmplx ca,cb; \
|
699
|
+
ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r+x4*t5.r+x5*t6.r; \
|
700
|
+
ca.i=t1.i+x1*t2.i+x2*t3.i+x3*t4.i+x4*t5.i+x5*t6.i; \
|
701
|
+
cb.i=y1*t11.r y2*t10.r y3*t9.r y4*t8.r y5*t7.r; \
|
702
|
+
cb.r=-(y1*t11.i y2*t10.i y3*t9.i y4*t8.i y5*t7.i ); \
|
703
|
+
PMC(out1,out2,ca,cb) \
|
704
|
+
}
|
705
|
+
#define PARTSTEP11a(u1,u2,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5) \
|
706
|
+
PARTSTEP11a0(u1,u2,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5,CH(0,k,u1),CH(0,k,u2))
|
707
|
+
#define PARTSTEP11(u1,u2,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5) \
|
708
|
+
{ \
|
709
|
+
cmplx da,db; \
|
710
|
+
PARTSTEP11a0(u1,u2,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5,da,db) \
|
711
|
+
MULPMSIGNC (CH(i,k,u1),WA(u1-1,i),da) \
|
712
|
+
MULPMSIGNC (CH(i,k,u2),WA(u2-1,i),db) \
|
713
|
+
}
|
714
|
+
|
715
|
+
NOINLINE static void pass11 (size_t ido, size_t l1, const cmplx * restrict cc,
|
716
|
+
cmplx * restrict ch, const cmplx * restrict wa, const int sign)
|
717
|
+
{
|
718
|
+
const size_t cdim=11;
|
719
|
+
const double tw1r = 0.8412535328311811688618,
|
720
|
+
tw1i = sign * 0.5406408174555975821076,
|
721
|
+
tw2r = 0.4154150130018864255293,
|
722
|
+
tw2i = sign * 0.9096319953545183714117,
|
723
|
+
tw3r = -0.1423148382732851404438,
|
724
|
+
tw3i = sign * 0.9898214418809327323761,
|
725
|
+
tw4r = -0.6548607339452850640569,
|
726
|
+
tw4i = sign * 0.755749574354258283774,
|
727
|
+
tw5r = -0.9594929736144973898904,
|
728
|
+
tw5i = sign * 0.2817325568414296977114;
|
729
|
+
|
730
|
+
if (ido==1)
|
731
|
+
for (size_t k=0; k<l1; ++k)
|
732
|
+
{
|
733
|
+
PREP11(0)
|
734
|
+
PARTSTEP11a(1,10,tw1r,tw2r,tw3r,tw4r,tw5r,+tw1i,+tw2i,+tw3i,+tw4i,+tw5i)
|
735
|
+
PARTSTEP11a(2, 9,tw2r,tw4r,tw5r,tw3r,tw1r,+tw2i,+tw4i,-tw5i,-tw3i,-tw1i)
|
736
|
+
PARTSTEP11a(3, 8,tw3r,tw5r,tw2r,tw1r,tw4r,+tw3i,-tw5i,-tw2i,+tw1i,+tw4i)
|
737
|
+
PARTSTEP11a(4, 7,tw4r,tw3r,tw1r,tw5r,tw2r,+tw4i,-tw3i,+tw1i,+tw5i,-tw2i)
|
738
|
+
PARTSTEP11a(5, 6,tw5r,tw1r,tw4r,tw2r,tw3r,+tw5i,-tw1i,+tw4i,-tw2i,+tw3i)
|
739
|
+
}
|
740
|
+
else
|
741
|
+
for (size_t k=0; k<l1; ++k)
|
742
|
+
{
|
743
|
+
{
|
744
|
+
PREP11(0)
|
745
|
+
PARTSTEP11a(1,10,tw1r,tw2r,tw3r,tw4r,tw5r,+tw1i,+tw2i,+tw3i,+tw4i,+tw5i)
|
746
|
+
PARTSTEP11a(2, 9,tw2r,tw4r,tw5r,tw3r,tw1r,+tw2i,+tw4i,-tw5i,-tw3i,-tw1i)
|
747
|
+
PARTSTEP11a(3, 8,tw3r,tw5r,tw2r,tw1r,tw4r,+tw3i,-tw5i,-tw2i,+tw1i,+tw4i)
|
748
|
+
PARTSTEP11a(4, 7,tw4r,tw3r,tw1r,tw5r,tw2r,+tw4i,-tw3i,+tw1i,+tw5i,-tw2i)
|
749
|
+
PARTSTEP11a(5, 6,tw5r,tw1r,tw4r,tw2r,tw3r,+tw5i,-tw1i,+tw4i,-tw2i,+tw3i)
|
750
|
+
}
|
751
|
+
for (size_t i=1; i<ido; ++i)
|
752
|
+
{
|
753
|
+
PREP11(i)
|
754
|
+
PARTSTEP11(1,10,tw1r,tw2r,tw3r,tw4r,tw5r,+tw1i,+tw2i,+tw3i,+tw4i,+tw5i)
|
755
|
+
PARTSTEP11(2, 9,tw2r,tw4r,tw5r,tw3r,tw1r,+tw2i,+tw4i,-tw5i,-tw3i,-tw1i)
|
756
|
+
PARTSTEP11(3, 8,tw3r,tw5r,tw2r,tw1r,tw4r,+tw3i,-tw5i,-tw2i,+tw1i,+tw4i)
|
757
|
+
PARTSTEP11(4, 7,tw4r,tw3r,tw1r,tw5r,tw2r,+tw4i,-tw3i,+tw1i,+tw5i,-tw2i)
|
758
|
+
PARTSTEP11(5, 6,tw5r,tw1r,tw4r,tw2r,tw3r,+tw5i,-tw1i,+tw4i,-tw2i,+tw3i)
|
759
|
+
}
|
760
|
+
}
|
761
|
+
}
|
762
|
+
|
763
|
+
#define CX(a,b,c) cc[(a)+ido*((b)+l1*(c))]
|
764
|
+
#define CX2(a,b) cc[(a)+idl1*(b)]
|
765
|
+
#define CH2(a,b) ch[(a)+idl1*(b)]
|
766
|
+
|
767
|
+
NOINLINE static int passg (size_t ido, size_t ip, size_t l1,
|
768
|
+
cmplx * restrict cc, cmplx * restrict ch, const cmplx * restrict wa,
|
769
|
+
const cmplx * restrict csarr, const int sign)
|
770
|
+
{
|
771
|
+
const size_t cdim=ip;
|
772
|
+
size_t ipph = (ip+1)/2;
|
773
|
+
size_t idl1 = ido*l1;
|
774
|
+
|
775
|
+
cmplx * restrict wal=RALLOC(cmplx,ip);
|
776
|
+
if (!wal) return -1;
|
777
|
+
wal[0]=(cmplx){1.,0.};
|
778
|
+
for (size_t i=1; i<ip; ++i)
|
779
|
+
wal[i]=(cmplx){csarr[i].r,sign*csarr[i].i};
|
780
|
+
|
781
|
+
for (size_t k=0; k<l1; ++k)
|
782
|
+
for (size_t i=0; i<ido; ++i)
|
783
|
+
CH(i,k,0) = CC(i,0,k);
|
784
|
+
for (size_t j=1, jc=ip-1; j<ipph; ++j, --jc)
|
785
|
+
for (size_t k=0; k<l1; ++k)
|
786
|
+
for (size_t i=0; i<ido; ++i)
|
787
|
+
PMC(CH(i,k,j),CH(i,k,jc),CC(i,j,k),CC(i,jc,k))
|
788
|
+
for (size_t k=0; k<l1; ++k)
|
789
|
+
for (size_t i=0; i<ido; ++i)
|
790
|
+
{
|
791
|
+
cmplx tmp = CH(i,k,0);
|
792
|
+
for (size_t j=1; j<ipph; ++j)
|
793
|
+
ADDC(tmp,tmp,CH(i,k,j))
|
794
|
+
CX(i,k,0) = tmp;
|
795
|
+
}
|
796
|
+
for (size_t l=1, lc=ip-1; l<ipph; ++l, --lc)
|
797
|
+
{
|
798
|
+
// j=0
|
799
|
+
for (size_t ik=0; ik<idl1; ++ik)
|
800
|
+
{
|
801
|
+
CX2(ik,l).r = CH2(ik,0).r+wal[l].r*CH2(ik,1).r+wal[2*l].r*CH2(ik,2).r;
|
802
|
+
CX2(ik,l).i = CH2(ik,0).i+wal[l].r*CH2(ik,1).i+wal[2*l].r*CH2(ik,2).i;
|
803
|
+
CX2(ik,lc).r=-wal[l].i*CH2(ik,ip-1).i-wal[2*l].i*CH2(ik,ip-2).i;
|
804
|
+
CX2(ik,lc).i=wal[l].i*CH2(ik,ip-1).r+wal[2*l].i*CH2(ik,ip-2).r;
|
805
|
+
}
|
806
|
+
|
807
|
+
size_t iwal=2*l;
|
808
|
+
size_t j=3, jc=ip-3;
|
809
|
+
for (; j<ipph-1; j+=2, jc-=2)
|
810
|
+
{
|
811
|
+
iwal+=l; if (iwal>ip) iwal-=ip;
|
812
|
+
cmplx xwal=wal[iwal];
|
813
|
+
iwal+=l; if (iwal>ip) iwal-=ip;
|
814
|
+
cmplx xwal2=wal[iwal];
|
815
|
+
for (size_t ik=0; ik<idl1; ++ik)
|
816
|
+
{
|
817
|
+
CX2(ik,l).r += CH2(ik,j).r*xwal.r+CH2(ik,j+1).r*xwal2.r;
|
818
|
+
CX2(ik,l).i += CH2(ik,j).i*xwal.r+CH2(ik,j+1).i*xwal2.r;
|
819
|
+
CX2(ik,lc).r -= CH2(ik,jc).i*xwal.i+CH2(ik,jc-1).i*xwal2.i;
|
820
|
+
CX2(ik,lc).i += CH2(ik,jc).r*xwal.i+CH2(ik,jc-1).r*xwal2.i;
|
821
|
+
}
|
822
|
+
}
|
823
|
+
for (; j<ipph; ++j, --jc)
|
824
|
+
{
|
825
|
+
iwal+=l; if (iwal>ip) iwal-=ip;
|
826
|
+
cmplx xwal=wal[iwal];
|
827
|
+
for (size_t ik=0; ik<idl1; ++ik)
|
828
|
+
{
|
829
|
+
CX2(ik,l).r += CH2(ik,j).r*xwal.r;
|
830
|
+
CX2(ik,l).i += CH2(ik,j).i*xwal.r;
|
831
|
+
CX2(ik,lc).r -= CH2(ik,jc).i*xwal.i;
|
832
|
+
CX2(ik,lc).i += CH2(ik,jc).r*xwal.i;
|
833
|
+
}
|
834
|
+
}
|
835
|
+
}
|
836
|
+
DEALLOC(wal);
|
837
|
+
|
838
|
+
// shuffling and twiddling
|
839
|
+
if (ido==1)
|
840
|
+
for (size_t j=1, jc=ip-1; j<ipph; ++j, --jc)
|
841
|
+
for (size_t ik=0; ik<idl1; ++ik)
|
842
|
+
{
|
843
|
+
cmplx t1=CX2(ik,j), t2=CX2(ik,jc);
|
844
|
+
PMC(CX2(ik,j),CX2(ik,jc),t1,t2)
|
845
|
+
}
|
846
|
+
else
|
847
|
+
{
|
848
|
+
for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc)
|
849
|
+
for (size_t k=0; k<l1; ++k)
|
850
|
+
{
|
851
|
+
cmplx t1=CX(0,k,j), t2=CX(0,k,jc);
|
852
|
+
PMC(CX(0,k,j),CX(0,k,jc),t1,t2)
|
853
|
+
for (size_t i=1; i<ido; ++i)
|
854
|
+
{
|
855
|
+
cmplx x1, x2;
|
856
|
+
PMC(x1,x2,CX(i,k,j),CX(i,k,jc))
|
857
|
+
size_t idij=(j-1)*(ido-1)+i-1;
|
858
|
+
MULPMSIGNC (CX(i,k,j),wa[idij],x1)
|
859
|
+
idij=(jc-1)*(ido-1)+i-1;
|
860
|
+
MULPMSIGNC (CX(i,k,jc),wa[idij],x2)
|
861
|
+
}
|
862
|
+
}
|
863
|
+
}
|
864
|
+
return 0;
|
865
|
+
}
|
866
|
+
|
867
|
+
#undef CH2
|
868
|
+
#undef CX2
|
869
|
+
#undef CX
|
870
|
+
|
871
|
+
NOINLINE WARN_UNUSED_RESULT static int pass_all(cfftp_plan plan, cmplx c[], double fct,
|
872
|
+
const int sign)
|
873
|
+
{
|
874
|
+
if (plan->length==1) return 0;
|
875
|
+
size_t len=plan->length;
|
876
|
+
size_t l1=1, nf=plan->nfct;
|
877
|
+
cmplx *ch = RALLOC(cmplx, len);
|
878
|
+
if (!ch) return -1;
|
879
|
+
cmplx *p1=c, *p2=ch;
|
880
|
+
|
881
|
+
for(size_t k1=0; k1<nf; k1++)
|
882
|
+
{
|
883
|
+
size_t ip=plan->fct[k1].fct;
|
884
|
+
size_t l2=ip*l1;
|
885
|
+
size_t ido = len/l2;
|
886
|
+
if (ip==4)
|
887
|
+
sign>0 ? pass4b (ido, l1, p1, p2, plan->fct[k1].tw)
|
888
|
+
: pass4f (ido, l1, p1, p2, plan->fct[k1].tw);
|
889
|
+
else if(ip==2)
|
890
|
+
sign>0 ? pass2b (ido, l1, p1, p2, plan->fct[k1].tw)
|
891
|
+
: pass2f (ido, l1, p1, p2, plan->fct[k1].tw);
|
892
|
+
else if(ip==3)
|
893
|
+
sign>0 ? pass3b (ido, l1, p1, p2, plan->fct[k1].tw)
|
894
|
+
: pass3f (ido, l1, p1, p2, plan->fct[k1].tw);
|
895
|
+
else if(ip==5)
|
896
|
+
sign>0 ? pass5b (ido, l1, p1, p2, plan->fct[k1].tw)
|
897
|
+
: pass5f (ido, l1, p1, p2, plan->fct[k1].tw);
|
898
|
+
else if(ip==7) pass7 (ido, l1, p1, p2, plan->fct[k1].tw, sign);
|
899
|
+
else if(ip==11) pass11(ido, l1, p1, p2, plan->fct[k1].tw, sign);
|
900
|
+
else
|
901
|
+
{
|
902
|
+
if (passg(ido, ip, l1, p1, p2, plan->fct[k1].tw, plan->fct[k1].tws, sign))
|
903
|
+
{ DEALLOC(ch); return -1; }
|
904
|
+
SWAP(p1,p2,cmplx *);
|
905
|
+
}
|
906
|
+
SWAP(p1,p2,cmplx *);
|
907
|
+
l1=l2;
|
908
|
+
}
|
909
|
+
if (p1!=c)
|
910
|
+
{
|
911
|
+
if (fct!=1.)
|
912
|
+
for (size_t i=0; i<len; ++i)
|
913
|
+
{
|
914
|
+
c[i].r = ch[i].r*fct;
|
915
|
+
c[i].i = ch[i].i*fct;
|
916
|
+
}
|
917
|
+
else
|
918
|
+
memcpy (c,p1,len*sizeof(cmplx));
|
919
|
+
}
|
920
|
+
else
|
921
|
+
if (fct!=1.)
|
922
|
+
for (size_t i=0; i<len; ++i)
|
923
|
+
{
|
924
|
+
c[i].r *= fct;
|
925
|
+
c[i].i *= fct;
|
926
|
+
}
|
927
|
+
DEALLOC(ch);
|
928
|
+
return 0;
|
929
|
+
}
|
930
|
+
|
931
|
+
#undef PMSIGNC
|
932
|
+
#undef A_EQ_B_MUL_C
|
933
|
+
#undef A_EQ_CB_MUL_C
|
934
|
+
#undef MULPMSIGNC
|
935
|
+
#undef MULPMSIGNCEQ
|
936
|
+
|
937
|
+
#undef WA
|
938
|
+
#undef CC
|
939
|
+
#undef CH
|
940
|
+
#undef ROT90
|
941
|
+
#undef SCALEC
|
942
|
+
#undef ADDC
|
943
|
+
#undef PMC
|
944
|
+
|
945
|
+
NOINLINE WARN_UNUSED_RESULT
|
946
|
+
static int cfftp_forward(cfftp_plan plan, double c[], double fct)
|
947
|
+
{ return pass_all(plan,(cmplx *)c, fct, -1); }
|
948
|
+
|
949
|
+
NOINLINE WARN_UNUSED_RESULT
|
950
|
+
static int cfftp_backward(cfftp_plan plan, double c[], double fct)
|
951
|
+
{ return pass_all(plan,(cmplx *)c, fct, 1); }
|
952
|
+
|
953
|
+
NOINLINE WARN_UNUSED_RESULT
|
954
|
+
static int cfftp_factorize (cfftp_plan plan)
|
955
|
+
{
|
956
|
+
size_t length=plan->length;
|
957
|
+
size_t nfct=0;
|
958
|
+
while ((length%4)==0)
|
959
|
+
{ if (nfct>=NFCT) return -1; plan->fct[nfct++].fct=4; length>>=2; }
|
960
|
+
if ((length%2)==0)
|
961
|
+
{
|
962
|
+
length>>=1;
|
963
|
+
// factor 2 should be at the front of the factor list
|
964
|
+
if (nfct>=NFCT) return -1;
|
965
|
+
plan->fct[nfct++].fct=2;
|
966
|
+
SWAP(plan->fct[0].fct, plan->fct[nfct-1].fct,size_t);
|
967
|
+
}
|
968
|
+
size_t maxl=(size_t)(sqrt((double)length))+1;
|
969
|
+
for (size_t divisor=3; (length>1)&&(divisor<maxl); divisor+=2)
|
970
|
+
if ((length%divisor)==0)
|
971
|
+
{
|
972
|
+
while ((length%divisor)==0)
|
973
|
+
{
|
974
|
+
if (nfct>=NFCT) return -1;
|
975
|
+
plan->fct[nfct++].fct=divisor;
|
976
|
+
length/=divisor;
|
977
|
+
}
|
978
|
+
maxl=(size_t)(sqrt((double)length))+1;
|
979
|
+
}
|
980
|
+
if (length>1) plan->fct[nfct++].fct=length;
|
981
|
+
plan->nfct=nfct;
|
982
|
+
return 0;
|
983
|
+
}
|
984
|
+
|
985
|
+
NOINLINE static size_t cfftp_twsize (cfftp_plan plan)
|
986
|
+
{
|
987
|
+
size_t twsize=0, l1=1;
|
988
|
+
for (size_t k=0; k<plan->nfct; ++k)
|
989
|
+
{
|
990
|
+
size_t ip=plan->fct[k].fct, ido= plan->length/(l1*ip);
|
991
|
+
twsize+=(ip-1)*(ido-1);
|
992
|
+
if (ip>11)
|
993
|
+
twsize+=ip;
|
994
|
+
l1*=ip;
|
995
|
+
}
|
996
|
+
return twsize;
|
997
|
+
}
|
998
|
+
|
999
|
+
NOINLINE WARN_UNUSED_RESULT static int cfftp_comp_twiddle (cfftp_plan plan)
|
1000
|
+
{
|
1001
|
+
size_t length=plan->length;
|
1002
|
+
double *twid = RALLOC(double, 2*length);
|
1003
|
+
if (!twid) return -1;
|
1004
|
+
sincos_2pibyn(length, twid);
|
1005
|
+
size_t l1=1;
|
1006
|
+
size_t memofs=0;
|
1007
|
+
for (size_t k=0; k<plan->nfct; ++k)
|
1008
|
+
{
|
1009
|
+
size_t ip=plan->fct[k].fct, ido= length/(l1*ip);
|
1010
|
+
plan->fct[k].tw=plan->mem+memofs;
|
1011
|
+
memofs+=(ip-1)*(ido-1);
|
1012
|
+
for (size_t j=1; j<ip; ++j)
|
1013
|
+
for (size_t i=1; i<ido; ++i)
|
1014
|
+
{
|
1015
|
+
plan->fct[k].tw[(j-1)*(ido-1)+i-1].r = twid[2*j*l1*i];
|
1016
|
+
plan->fct[k].tw[(j-1)*(ido-1)+i-1].i = twid[2*j*l1*i+1];
|
1017
|
+
}
|
1018
|
+
if (ip>11)
|
1019
|
+
{
|
1020
|
+
plan->fct[k].tws=plan->mem+memofs;
|
1021
|
+
memofs+=ip;
|
1022
|
+
for (size_t j=0; j<ip; ++j)
|
1023
|
+
{
|
1024
|
+
plan->fct[k].tws[j].r = twid[2*j*l1*ido];
|
1025
|
+
plan->fct[k].tws[j].i = twid[2*j*l1*ido+1];
|
1026
|
+
}
|
1027
|
+
}
|
1028
|
+
l1*=ip;
|
1029
|
+
}
|
1030
|
+
DEALLOC(twid);
|
1031
|
+
return 0;
|
1032
|
+
}
|
1033
|
+
|
1034
|
+
static cfftp_plan make_cfftp_plan (size_t length)
|
1035
|
+
{
|
1036
|
+
if (length==0) return NULL;
|
1037
|
+
cfftp_plan plan = RALLOC(cfftp_plan_i,1);
|
1038
|
+
if (!plan) return NULL;
|
1039
|
+
plan->length=length;
|
1040
|
+
plan->nfct=0;
|
1041
|
+
for (size_t i=0; i<NFCT; ++i)
|
1042
|
+
plan->fct[i]=(cfftp_fctdata){0,0,0};
|
1043
|
+
plan->mem=0;
|
1044
|
+
if (length==1) return plan;
|
1045
|
+
if (cfftp_factorize(plan)!=0) { DEALLOC(plan); return NULL; }
|
1046
|
+
size_t tws=cfftp_twsize(plan);
|
1047
|
+
plan->mem=RALLOC(cmplx,tws);
|
1048
|
+
if (!plan->mem) { DEALLOC(plan); return NULL; }
|
1049
|
+
if (cfftp_comp_twiddle(plan)!=0)
|
1050
|
+
{ DEALLOC(plan->mem); DEALLOC(plan); return NULL; }
|
1051
|
+
return plan;
|
1052
|
+
}
|
1053
|
+
|
1054
|
+
static void destroy_cfftp_plan (cfftp_plan plan)
|
1055
|
+
{
|
1056
|
+
DEALLOC(plan->mem);
|
1057
|
+
DEALLOC(plan);
|
1058
|
+
}
|
1059
|
+
|
1060
|
+
typedef struct rfftp_fctdata
|
1061
|
+
{
|
1062
|
+
size_t fct;
|
1063
|
+
double *tw, *tws;
|
1064
|
+
} rfftp_fctdata;
|
1065
|
+
|
1066
|
+
typedef struct rfftp_plan_i
|
1067
|
+
{
|
1068
|
+
size_t length, nfct;
|
1069
|
+
double *mem;
|
1070
|
+
rfftp_fctdata fct[NFCT];
|
1071
|
+
} rfftp_plan_i;
|
1072
|
+
typedef struct rfftp_plan_i * rfftp_plan;
|
1073
|
+
|
1074
|
+
#define WA(x,i) wa[(i)+(x)*(ido-1)]
|
1075
|
+
#define PM(a,b,c,d) { a=c+d; b=c-d; }
|
1076
|
+
/* (a+ib) = conj(c+id) * (e+if) */
|
1077
|
+
#define MULPM(a,b,c,d,e,f) { a=c*e+d*f; b=c*f-d*e; }
|
1078
|
+
|
1079
|
+
#define CC(a,b,c) cc[(a)+ido*((b)+l1*(c))]
|
1080
|
+
#define CH(a,b,c) ch[(a)+ido*((b)+cdim*(c))]
|
1081
|
+
|
1082
|
+
NOINLINE static void radf2 (size_t ido, size_t l1, const double * restrict cc,
|
1083
|
+
double * restrict ch, const double * restrict wa)
|
1084
|
+
{
|
1085
|
+
const size_t cdim=2;
|
1086
|
+
|
1087
|
+
for (size_t k=0; k<l1; k++)
|
1088
|
+
PM (CH(0,0,k),CH(ido-1,1,k),CC(0,k,0),CC(0,k,1))
|
1089
|
+
if ((ido&1)==0)
|
1090
|
+
for (size_t k=0; k<l1; k++)
|
1091
|
+
{
|
1092
|
+
CH( 0,1,k) = -CC(ido-1,k,1);
|
1093
|
+
CH(ido-1,0,k) = CC(ido-1,k,0);
|
1094
|
+
}
|
1095
|
+
if (ido<=2) return;
|
1096
|
+
for (size_t k=0; k<l1; k++)
|
1097
|
+
for (size_t i=2; i<ido; i+=2)
|
1098
|
+
{
|
1099
|
+
size_t ic=ido-i;
|
1100
|
+
double tr2, ti2;
|
1101
|
+
MULPM (tr2,ti2,WA(0,i-2),WA(0,i-1),CC(i-1,k,1),CC(i,k,1))
|
1102
|
+
PM (CH(i-1,0,k),CH(ic-1,1,k),CC(i-1,k,0),tr2)
|
1103
|
+
PM (CH(i ,0,k),CH(ic ,1,k),ti2,CC(i ,k,0))
|
1104
|
+
}
|
1105
|
+
}
|
1106
|
+
|
1107
|
+
NOINLINE static void radf3(size_t ido, size_t l1, const double * restrict cc,
|
1108
|
+
double * restrict ch, const double * restrict wa)
|
1109
|
+
{
|
1110
|
+
const size_t cdim=3;
|
1111
|
+
static const double taur=-0.5, taui=0.86602540378443864676;
|
1112
|
+
|
1113
|
+
for (size_t k=0; k<l1; k++)
|
1114
|
+
{
|
1115
|
+
double cr2=CC(0,k,1)+CC(0,k,2);
|
1116
|
+
CH(0,0,k) = CC(0,k,0)+cr2;
|
1117
|
+
CH(0,2,k) = taui*(CC(0,k,2)-CC(0,k,1));
|
1118
|
+
CH(ido-1,1,k) = CC(0,k,0)+taur*cr2;
|
1119
|
+
}
|
1120
|
+
if (ido==1) return;
|
1121
|
+
for (size_t k=0; k<l1; k++)
|
1122
|
+
for (size_t i=2; i<ido; i+=2)
|
1123
|
+
{
|
1124
|
+
size_t ic=ido-i;
|
1125
|
+
double di2, di3, dr2, dr3;
|
1126
|
+
MULPM (dr2,di2,WA(0,i-2),WA(0,i-1),CC(i-1,k,1),CC(i,k,1)) // d2=conj(WA0)*CC1
|
1127
|
+
MULPM (dr3,di3,WA(1,i-2),WA(1,i-1),CC(i-1,k,2),CC(i,k,2)) // d3=conj(WA1)*CC2
|
1128
|
+
double cr2=dr2+dr3; // c add
|
1129
|
+
double ci2=di2+di3;
|
1130
|
+
CH(i-1,0,k) = CC(i-1,k,0)+cr2; // c add
|
1131
|
+
CH(i ,0,k) = CC(i ,k,0)+ci2;
|
1132
|
+
double tr2 = CC(i-1,k,0)+taur*cr2; // c add
|
1133
|
+
double ti2 = CC(i ,k,0)+taur*ci2;
|
1134
|
+
double tr3 = taui*(di2-di3); // t3 = taui*i*(d3-d2)?
|
1135
|
+
double ti3 = taui*(dr3-dr2);
|
1136
|
+
PM(CH(i-1,2,k),CH(ic-1,1,k),tr2,tr3) // PM(i) = t2+t3
|
1137
|
+
PM(CH(i ,2,k),CH(ic ,1,k),ti3,ti2) // PM(ic) = conj(t2-t3)
|
1138
|
+
}
|
1139
|
+
}
|
1140
|
+
|
1141
|
+
NOINLINE static void radf4(size_t ido, size_t l1, const double * restrict cc,
|
1142
|
+
double * restrict ch, const double * restrict wa)
|
1143
|
+
{
|
1144
|
+
const size_t cdim=4;
|
1145
|
+
static const double hsqt2=0.70710678118654752440;
|
1146
|
+
|
1147
|
+
for (size_t k=0; k<l1; k++)
|
1148
|
+
{
|
1149
|
+
double tr1,tr2;
|
1150
|
+
PM (tr1,CH(0,2,k),CC(0,k,3),CC(0,k,1))
|
1151
|
+
PM (tr2,CH(ido-1,1,k),CC(0,k,0),CC(0,k,2))
|
1152
|
+
PM (CH(0,0,k),CH(ido-1,3,k),tr2,tr1)
|
1153
|
+
}
|
1154
|
+
if ((ido&1)==0)
|
1155
|
+
for (size_t k=0; k<l1; k++)
|
1156
|
+
{
|
1157
|
+
double ti1=-hsqt2*(CC(ido-1,k,1)+CC(ido-1,k,3));
|
1158
|
+
double tr1= hsqt2*(CC(ido-1,k,1)-CC(ido-1,k,3));
|
1159
|
+
PM (CH(ido-1,0,k),CH(ido-1,2,k),CC(ido-1,k,0),tr1)
|
1160
|
+
PM (CH( 0,3,k),CH( 0,1,k),ti1,CC(ido-1,k,2))
|
1161
|
+
}
|
1162
|
+
if (ido<=2) return;
|
1163
|
+
for (size_t k=0; k<l1; k++)
|
1164
|
+
for (size_t i=2; i<ido; i+=2)
|
1165
|
+
{
|
1166
|
+
size_t ic=ido-i;
|
1167
|
+
double ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4;
|
1168
|
+
MULPM(cr2,ci2,WA(0,i-2),WA(0,i-1),CC(i-1,k,1),CC(i,k,1))
|
1169
|
+
MULPM(cr3,ci3,WA(1,i-2),WA(1,i-1),CC(i-1,k,2),CC(i,k,2))
|
1170
|
+
MULPM(cr4,ci4,WA(2,i-2),WA(2,i-1),CC(i-1,k,3),CC(i,k,3))
|
1171
|
+
PM(tr1,tr4,cr4,cr2)
|
1172
|
+
PM(ti1,ti4,ci2,ci4)
|
1173
|
+
PM(tr2,tr3,CC(i-1,k,0),cr3)
|
1174
|
+
PM(ti2,ti3,CC(i ,k,0),ci3)
|
1175
|
+
PM(CH(i-1,0,k),CH(ic-1,3,k),tr2,tr1)
|
1176
|
+
PM(CH(i ,0,k),CH(ic ,3,k),ti1,ti2)
|
1177
|
+
PM(CH(i-1,2,k),CH(ic-1,1,k),tr3,ti4)
|
1178
|
+
PM(CH(i ,2,k),CH(ic ,1,k),tr4,ti3)
|
1179
|
+
}
|
1180
|
+
}
|
1181
|
+
|
1182
|
+
NOINLINE static void radf5(size_t ido, size_t l1, const double * restrict cc,
|
1183
|
+
double * restrict ch, const double * restrict wa)
|
1184
|
+
{
|
1185
|
+
const size_t cdim=5;
|
1186
|
+
static const double tr11= 0.3090169943749474241, ti11=0.95105651629515357212,
|
1187
|
+
tr12=-0.8090169943749474241, ti12=0.58778525229247312917;
|
1188
|
+
|
1189
|
+
for (size_t k=0; k<l1; k++)
|
1190
|
+
{
|
1191
|
+
double cr2, cr3, ci4, ci5;
|
1192
|
+
PM (cr2,ci5,CC(0,k,4),CC(0,k,1))
|
1193
|
+
PM (cr3,ci4,CC(0,k,3),CC(0,k,2))
|
1194
|
+
CH(0,0,k)=CC(0,k,0)+cr2+cr3;
|
1195
|
+
CH(ido-1,1,k)=CC(0,k,0)+tr11*cr2+tr12*cr3;
|
1196
|
+
CH(0,2,k)=ti11*ci5+ti12*ci4;
|
1197
|
+
CH(ido-1,3,k)=CC(0,k,0)+tr12*cr2+tr11*cr3;
|
1198
|
+
CH(0,4,k)=ti12*ci5-ti11*ci4;
|
1199
|
+
}
|
1200
|
+
if (ido==1) return;
|
1201
|
+
for (size_t k=0; k<l1;++k)
|
1202
|
+
for (size_t i=2; i<ido; i+=2)
|
1203
|
+
{
|
1204
|
+
double ci2, di2, ci4, ci5, di3, di4, di5, ci3, cr2, cr3, dr2, dr3,
|
1205
|
+
dr4, dr5, cr5, cr4, ti2, ti3, ti5, ti4, tr2, tr3, tr4, tr5;
|
1206
|
+
size_t ic=ido-i;
|
1207
|
+
MULPM (dr2,di2,WA(0,i-2),WA(0,i-1),CC(i-1,k,1),CC(i,k,1))
|
1208
|
+
MULPM (dr3,di3,WA(1,i-2),WA(1,i-1),CC(i-1,k,2),CC(i,k,2))
|
1209
|
+
MULPM (dr4,di4,WA(2,i-2),WA(2,i-1),CC(i-1,k,3),CC(i,k,3))
|
1210
|
+
MULPM (dr5,di5,WA(3,i-2),WA(3,i-1),CC(i-1,k,4),CC(i,k,4))
|
1211
|
+
PM(cr2,ci5,dr5,dr2)
|
1212
|
+
PM(ci2,cr5,di2,di5)
|
1213
|
+
PM(cr3,ci4,dr4,dr3)
|
1214
|
+
PM(ci3,cr4,di3,di4)
|
1215
|
+
CH(i-1,0,k)=CC(i-1,k,0)+cr2+cr3;
|
1216
|
+
CH(i ,0,k)=CC(i ,k,0)+ci2+ci3;
|
1217
|
+
tr2=CC(i-1,k,0)+tr11*cr2+tr12*cr3;
|
1218
|
+
ti2=CC(i ,k,0)+tr11*ci2+tr12*ci3;
|
1219
|
+
tr3=CC(i-1,k,0)+tr12*cr2+tr11*cr3;
|
1220
|
+
ti3=CC(i ,k,0)+tr12*ci2+tr11*ci3;
|
1221
|
+
MULPM(tr5,tr4,cr5,cr4,ti11,ti12)
|
1222
|
+
MULPM(ti5,ti4,ci5,ci4,ti11,ti12)
|
1223
|
+
PM(CH(i-1,2,k),CH(ic-1,1,k),tr2,tr5)
|
1224
|
+
PM(CH(i ,2,k),CH(ic ,1,k),ti5,ti2)
|
1225
|
+
PM(CH(i-1,4,k),CH(ic-1,3,k),tr3,tr4)
|
1226
|
+
PM(CH(i ,4,k),CH(ic ,3,k),ti4,ti3)
|
1227
|
+
}
|
1228
|
+
}
|
1229
|
+
|
1230
|
+
#undef CC
|
1231
|
+
#undef CH
|
1232
|
+
#define C1(a,b,c) cc[(a)+ido*((b)+l1*(c))]
|
1233
|
+
#define C2(a,b) cc[(a)+idl1*(b)]
|
1234
|
+
#define CH2(a,b) ch[(a)+idl1*(b)]
|
1235
|
+
#define CC(a,b,c) cc[(a)+ido*((b)+cdim*(c))]
|
1236
|
+
#define CH(a,b,c) ch[(a)+ido*((b)+l1*(c))]
|
1237
|
+
NOINLINE static void radfg(size_t ido, size_t ip, size_t l1,
|
1238
|
+
double * restrict cc, double * restrict ch, const double * restrict wa,
|
1239
|
+
const double * restrict csarr)
|
1240
|
+
{
|
1241
|
+
const size_t cdim=ip;
|
1242
|
+
size_t ipph=(ip+1)/2;
|
1243
|
+
size_t idl1 = ido*l1;
|
1244
|
+
|
1245
|
+
if (ido>1)
|
1246
|
+
{
|
1247
|
+
for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 114
|
1248
|
+
{
|
1249
|
+
size_t is=(j-1)*(ido-1),
|
1250
|
+
is2=(jc-1)*(ido-1);
|
1251
|
+
for (size_t k=0; k<l1; ++k) // 113
|
1252
|
+
{
|
1253
|
+
size_t idij=is;
|
1254
|
+
size_t idij2=is2;
|
1255
|
+
for (size_t i=1; i<=ido-2; i+=2) // 112
|
1256
|
+
{
|
1257
|
+
double t1=C1(i,k,j ), t2=C1(i+1,k,j ),
|
1258
|
+
t3=C1(i,k,jc), t4=C1(i+1,k,jc);
|
1259
|
+
double x1=wa[idij]*t1 + wa[idij+1]*t2,
|
1260
|
+
x2=wa[idij]*t2 - wa[idij+1]*t1,
|
1261
|
+
x3=wa[idij2]*t3 + wa[idij2+1]*t4,
|
1262
|
+
x4=wa[idij2]*t4 - wa[idij2+1]*t3;
|
1263
|
+
C1(i ,k,j ) = x1+x3;
|
1264
|
+
C1(i ,k,jc) = x2-x4;
|
1265
|
+
C1(i+1,k,j ) = x2+x4;
|
1266
|
+
C1(i+1,k,jc) = x3-x1;
|
1267
|
+
idij+=2;
|
1268
|
+
idij2+=2;
|
1269
|
+
}
|
1270
|
+
}
|
1271
|
+
}
|
1272
|
+
}
|
1273
|
+
|
1274
|
+
for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 123
|
1275
|
+
for (size_t k=0; k<l1; ++k) // 122
|
1276
|
+
{
|
1277
|
+
double t1=C1(0,k,j), t2=C1(0,k,jc);
|
1278
|
+
C1(0,k,j ) = t1+t2;
|
1279
|
+
C1(0,k,jc) = t2-t1;
|
1280
|
+
}
|
1281
|
+
|
1282
|
+
//everything in C
|
1283
|
+
//memset(ch,0,ip*l1*ido*sizeof(double));
|
1284
|
+
|
1285
|
+
for (size_t l=1,lc=ip-1; l<ipph; ++l,--lc) // 127
|
1286
|
+
{
|
1287
|
+
for (size_t ik=0; ik<idl1; ++ik) // 124
|
1288
|
+
{
|
1289
|
+
CH2(ik,l ) = C2(ik,0)+csarr[2*l]*C2(ik,1)+csarr[4*l]*C2(ik,2);
|
1290
|
+
CH2(ik,lc) = csarr[2*l+1]*C2(ik,ip-1)+csarr[4*l+1]*C2(ik,ip-2);
|
1291
|
+
}
|
1292
|
+
size_t iang = 2*l;
|
1293
|
+
size_t j=3, jc=ip-3;
|
1294
|
+
for (; j<ipph-3; j+=4,jc-=4) // 126
|
1295
|
+
{
|
1296
|
+
iang+=l; if (iang>=ip) iang-=ip;
|
1297
|
+
double ar1=csarr[2*iang], ai1=csarr[2*iang+1];
|
1298
|
+
iang+=l; if (iang>=ip) iang-=ip;
|
1299
|
+
double ar2=csarr[2*iang], ai2=csarr[2*iang+1];
|
1300
|
+
iang+=l; if (iang>=ip) iang-=ip;
|
1301
|
+
double ar3=csarr[2*iang], ai3=csarr[2*iang+1];
|
1302
|
+
iang+=l; if (iang>=ip) iang-=ip;
|
1303
|
+
double ar4=csarr[2*iang], ai4=csarr[2*iang+1];
|
1304
|
+
for (size_t ik=0; ik<idl1; ++ik) // 125
|
1305
|
+
{
|
1306
|
+
CH2(ik,l ) += ar1*C2(ik,j )+ar2*C2(ik,j +1)
|
1307
|
+
+ar3*C2(ik,j +2)+ar4*C2(ik,j +3);
|
1308
|
+
CH2(ik,lc) += ai1*C2(ik,jc)+ai2*C2(ik,jc-1)
|
1309
|
+
+ai3*C2(ik,jc-2)+ai4*C2(ik,jc-3);
|
1310
|
+
}
|
1311
|
+
}
|
1312
|
+
for (; j<ipph-1; j+=2,jc-=2) // 126
|
1313
|
+
{
|
1314
|
+
iang+=l; if (iang>=ip) iang-=ip;
|
1315
|
+
double ar1=csarr[2*iang], ai1=csarr[2*iang+1];
|
1316
|
+
iang+=l; if (iang>=ip) iang-=ip;
|
1317
|
+
double ar2=csarr[2*iang], ai2=csarr[2*iang+1];
|
1318
|
+
for (size_t ik=0; ik<idl1; ++ik) // 125
|
1319
|
+
{
|
1320
|
+
CH2(ik,l ) += ar1*C2(ik,j )+ar2*C2(ik,j +1);
|
1321
|
+
CH2(ik,lc) += ai1*C2(ik,jc)+ai2*C2(ik,jc-1);
|
1322
|
+
}
|
1323
|
+
}
|
1324
|
+
for (; j<ipph; ++j,--jc) // 126
|
1325
|
+
{
|
1326
|
+
iang+=l; if (iang>=ip) iang-=ip;
|
1327
|
+
double ar=csarr[2*iang], ai=csarr[2*iang+1];
|
1328
|
+
for (size_t ik=0; ik<idl1; ++ik) // 125
|
1329
|
+
{
|
1330
|
+
CH2(ik,l ) += ar*C2(ik,j );
|
1331
|
+
CH2(ik,lc) += ai*C2(ik,jc);
|
1332
|
+
}
|
1333
|
+
}
|
1334
|
+
}
|
1335
|
+
for (size_t ik=0; ik<idl1; ++ik) // 101
|
1336
|
+
CH2(ik,0) = C2(ik,0);
|
1337
|
+
for (size_t j=1; j<ipph; ++j) // 129
|
1338
|
+
for (size_t ik=0; ik<idl1; ++ik) // 128
|
1339
|
+
CH2(ik,0) += C2(ik,j);
|
1340
|
+
|
1341
|
+
// everything in CH at this point!
|
1342
|
+
//memset(cc,0,ip*l1*ido*sizeof(double));
|
1343
|
+
|
1344
|
+
for (size_t k=0; k<l1; ++k) // 131
|
1345
|
+
for (size_t i=0; i<ido; ++i) // 130
|
1346
|
+
CC(i,0,k) = CH(i,k,0);
|
1347
|
+
|
1348
|
+
for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 137
|
1349
|
+
{
|
1350
|
+
size_t j2=2*j-1;
|
1351
|
+
for (size_t k=0; k<l1; ++k) // 136
|
1352
|
+
{
|
1353
|
+
CC(ido-1,j2,k) = CH(0,k,j);
|
1354
|
+
CC(0,j2+1,k) = CH(0,k,jc);
|
1355
|
+
}
|
1356
|
+
}
|
1357
|
+
|
1358
|
+
if (ido==1) return;
|
1359
|
+
|
1360
|
+
for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 140
|
1361
|
+
{
|
1362
|
+
size_t j2=2*j-1;
|
1363
|
+
for(size_t k=0; k<l1; ++k) // 139
|
1364
|
+
for(size_t i=1, ic=ido-i-2; i<=ido-2; i+=2, ic-=2) // 138
|
1365
|
+
{
|
1366
|
+
CC(i ,j2+1,k) = CH(i ,k,j )+CH(i ,k,jc);
|
1367
|
+
CC(ic ,j2 ,k) = CH(i ,k,j )-CH(i ,k,jc);
|
1368
|
+
CC(i+1 ,j2+1,k) = CH(i+1,k,j )+CH(i+1,k,jc);
|
1369
|
+
CC(ic+1,j2 ,k) = CH(i+1,k,jc)-CH(i+1,k,j );
|
1370
|
+
}
|
1371
|
+
}
|
1372
|
+
}
|
1373
|
+
#undef C1
|
1374
|
+
#undef C2
|
1375
|
+
#undef CH2
|
1376
|
+
|
1377
|
+
#undef CH
|
1378
|
+
#undef CC
|
1379
|
+
#define CH(a,b,c) ch[(a)+ido*((b)+l1*(c))]
|
1380
|
+
#define CC(a,b,c) cc[(a)+ido*((b)+cdim*(c))]
|
1381
|
+
|
1382
|
+
NOINLINE static void radb2(size_t ido, size_t l1, const double * restrict cc,
|
1383
|
+
double * restrict ch, const double * restrict wa)
|
1384
|
+
{
|
1385
|
+
const size_t cdim=2;
|
1386
|
+
|
1387
|
+
for (size_t k=0; k<l1; k++)
|
1388
|
+
PM (CH(0,k,0),CH(0,k,1),CC(0,0,k),CC(ido-1,1,k))
|
1389
|
+
if ((ido&1)==0)
|
1390
|
+
for (size_t k=0; k<l1; k++)
|
1391
|
+
{
|
1392
|
+
CH(ido-1,k,0) = 2.*CC(ido-1,0,k);
|
1393
|
+
CH(ido-1,k,1) =-2.*CC(0 ,1,k);
|
1394
|
+
}
|
1395
|
+
if (ido<=2) return;
|
1396
|
+
for (size_t k=0; k<l1;++k)
|
1397
|
+
for (size_t i=2; i<ido; i+=2)
|
1398
|
+
{
|
1399
|
+
size_t ic=ido-i;
|
1400
|
+
double ti2, tr2;
|
1401
|
+
PM (CH(i-1,k,0),tr2,CC(i-1,0,k),CC(ic-1,1,k))
|
1402
|
+
PM (ti2,CH(i ,k,0),CC(i ,0,k),CC(ic ,1,k))
|
1403
|
+
MULPM (CH(i,k,1),CH(i-1,k,1),WA(0,i-2),WA(0,i-1),ti2,tr2)
|
1404
|
+
}
|
1405
|
+
}
|
1406
|
+
|
1407
|
+
NOINLINE static void radb3(size_t ido, size_t l1, const double * restrict cc,
|
1408
|
+
double * restrict ch, const double * restrict wa)
|
1409
|
+
{
|
1410
|
+
const size_t cdim=3;
|
1411
|
+
static const double taur=-0.5, taui=0.86602540378443864676;
|
1412
|
+
|
1413
|
+
for (size_t k=0; k<l1; k++)
|
1414
|
+
{
|
1415
|
+
double tr2=2.*CC(ido-1,1,k);
|
1416
|
+
double cr2=CC(0,0,k)+taur*tr2;
|
1417
|
+
CH(0,k,0)=CC(0,0,k)+tr2;
|
1418
|
+
double ci3=2.*taui*CC(0,2,k);
|
1419
|
+
PM (CH(0,k,2),CH(0,k,1),cr2,ci3);
|
1420
|
+
}
|
1421
|
+
if (ido==1) return;
|
1422
|
+
for (size_t k=0; k<l1; k++)
|
1423
|
+
for (size_t i=2; i<ido; i+=2)
|
1424
|
+
{
|
1425
|
+
size_t ic=ido-i;
|
1426
|
+
double tr2=CC(i-1,2,k)+CC(ic-1,1,k); // t2=CC(I) + conj(CC(ic))
|
1427
|
+
double ti2=CC(i ,2,k)-CC(ic ,1,k);
|
1428
|
+
double cr2=CC(i-1,0,k)+taur*tr2; // c2=CC +taur*t2
|
1429
|
+
double ci2=CC(i ,0,k)+taur*ti2;
|
1430
|
+
CH(i-1,k,0)=CC(i-1,0,k)+tr2; // CH=CC+t2
|
1431
|
+
CH(i ,k,0)=CC(i ,0,k)+ti2;
|
1432
|
+
double cr3=taui*(CC(i-1,2,k)-CC(ic-1,1,k));// c3=taui*(CC(i)-conj(CC(ic)))
|
1433
|
+
double ci3=taui*(CC(i ,2,k)+CC(ic ,1,k));
|
1434
|
+
double di2, di3, dr2, dr3;
|
1435
|
+
PM(dr3,dr2,cr2,ci3) // d2= (cr2-ci3, ci2+cr3) = c2+i*c3
|
1436
|
+
PM(di2,di3,ci2,cr3) // d3= (cr2+ci3, ci2-cr3) = c2-i*c3
|
1437
|
+
MULPM(CH(i,k,1),CH(i-1,k,1),WA(0,i-2),WA(0,i-1),di2,dr2) // ch = WA*d2
|
1438
|
+
MULPM(CH(i,k,2),CH(i-1,k,2),WA(1,i-2),WA(1,i-1),di3,dr3)
|
1439
|
+
}
|
1440
|
+
}
|
1441
|
+
|
1442
|
+
NOINLINE static void radb4(size_t ido, size_t l1, const double * restrict cc,
|
1443
|
+
double * restrict ch, const double * restrict wa)
|
1444
|
+
{
|
1445
|
+
const size_t cdim=4;
|
1446
|
+
static const double sqrt2=1.41421356237309504880;
|
1447
|
+
|
1448
|
+
for (size_t k=0; k<l1; k++)
|
1449
|
+
{
|
1450
|
+
double tr1, tr2;
|
1451
|
+
PM (tr2,tr1,CC(0,0,k),CC(ido-1,3,k))
|
1452
|
+
double tr3=2.*CC(ido-1,1,k);
|
1453
|
+
double tr4=2.*CC(0,2,k);
|
1454
|
+
PM (CH(0,k,0),CH(0,k,2),tr2,tr3)
|
1455
|
+
PM (CH(0,k,3),CH(0,k,1),tr1,tr4)
|
1456
|
+
}
|
1457
|
+
if ((ido&1)==0)
|
1458
|
+
for (size_t k=0; k<l1; k++)
|
1459
|
+
{
|
1460
|
+
double tr1,tr2,ti1,ti2;
|
1461
|
+
PM (ti1,ti2,CC(0 ,3,k),CC(0 ,1,k))
|
1462
|
+
PM (tr2,tr1,CC(ido-1,0,k),CC(ido-1,2,k))
|
1463
|
+
CH(ido-1,k,0)=tr2+tr2;
|
1464
|
+
CH(ido-1,k,1)=sqrt2*(tr1-ti1);
|
1465
|
+
CH(ido-1,k,2)=ti2+ti2;
|
1466
|
+
CH(ido-1,k,3)=-sqrt2*(tr1+ti1);
|
1467
|
+
}
|
1468
|
+
if (ido<=2) return;
|
1469
|
+
for (size_t k=0; k<l1;++k)
|
1470
|
+
for (size_t i=2; i<ido; i+=2)
|
1471
|
+
{
|
1472
|
+
double ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4;
|
1473
|
+
size_t ic=ido-i;
|
1474
|
+
PM (tr2,tr1,CC(i-1,0,k),CC(ic-1,3,k))
|
1475
|
+
PM (ti1,ti2,CC(i ,0,k),CC(ic ,3,k))
|
1476
|
+
PM (tr4,ti3,CC(i ,2,k),CC(ic ,1,k))
|
1477
|
+
PM (tr3,ti4,CC(i-1,2,k),CC(ic-1,1,k))
|
1478
|
+
PM (CH(i-1,k,0),cr3,tr2,tr3)
|
1479
|
+
PM (CH(i ,k,0),ci3,ti2,ti3)
|
1480
|
+
PM (cr4,cr2,tr1,tr4)
|
1481
|
+
PM (ci2,ci4,ti1,ti4)
|
1482
|
+
MULPM (CH(i,k,1),CH(i-1,k,1),WA(0,i-2),WA(0,i-1),ci2,cr2)
|
1483
|
+
MULPM (CH(i,k,2),CH(i-1,k,2),WA(1,i-2),WA(1,i-1),ci3,cr3)
|
1484
|
+
MULPM (CH(i,k,3),CH(i-1,k,3),WA(2,i-2),WA(2,i-1),ci4,cr4)
|
1485
|
+
}
|
1486
|
+
}
|
1487
|
+
|
1488
|
+
NOINLINE static void radb5(size_t ido, size_t l1, const double * restrict cc,
|
1489
|
+
double * restrict ch, const double * restrict wa)
|
1490
|
+
{
|
1491
|
+
const size_t cdim=5;
|
1492
|
+
static const double tr11= 0.3090169943749474241, ti11=0.95105651629515357212,
|
1493
|
+
tr12=-0.8090169943749474241, ti12=0.58778525229247312917;
|
1494
|
+
|
1495
|
+
for (size_t k=0; k<l1; k++)
|
1496
|
+
{
|
1497
|
+
double ti5=CC(0,2,k)+CC(0,2,k);
|
1498
|
+
double ti4=CC(0,4,k)+CC(0,4,k);
|
1499
|
+
double tr2=CC(ido-1,1,k)+CC(ido-1,1,k);
|
1500
|
+
double tr3=CC(ido-1,3,k)+CC(ido-1,3,k);
|
1501
|
+
CH(0,k,0)=CC(0,0,k)+tr2+tr3;
|
1502
|
+
double cr2=CC(0,0,k)+tr11*tr2+tr12*tr3;
|
1503
|
+
double cr3=CC(0,0,k)+tr12*tr2+tr11*tr3;
|
1504
|
+
double ci4, ci5;
|
1505
|
+
MULPM(ci5,ci4,ti5,ti4,ti11,ti12)
|
1506
|
+
PM(CH(0,k,4),CH(0,k,1),cr2,ci5)
|
1507
|
+
PM(CH(0,k,3),CH(0,k,2),cr3,ci4)
|
1508
|
+
}
|
1509
|
+
if (ido==1) return;
|
1510
|
+
for (size_t k=0; k<l1;++k)
|
1511
|
+
for (size_t i=2; i<ido; i+=2)
|
1512
|
+
{
|
1513
|
+
size_t ic=ido-i;
|
1514
|
+
double tr2, tr3, tr4, tr5, ti2, ti3, ti4, ti5;
|
1515
|
+
PM(tr2,tr5,CC(i-1,2,k),CC(ic-1,1,k))
|
1516
|
+
PM(ti5,ti2,CC(i ,2,k),CC(ic ,1,k))
|
1517
|
+
PM(tr3,tr4,CC(i-1,4,k),CC(ic-1,3,k))
|
1518
|
+
PM(ti4,ti3,CC(i ,4,k),CC(ic ,3,k))
|
1519
|
+
CH(i-1,k,0)=CC(i-1,0,k)+tr2+tr3;
|
1520
|
+
CH(i ,k,0)=CC(i ,0,k)+ti2+ti3;
|
1521
|
+
double cr2=CC(i-1,0,k)+tr11*tr2+tr12*tr3;
|
1522
|
+
double ci2=CC(i ,0,k)+tr11*ti2+tr12*ti3;
|
1523
|
+
double cr3=CC(i-1,0,k)+tr12*tr2+tr11*tr3;
|
1524
|
+
double ci3=CC(i ,0,k)+tr12*ti2+tr11*ti3;
|
1525
|
+
double ci4, ci5, cr5, cr4;
|
1526
|
+
MULPM(cr5,cr4,tr5,tr4,ti11,ti12)
|
1527
|
+
MULPM(ci5,ci4,ti5,ti4,ti11,ti12)
|
1528
|
+
double dr2, dr3, dr4, dr5, di2, di3, di4, di5;
|
1529
|
+
PM(dr4,dr3,cr3,ci4)
|
1530
|
+
PM(di3,di4,ci3,cr4)
|
1531
|
+
PM(dr5,dr2,cr2,ci5)
|
1532
|
+
PM(di2,di5,ci2,cr5)
|
1533
|
+
MULPM(CH(i,k,1),CH(i-1,k,1),WA(0,i-2),WA(0,i-1),di2,dr2)
|
1534
|
+
MULPM(CH(i,k,2),CH(i-1,k,2),WA(1,i-2),WA(1,i-1),di3,dr3)
|
1535
|
+
MULPM(CH(i,k,3),CH(i-1,k,3),WA(2,i-2),WA(2,i-1),di4,dr4)
|
1536
|
+
MULPM(CH(i,k,4),CH(i-1,k,4),WA(3,i-2),WA(3,i-1),di5,dr5)
|
1537
|
+
}
|
1538
|
+
}
|
1539
|
+
|
1540
|
+
#undef CC
|
1541
|
+
#undef CH
|
1542
|
+
#define CC(a,b,c) cc[(a)+ido*((b)+cdim*(c))]
|
1543
|
+
#define CH(a,b,c) ch[(a)+ido*((b)+l1*(c))]
|
1544
|
+
#define C1(a,b,c) cc[(a)+ido*((b)+l1*(c))]
|
1545
|
+
#define C2(a,b) cc[(a)+idl1*(b)]
|
1546
|
+
#define CH2(a,b) ch[(a)+idl1*(b)]
|
1547
|
+
|
1548
|
+
NOINLINE static void radbg(size_t ido, size_t ip, size_t l1,
|
1549
|
+
double * restrict cc, double * restrict ch, const double * restrict wa,
|
1550
|
+
const double * restrict csarr)
|
1551
|
+
{
|
1552
|
+
const size_t cdim=ip;
|
1553
|
+
size_t ipph=(ip+1)/ 2;
|
1554
|
+
size_t idl1 = ido*l1;
|
1555
|
+
|
1556
|
+
for (size_t k=0; k<l1; ++k) // 102
|
1557
|
+
for (size_t i=0; i<ido; ++i) // 101
|
1558
|
+
CH(i,k,0) = CC(i,0,k);
|
1559
|
+
for (size_t j=1, jc=ip-1; j<ipph; ++j, --jc) // 108
|
1560
|
+
{
|
1561
|
+
size_t j2=2*j-1;
|
1562
|
+
for (size_t k=0; k<l1; ++k)
|
1563
|
+
{
|
1564
|
+
CH(0,k,j ) = 2*CC(ido-1,j2,k);
|
1565
|
+
CH(0,k,jc) = 2*CC(0,j2+1,k);
|
1566
|
+
}
|
1567
|
+
}
|
1568
|
+
|
1569
|
+
if (ido!=1)
|
1570
|
+
{
|
1571
|
+
for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 111
|
1572
|
+
{
|
1573
|
+
size_t j2=2*j-1;
|
1574
|
+
for (size_t k=0; k<l1; ++k)
|
1575
|
+
for (size_t i=1, ic=ido-i-2; i<=ido-2; i+=2, ic-=2) // 109
|
1576
|
+
{
|
1577
|
+
CH(i ,k,j ) = CC(i ,j2+1,k)+CC(ic ,j2,k);
|
1578
|
+
CH(i ,k,jc) = CC(i ,j2+1,k)-CC(ic ,j2,k);
|
1579
|
+
CH(i+1,k,j ) = CC(i+1,j2+1,k)-CC(ic+1,j2,k);
|
1580
|
+
CH(i+1,k,jc) = CC(i+1,j2+1,k)+CC(ic+1,j2,k);
|
1581
|
+
}
|
1582
|
+
}
|
1583
|
+
}
|
1584
|
+
for (size_t l=1,lc=ip-1; l<ipph; ++l,--lc)
|
1585
|
+
{
|
1586
|
+
for (size_t ik=0; ik<idl1; ++ik)
|
1587
|
+
{
|
1588
|
+
C2(ik,l ) = CH2(ik,0)+csarr[2*l]*CH2(ik,1)+csarr[4*l]*CH2(ik,2);
|
1589
|
+
C2(ik,lc) = csarr[2*l+1]*CH2(ik,ip-1)+csarr[4*l+1]*CH2(ik,ip-2);
|
1590
|
+
}
|
1591
|
+
size_t iang=2*l;
|
1592
|
+
size_t j=3,jc=ip-3;
|
1593
|
+
for(; j<ipph-3; j+=4,jc-=4)
|
1594
|
+
{
|
1595
|
+
iang+=l; if(iang>ip) iang-=ip;
|
1596
|
+
double ar1=csarr[2*iang], ai1=csarr[2*iang+1];
|
1597
|
+
iang+=l; if(iang>ip) iang-=ip;
|
1598
|
+
double ar2=csarr[2*iang], ai2=csarr[2*iang+1];
|
1599
|
+
iang+=l; if(iang>ip) iang-=ip;
|
1600
|
+
double ar3=csarr[2*iang], ai3=csarr[2*iang+1];
|
1601
|
+
iang+=l; if(iang>ip) iang-=ip;
|
1602
|
+
double ar4=csarr[2*iang], ai4=csarr[2*iang+1];
|
1603
|
+
for (size_t ik=0; ik<idl1; ++ik)
|
1604
|
+
{
|
1605
|
+
C2(ik,l ) += ar1*CH2(ik,j )+ar2*CH2(ik,j +1)
|
1606
|
+
+ar3*CH2(ik,j +2)+ar4*CH2(ik,j +3);
|
1607
|
+
C2(ik,lc) += ai1*CH2(ik,jc)+ai2*CH2(ik,jc-1)
|
1608
|
+
+ai3*CH2(ik,jc-2)+ai4*CH2(ik,jc-3);
|
1609
|
+
}
|
1610
|
+
}
|
1611
|
+
for(; j<ipph-1; j+=2,jc-=2)
|
1612
|
+
{
|
1613
|
+
iang+=l; if(iang>ip) iang-=ip;
|
1614
|
+
double ar1=csarr[2*iang], ai1=csarr[2*iang+1];
|
1615
|
+
iang+=l; if(iang>ip) iang-=ip;
|
1616
|
+
double ar2=csarr[2*iang], ai2=csarr[2*iang+1];
|
1617
|
+
for (size_t ik=0; ik<idl1; ++ik)
|
1618
|
+
{
|
1619
|
+
C2(ik,l ) += ar1*CH2(ik,j )+ar2*CH2(ik,j +1);
|
1620
|
+
C2(ik,lc) += ai1*CH2(ik,jc)+ai2*CH2(ik,jc-1);
|
1621
|
+
}
|
1622
|
+
}
|
1623
|
+
for(; j<ipph; ++j,--jc)
|
1624
|
+
{
|
1625
|
+
iang+=l; if(iang>ip) iang-=ip;
|
1626
|
+
double war=csarr[2*iang], wai=csarr[2*iang+1];
|
1627
|
+
for (size_t ik=0; ik<idl1; ++ik)
|
1628
|
+
{
|
1629
|
+
C2(ik,l ) += war*CH2(ik,j );
|
1630
|
+
C2(ik,lc) += wai*CH2(ik,jc);
|
1631
|
+
}
|
1632
|
+
}
|
1633
|
+
}
|
1634
|
+
for (size_t j=1; j<ipph; ++j)
|
1635
|
+
for (size_t ik=0; ik<idl1; ++ik)
|
1636
|
+
CH2(ik,0) += CH2(ik,j);
|
1637
|
+
for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 124
|
1638
|
+
for (size_t k=0; k<l1; ++k)
|
1639
|
+
{
|
1640
|
+
CH(0,k,j ) = C1(0,k,j)-C1(0,k,jc);
|
1641
|
+
CH(0,k,jc) = C1(0,k,j)+C1(0,k,jc);
|
1642
|
+
}
|
1643
|
+
|
1644
|
+
if (ido==1) return;
|
1645
|
+
|
1646
|
+
for (size_t j=1, jc=ip-1; j<ipph; ++j, --jc) // 127
|
1647
|
+
for (size_t k=0; k<l1; ++k)
|
1648
|
+
for (size_t i=1; i<=ido-2; i+=2)
|
1649
|
+
{
|
1650
|
+
CH(i ,k,j ) = C1(i ,k,j)-C1(i+1,k,jc);
|
1651
|
+
CH(i ,k,jc) = C1(i ,k,j)+C1(i+1,k,jc);
|
1652
|
+
CH(i+1,k,j ) = C1(i+1,k,j)+C1(i ,k,jc);
|
1653
|
+
CH(i+1,k,jc) = C1(i+1,k,j)-C1(i ,k,jc);
|
1654
|
+
}
|
1655
|
+
|
1656
|
+
// All in CH
|
1657
|
+
|
1658
|
+
for (size_t j=1; j<ip; ++j)
|
1659
|
+
{
|
1660
|
+
size_t is = (j-1)*(ido-1);
|
1661
|
+
for (size_t k=0; k<l1; ++k)
|
1662
|
+
{
|
1663
|
+
size_t idij = is;
|
1664
|
+
for (size_t i=1; i<=ido-2; i+=2)
|
1665
|
+
{
|
1666
|
+
double t1=CH(i,k,j), t2=CH(i+1,k,j);
|
1667
|
+
CH(i ,k,j) = wa[idij]*t1-wa[idij+1]*t2;
|
1668
|
+
CH(i+1,k,j) = wa[idij]*t2+wa[idij+1]*t1;
|
1669
|
+
idij+=2;
|
1670
|
+
}
|
1671
|
+
}
|
1672
|
+
}
|
1673
|
+
}
|
1674
|
+
#undef C1
|
1675
|
+
#undef C2
|
1676
|
+
#undef CH2
|
1677
|
+
|
1678
|
+
#undef CC
|
1679
|
+
#undef CH
|
1680
|
+
#undef PM
|
1681
|
+
#undef MULPM
|
1682
|
+
#undef WA
|
1683
|
+
|
1684
|
+
static void copy_and_norm(double *c, double *p1, size_t n, double fct)
|
1685
|
+
{
|
1686
|
+
if (p1!=c)
|
1687
|
+
{
|
1688
|
+
if (fct!=1.)
|
1689
|
+
for (size_t i=0; i<n; ++i)
|
1690
|
+
c[i] = fct*p1[i];
|
1691
|
+
else
|
1692
|
+
memcpy (c,p1,n*sizeof(double));
|
1693
|
+
}
|
1694
|
+
else
|
1695
|
+
if (fct!=1.)
|
1696
|
+
for (size_t i=0; i<n; ++i)
|
1697
|
+
c[i] *= fct;
|
1698
|
+
}
|
1699
|
+
|
1700
|
+
WARN_UNUSED_RESULT
|
1701
|
+
static int rfftp_forward(rfftp_plan plan, double c[], double fct)
|
1702
|
+
{
|
1703
|
+
if (plan->length==1) return 0;
|
1704
|
+
size_t n=plan->length;
|
1705
|
+
size_t l1=n, nf=plan->nfct;
|
1706
|
+
double *ch = RALLOC(double, n);
|
1707
|
+
if (!ch) return -1;
|
1708
|
+
double *p1=c, *p2=ch;
|
1709
|
+
|
1710
|
+
for(size_t k1=0; k1<nf;++k1)
|
1711
|
+
{
|
1712
|
+
size_t k=nf-k1-1;
|
1713
|
+
size_t ip=plan->fct[k].fct;
|
1714
|
+
size_t ido=n / l1;
|
1715
|
+
l1 /= ip;
|
1716
|
+
if(ip==4)
|
1717
|
+
radf4(ido, l1, p1, p2, plan->fct[k].tw);
|
1718
|
+
else if(ip==2)
|
1719
|
+
radf2(ido, l1, p1, p2, plan->fct[k].tw);
|
1720
|
+
else if(ip==3)
|
1721
|
+
radf3(ido, l1, p1, p2, plan->fct[k].tw);
|
1722
|
+
else if(ip==5)
|
1723
|
+
radf5(ido, l1, p1, p2, plan->fct[k].tw);
|
1724
|
+
else
|
1725
|
+
{
|
1726
|
+
radfg(ido, ip, l1, p1, p2, plan->fct[k].tw, plan->fct[k].tws);
|
1727
|
+
SWAP (p1,p2,double *);
|
1728
|
+
}
|
1729
|
+
SWAP (p1,p2,double *);
|
1730
|
+
}
|
1731
|
+
copy_and_norm(c,p1,n,fct);
|
1732
|
+
DEALLOC(ch);
|
1733
|
+
return 0;
|
1734
|
+
}
|
1735
|
+
|
1736
|
+
WARN_UNUSED_RESULT
|
1737
|
+
static int rfftp_backward(rfftp_plan plan, double c[], double fct)
|
1738
|
+
{
|
1739
|
+
if (plan->length==1) return 0;
|
1740
|
+
size_t n=plan->length;
|
1741
|
+
size_t l1=1, nf=plan->nfct;
|
1742
|
+
double *ch = RALLOC(double, n);
|
1743
|
+
if (!ch) return -1;
|
1744
|
+
double *p1=c, *p2=ch;
|
1745
|
+
|
1746
|
+
for(size_t k=0; k<nf; k++)
|
1747
|
+
{
|
1748
|
+
size_t ip = plan->fct[k].fct,
|
1749
|
+
ido= n/(ip*l1);
|
1750
|
+
if(ip==4)
|
1751
|
+
radb4(ido, l1, p1, p2, plan->fct[k].tw);
|
1752
|
+
else if(ip==2)
|
1753
|
+
radb2(ido, l1, p1, p2, plan->fct[k].tw);
|
1754
|
+
else if(ip==3)
|
1755
|
+
radb3(ido, l1, p1, p2, plan->fct[k].tw);
|
1756
|
+
else if(ip==5)
|
1757
|
+
radb5(ido, l1, p1, p2, plan->fct[k].tw);
|
1758
|
+
else
|
1759
|
+
radbg(ido, ip, l1, p1, p2, plan->fct[k].tw, plan->fct[k].tws);
|
1760
|
+
SWAP (p1,p2,double *);
|
1761
|
+
l1*=ip;
|
1762
|
+
}
|
1763
|
+
copy_and_norm(c,p1,n,fct);
|
1764
|
+
DEALLOC(ch);
|
1765
|
+
return 0;
|
1766
|
+
}
|
1767
|
+
|
1768
|
+
WARN_UNUSED_RESULT
|
1769
|
+
static int rfftp_factorize (rfftp_plan plan)
|
1770
|
+
{
|
1771
|
+
size_t length=plan->length;
|
1772
|
+
size_t nfct=0;
|
1773
|
+
while ((length%4)==0)
|
1774
|
+
{ if (nfct>=NFCT) return -1; plan->fct[nfct++].fct=4; length>>=2; }
|
1775
|
+
if ((length%2)==0)
|
1776
|
+
{
|
1777
|
+
length>>=1;
|
1778
|
+
// factor 2 should be at the front of the factor list
|
1779
|
+
if (nfct>=NFCT) return -1;
|
1780
|
+
plan->fct[nfct++].fct=2;
|
1781
|
+
SWAP(plan->fct[0].fct, plan->fct[nfct-1].fct,size_t);
|
1782
|
+
}
|
1783
|
+
size_t maxl=(size_t)(sqrt((double)length))+1;
|
1784
|
+
for (size_t divisor=3; (length>1)&&(divisor<maxl); divisor+=2)
|
1785
|
+
if ((length%divisor)==0)
|
1786
|
+
{
|
1787
|
+
while ((length%divisor)==0)
|
1788
|
+
{
|
1789
|
+
if (nfct>=NFCT) return -1;
|
1790
|
+
plan->fct[nfct++].fct=divisor;
|
1791
|
+
length/=divisor;
|
1792
|
+
}
|
1793
|
+
maxl=(size_t)(sqrt((double)length))+1;
|
1794
|
+
}
|
1795
|
+
if (length>1) plan->fct[nfct++].fct=length;
|
1796
|
+
plan->nfct=nfct;
|
1797
|
+
return 0;
|
1798
|
+
}
|
1799
|
+
|
1800
|
+
static size_t rfftp_twsize(rfftp_plan plan)
|
1801
|
+
{
|
1802
|
+
size_t twsize=0, l1=1;
|
1803
|
+
for (size_t k=0; k<plan->nfct; ++k)
|
1804
|
+
{
|
1805
|
+
size_t ip=plan->fct[k].fct, ido= plan->length/(l1*ip);
|
1806
|
+
twsize+=(ip-1)*(ido-1);
|
1807
|
+
if (ip>5) twsize+=2*ip;
|
1808
|
+
l1*=ip;
|
1809
|
+
}
|
1810
|
+
return twsize;
|
1811
|
+
return 0;
|
1812
|
+
}
|
1813
|
+
|
1814
|
+
WARN_UNUSED_RESULT NOINLINE static int rfftp_comp_twiddle (rfftp_plan plan)
|
1815
|
+
{
|
1816
|
+
size_t length=plan->length;
|
1817
|
+
double *twid = RALLOC(double, 2*length);
|
1818
|
+
if (!twid) return -1;
|
1819
|
+
sincos_2pibyn_half(length, twid);
|
1820
|
+
size_t l1=1;
|
1821
|
+
double *ptr=plan->mem;
|
1822
|
+
for (size_t k=0; k<plan->nfct; ++k)
|
1823
|
+
{
|
1824
|
+
size_t ip=plan->fct[k].fct, ido=length/(l1*ip);
|
1825
|
+
if (k<plan->nfct-1) // last factor doesn't need twiddles
|
1826
|
+
{
|
1827
|
+
plan->fct[k].tw=ptr; ptr+=(ip-1)*(ido-1);
|
1828
|
+
for (size_t j=1; j<ip; ++j)
|
1829
|
+
for (size_t i=1; i<=(ido-1)/2; ++i)
|
1830
|
+
{
|
1831
|
+
plan->fct[k].tw[(j-1)*(ido-1)+2*i-2] = twid[2*j*l1*i];
|
1832
|
+
plan->fct[k].tw[(j-1)*(ido-1)+2*i-1] = twid[2*j*l1*i+1];
|
1833
|
+
}
|
1834
|
+
}
|
1835
|
+
if (ip>5) // special factors required by *g functions
|
1836
|
+
{
|
1837
|
+
plan->fct[k].tws=ptr; ptr+=2*ip;
|
1838
|
+
plan->fct[k].tws[0] = 1.;
|
1839
|
+
plan->fct[k].tws[1] = 0.;
|
1840
|
+
for (size_t i=1; i<=(ip>>1); ++i)
|
1841
|
+
{
|
1842
|
+
plan->fct[k].tws[2*i ] = twid[2*i*(length/ip)];
|
1843
|
+
plan->fct[k].tws[2*i+1] = twid[2*i*(length/ip)+1];
|
1844
|
+
plan->fct[k].tws[2*(ip-i) ] = twid[2*i*(length/ip)];
|
1845
|
+
plan->fct[k].tws[2*(ip-i)+1] = -twid[2*i*(length/ip)+1];
|
1846
|
+
}
|
1847
|
+
}
|
1848
|
+
l1*=ip;
|
1849
|
+
}
|
1850
|
+
DEALLOC(twid);
|
1851
|
+
return 0;
|
1852
|
+
}
|
1853
|
+
|
1854
|
+
NOINLINE static rfftp_plan make_rfftp_plan (size_t length)
|
1855
|
+
{
|
1856
|
+
if (length==0) return NULL;
|
1857
|
+
rfftp_plan plan = RALLOC(rfftp_plan_i,1);
|
1858
|
+
if (!plan) return NULL;
|
1859
|
+
plan->length=length;
|
1860
|
+
plan->nfct=0;
|
1861
|
+
plan->mem=NULL;
|
1862
|
+
for (size_t i=0; i<NFCT; ++i)
|
1863
|
+
plan->fct[i]=(rfftp_fctdata){0,0,0};
|
1864
|
+
if (length==1) return plan;
|
1865
|
+
if (rfftp_factorize(plan)!=0) { DEALLOC(plan); return NULL; }
|
1866
|
+
size_t tws=rfftp_twsize(plan);
|
1867
|
+
plan->mem=RALLOC(double,tws);
|
1868
|
+
if (!plan->mem) { DEALLOC(plan); return NULL; }
|
1869
|
+
if (rfftp_comp_twiddle(plan)!=0)
|
1870
|
+
{ DEALLOC(plan->mem); DEALLOC(plan); return NULL; }
|
1871
|
+
return plan;
|
1872
|
+
}
|
1873
|
+
|
1874
|
+
NOINLINE static void destroy_rfftp_plan (rfftp_plan plan)
|
1875
|
+
{
|
1876
|
+
DEALLOC(plan->mem);
|
1877
|
+
DEALLOC(plan);
|
1878
|
+
}
|
1879
|
+
|
1880
|
+
typedef struct fftblue_plan_i
|
1881
|
+
{
|
1882
|
+
size_t n, n2;
|
1883
|
+
cfftp_plan plan;
|
1884
|
+
double *mem;
|
1885
|
+
double *bk, *bkf;
|
1886
|
+
} fftblue_plan_i;
|
1887
|
+
typedef struct fftblue_plan_i * fftblue_plan;
|
1888
|
+
|
1889
|
+
NOINLINE static fftblue_plan make_fftblue_plan (size_t length)
|
1890
|
+
{
|
1891
|
+
fftblue_plan plan = RALLOC(fftblue_plan_i,1);
|
1892
|
+
if (!plan) return NULL;
|
1893
|
+
plan->n = length;
|
1894
|
+
plan->n2 = good_size(plan->n*2-1);
|
1895
|
+
plan->mem = RALLOC(double, 2*plan->n+2*plan->n2);
|
1896
|
+
if (!plan->mem) { DEALLOC(plan); return NULL; }
|
1897
|
+
plan->bk = plan->mem;
|
1898
|
+
plan->bkf = plan->bk+2*plan->n;
|
1899
|
+
|
1900
|
+
/* initialize b_k */
|
1901
|
+
double *tmp = RALLOC(double,4*plan->n);
|
1902
|
+
if (!tmp) { DEALLOC(plan->mem); DEALLOC(plan); return NULL; }
|
1903
|
+
sincos_2pibyn(2*plan->n,tmp);
|
1904
|
+
plan->bk[0] = 1;
|
1905
|
+
plan->bk[1] = 0;
|
1906
|
+
|
1907
|
+
size_t coeff=0;
|
1908
|
+
for (size_t m=1; m<plan->n; ++m)
|
1909
|
+
{
|
1910
|
+
coeff+=2*m-1;
|
1911
|
+
if (coeff>=2*plan->n) coeff-=2*plan->n;
|
1912
|
+
plan->bk[2*m ] = tmp[2*coeff ];
|
1913
|
+
plan->bk[2*m+1] = tmp[2*coeff+1];
|
1914
|
+
}
|
1915
|
+
|
1916
|
+
/* initialize the zero-padded, Fourier transformed b_k. Add normalisation. */
|
1917
|
+
double xn2 = 1./plan->n2;
|
1918
|
+
plan->bkf[0] = plan->bk[0]*xn2;
|
1919
|
+
plan->bkf[1] = plan->bk[1]*xn2;
|
1920
|
+
for (size_t m=2; m<2*plan->n; m+=2)
|
1921
|
+
{
|
1922
|
+
plan->bkf[m] = plan->bkf[2*plan->n2-m] = plan->bk[m] *xn2;
|
1923
|
+
plan->bkf[m+1] = plan->bkf[2*plan->n2-m+1] = plan->bk[m+1] *xn2;
|
1924
|
+
}
|
1925
|
+
for (size_t m=2*plan->n;m<=(2*plan->n2-2*plan->n+1);++m)
|
1926
|
+
plan->bkf[m]=0.;
|
1927
|
+
plan->plan=make_cfftp_plan(plan->n2);
|
1928
|
+
if (!plan->plan)
|
1929
|
+
{ DEALLOC(tmp); DEALLOC(plan->mem); DEALLOC(plan); return NULL; }
|
1930
|
+
if (cfftp_forward(plan->plan,plan->bkf,1.)!=0)
|
1931
|
+
{ DEALLOC(tmp); DEALLOC(plan->mem); DEALLOC(plan); return NULL; }
|
1932
|
+
DEALLOC(tmp);
|
1933
|
+
|
1934
|
+
return plan;
|
1935
|
+
}
|
1936
|
+
|
1937
|
+
NOINLINE static void destroy_fftblue_plan (fftblue_plan plan)
|
1938
|
+
{
|
1939
|
+
DEALLOC(plan->mem);
|
1940
|
+
destroy_cfftp_plan(plan->plan);
|
1941
|
+
DEALLOC(plan);
|
1942
|
+
}
|
1943
|
+
|
1944
|
+
NOINLINE WARN_UNUSED_RESULT
|
1945
|
+
static int fftblue_fft(fftblue_plan plan, double c[], int isign, double fct)
|
1946
|
+
{
|
1947
|
+
size_t n=plan->n;
|
1948
|
+
size_t n2=plan->n2;
|
1949
|
+
double *bk = plan->bk;
|
1950
|
+
double *bkf = plan->bkf;
|
1951
|
+
double *akf = RALLOC(double, 2*n2);
|
1952
|
+
if (!akf) return -1;
|
1953
|
+
|
1954
|
+
/* initialize a_k and FFT it */
|
1955
|
+
if (isign>0)
|
1956
|
+
for (size_t m=0; m<2*n; m+=2)
|
1957
|
+
{
|
1958
|
+
akf[m] = c[m]*bk[m] - c[m+1]*bk[m+1];
|
1959
|
+
akf[m+1] = c[m]*bk[m+1] + c[m+1]*bk[m];
|
1960
|
+
}
|
1961
|
+
else
|
1962
|
+
for (size_t m=0; m<2*n; m+=2)
|
1963
|
+
{
|
1964
|
+
akf[m] = c[m]*bk[m] + c[m+1]*bk[m+1];
|
1965
|
+
akf[m+1] =-c[m]*bk[m+1] + c[m+1]*bk[m];
|
1966
|
+
}
|
1967
|
+
for (size_t m=2*n; m<2*n2; ++m)
|
1968
|
+
akf[m]=0;
|
1969
|
+
|
1970
|
+
if (cfftp_forward (plan->plan,akf,fct)!=0)
|
1971
|
+
{ DEALLOC(akf); return -1; }
|
1972
|
+
|
1973
|
+
/* do the convolution */
|
1974
|
+
if (isign>0)
|
1975
|
+
for (size_t m=0; m<2*n2; m+=2)
|
1976
|
+
{
|
1977
|
+
double im = -akf[m]*bkf[m+1] + akf[m+1]*bkf[m];
|
1978
|
+
akf[m ] = akf[m]*bkf[m] + akf[m+1]*bkf[m+1];
|
1979
|
+
akf[m+1] = im;
|
1980
|
+
}
|
1981
|
+
else
|
1982
|
+
for (size_t m=0; m<2*n2; m+=2)
|
1983
|
+
{
|
1984
|
+
double im = akf[m]*bkf[m+1] + akf[m+1]*bkf[m];
|
1985
|
+
akf[m ] = akf[m]*bkf[m] - akf[m+1]*bkf[m+1];
|
1986
|
+
akf[m+1] = im;
|
1987
|
+
}
|
1988
|
+
|
1989
|
+
/* inverse FFT */
|
1990
|
+
if (cfftp_backward (plan->plan,akf,1.)!=0)
|
1991
|
+
{ DEALLOC(akf); return -1; }
|
1992
|
+
|
1993
|
+
/* multiply by b_k */
|
1994
|
+
if (isign>0)
|
1995
|
+
for (size_t m=0; m<2*n; m+=2)
|
1996
|
+
{
|
1997
|
+
c[m] = bk[m] *akf[m] - bk[m+1]*akf[m+1];
|
1998
|
+
c[m+1] = bk[m+1]*akf[m] + bk[m] *akf[m+1];
|
1999
|
+
}
|
2000
|
+
else
|
2001
|
+
for (size_t m=0; m<2*n; m+=2)
|
2002
|
+
{
|
2003
|
+
c[m] = bk[m] *akf[m] + bk[m+1]*akf[m+1];
|
2004
|
+
c[m+1] =-bk[m+1]*akf[m] + bk[m] *akf[m+1];
|
2005
|
+
}
|
2006
|
+
DEALLOC(akf);
|
2007
|
+
return 0;
|
2008
|
+
}
|
2009
|
+
|
2010
|
+
WARN_UNUSED_RESULT
|
2011
|
+
static int cfftblue_backward(fftblue_plan plan, double c[], double fct)
|
2012
|
+
{ return fftblue_fft(plan,c,1,fct); }
|
2013
|
+
|
2014
|
+
WARN_UNUSED_RESULT
|
2015
|
+
static int cfftblue_forward(fftblue_plan plan, double c[], double fct)
|
2016
|
+
{ return fftblue_fft(plan,c,-1,fct); }
|
2017
|
+
|
2018
|
+
WARN_UNUSED_RESULT
|
2019
|
+
static int rfftblue_backward(fftblue_plan plan, double c[], double fct)
|
2020
|
+
{
|
2021
|
+
size_t n=plan->n;
|
2022
|
+
double *tmp = RALLOC(double,2*n);
|
2023
|
+
if (!tmp) return -1;
|
2024
|
+
tmp[0]=c[0];
|
2025
|
+
tmp[1]=0.;
|
2026
|
+
memcpy (tmp+2,c+1, (n-1)*sizeof(double));
|
2027
|
+
if ((n&1)==0) tmp[n+1]=0.;
|
2028
|
+
for (size_t m=2; m<n; m+=2)
|
2029
|
+
{
|
2030
|
+
tmp[2*n-m]=tmp[m];
|
2031
|
+
tmp[2*n-m+1]=-tmp[m+1];
|
2032
|
+
}
|
2033
|
+
if (fftblue_fft(plan,tmp,1,fct)!=0)
|
2034
|
+
{ DEALLOC(tmp); return -1; }
|
2035
|
+
for (size_t m=0; m<n; ++m)
|
2036
|
+
c[m] = tmp[2*m];
|
2037
|
+
DEALLOC(tmp);
|
2038
|
+
return 0;
|
2039
|
+
}
|
2040
|
+
|
2041
|
+
WARN_UNUSED_RESULT
|
2042
|
+
static int rfftblue_forward(fftblue_plan plan, double c[], double fct)
|
2043
|
+
{
|
2044
|
+
size_t n=plan->n;
|
2045
|
+
double *tmp = RALLOC(double,2*n);
|
2046
|
+
if (!tmp) return -1;
|
2047
|
+
for (size_t m=0; m<n; ++m)
|
2048
|
+
{
|
2049
|
+
tmp[2*m] = c[m];
|
2050
|
+
tmp[2*m+1] = 0.;
|
2051
|
+
}
|
2052
|
+
if (fftblue_fft(plan,tmp,-1,fct)!=0)
|
2053
|
+
{ DEALLOC(tmp); return -1; }
|
2054
|
+
c[0] = tmp[0];
|
2055
|
+
memcpy (c+1, tmp+2, (n-1)*sizeof(double));
|
2056
|
+
DEALLOC(tmp);
|
2057
|
+
return 0;
|
2058
|
+
}
|
2059
|
+
|
2060
|
+
typedef struct cfft_plan_i
|
2061
|
+
{
|
2062
|
+
cfftp_plan packplan;
|
2063
|
+
fftblue_plan blueplan;
|
2064
|
+
} cfft_plan_i;
|
2065
|
+
|
2066
|
+
cfft_plan make_cfft_plan (size_t length)
|
2067
|
+
{
|
2068
|
+
if (length==0) return NULL;
|
2069
|
+
cfft_plan plan = RALLOC(cfft_plan_i,1);
|
2070
|
+
if (!plan) return NULL;
|
2071
|
+
plan->blueplan=0;
|
2072
|
+
plan->packplan=0;
|
2073
|
+
if ((length<50) || (largest_prime_factor(length)<=sqrt(length)))
|
2074
|
+
{
|
2075
|
+
plan->packplan=make_cfftp_plan(length);
|
2076
|
+
if (!plan->packplan) { DEALLOC(plan); return NULL; }
|
2077
|
+
return plan;
|
2078
|
+
}
|
2079
|
+
double comp1 = cost_guess(length);
|
2080
|
+
double comp2 = 2*cost_guess(good_size(2*length-1));
|
2081
|
+
comp2*=1.5; /* fudge factor that appears to give good overall performance */
|
2082
|
+
if (comp2<comp1) // use Bluestein
|
2083
|
+
{
|
2084
|
+
plan->blueplan=make_fftblue_plan(length);
|
2085
|
+
if (!plan->blueplan) { DEALLOC(plan); return NULL; }
|
2086
|
+
}
|
2087
|
+
else
|
2088
|
+
{
|
2089
|
+
plan->packplan=make_cfftp_plan(length);
|
2090
|
+
if (!plan->packplan) { DEALLOC(plan); return NULL; }
|
2091
|
+
}
|
2092
|
+
return plan;
|
2093
|
+
}
|
2094
|
+
|
2095
|
+
void destroy_cfft_plan (cfft_plan plan)
|
2096
|
+
{
|
2097
|
+
if (plan->blueplan)
|
2098
|
+
destroy_fftblue_plan(plan->blueplan);
|
2099
|
+
if (plan->packplan)
|
2100
|
+
destroy_cfftp_plan(plan->packplan);
|
2101
|
+
DEALLOC(plan);
|
2102
|
+
}
|
2103
|
+
|
2104
|
+
WARN_UNUSED_RESULT int cfft_backward(cfft_plan plan, double c[], double fct)
|
2105
|
+
{
|
2106
|
+
if (plan->packplan)
|
2107
|
+
return cfftp_backward(plan->packplan,c,fct);
|
2108
|
+
// if (plan->blueplan)
|
2109
|
+
return cfftblue_backward(plan->blueplan,c,fct);
|
2110
|
+
}
|
2111
|
+
|
2112
|
+
WARN_UNUSED_RESULT int cfft_forward(cfft_plan plan, double c[], double fct)
|
2113
|
+
{
|
2114
|
+
if (plan->packplan)
|
2115
|
+
return cfftp_forward(plan->packplan,c,fct);
|
2116
|
+
// if (plan->blueplan)
|
2117
|
+
return cfftblue_forward(plan->blueplan,c,fct);
|
2118
|
+
}
|
2119
|
+
|
2120
|
+
typedef struct rfft_plan_i
|
2121
|
+
{
|
2122
|
+
rfftp_plan packplan;
|
2123
|
+
fftblue_plan blueplan;
|
2124
|
+
} rfft_plan_i;
|
2125
|
+
|
2126
|
+
rfft_plan make_rfft_plan (size_t length)
|
2127
|
+
{
|
2128
|
+
if (length==0) return NULL;
|
2129
|
+
rfft_plan plan = RALLOC(rfft_plan_i,1);
|
2130
|
+
if (!plan) return NULL;
|
2131
|
+
plan->blueplan=0;
|
2132
|
+
plan->packplan=0;
|
2133
|
+
if ((length<50) || (largest_prime_factor(length)<=sqrt(length)))
|
2134
|
+
{
|
2135
|
+
plan->packplan=make_rfftp_plan(length);
|
2136
|
+
if (!plan->packplan) { DEALLOC(plan); return NULL; }
|
2137
|
+
return plan;
|
2138
|
+
}
|
2139
|
+
double comp1 = 0.5*cost_guess(length);
|
2140
|
+
double comp2 = 2*cost_guess(good_size(2*length-1));
|
2141
|
+
comp2*=1.5; /* fudge factor that appears to give good overall performance */
|
2142
|
+
if (comp2<comp1) // use Bluestein
|
2143
|
+
{
|
2144
|
+
plan->blueplan=make_fftblue_plan(length);
|
2145
|
+
if (!plan->blueplan) { DEALLOC(plan); return NULL; }
|
2146
|
+
}
|
2147
|
+
else
|
2148
|
+
{
|
2149
|
+
plan->packplan=make_rfftp_plan(length);
|
2150
|
+
if (!plan->packplan) { DEALLOC(plan); return NULL; }
|
2151
|
+
}
|
2152
|
+
return plan;
|
2153
|
+
}
|
2154
|
+
|
2155
|
+
void destroy_rfft_plan (rfft_plan plan)
|
2156
|
+
{
|
2157
|
+
if (plan->blueplan)
|
2158
|
+
destroy_fftblue_plan(plan->blueplan);
|
2159
|
+
if (plan->packplan)
|
2160
|
+
destroy_rfftp_plan(plan->packplan);
|
2161
|
+
DEALLOC(plan);
|
2162
|
+
}
|
2163
|
+
|
2164
|
+
size_t rfft_length(rfft_plan plan)
|
2165
|
+
{
|
2166
|
+
if (plan->packplan) return plan->packplan->length;
|
2167
|
+
return plan->blueplan->n;
|
2168
|
+
}
|
2169
|
+
|
2170
|
+
size_t cfft_length(cfft_plan plan)
|
2171
|
+
{
|
2172
|
+
if (plan->packplan) return plan->packplan->length;
|
2173
|
+
return plan->blueplan->n;
|
2174
|
+
}
|
2175
|
+
|
2176
|
+
WARN_UNUSED_RESULT int rfft_backward(rfft_plan plan, double c[], double fct)
|
2177
|
+
{
|
2178
|
+
if (plan->packplan)
|
2179
|
+
return rfftp_backward(plan->packplan,c,fct);
|
2180
|
+
else // if (plan->blueplan)
|
2181
|
+
return rfftblue_backward(plan->blueplan,c,fct);
|
2182
|
+
}
|
2183
|
+
|
2184
|
+
WARN_UNUSED_RESULT int rfft_forward(rfft_plan plan, double c[], double fct)
|
2185
|
+
{
|
2186
|
+
if (plan->packplan)
|
2187
|
+
return rfftp_forward(plan->packplan,c,fct);
|
2188
|
+
else // if (plan->blueplan)
|
2189
|
+
return rfftblue_forward(plan->blueplan,c,fct);
|
2190
|
+
}
|