numo-libsvm 0.5.0 → 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitmodules +3 -0
- data/.travis.yml +0 -1
- data/CHANGELOG.md +5 -0
- data/README.md +1 -9
- data/ext/numo/libsvm/extconf.rb +7 -11
- data/ext/numo/libsvm/libsvm/svm.cpp +3182 -0
- data/ext/numo/libsvm/libsvm/svm.h +104 -0
- data/lib/numo/libsvm/version.rb +1 -1
- data/numo-libsvm.gemspec +8 -0
- metadata +5 -2
    
        checksums.yaml
    CHANGED
    
    | @@ -1,7 +1,7 @@ | |
| 1 1 | 
             
            ---
         | 
| 2 2 | 
             
            SHA1:
         | 
| 3 | 
            -
              metadata.gz:  | 
| 4 | 
            -
              data.tar.gz:  | 
| 3 | 
            +
              metadata.gz: c0a730ce303204c97607bd8c5ce7bf6440fe3526
         | 
| 4 | 
            +
              data.tar.gz: 5370997eadf0f407239763a6fc31241538f06758
         | 
| 5 5 | 
             
            SHA512:
         | 
| 6 | 
            -
              metadata.gz:  | 
| 7 | 
            -
              data.tar.gz:  | 
| 6 | 
            +
              metadata.gz: 5ba7e42f36ec3f7fff0d42c900f79500a61695efe03f4b0cd74a6f2758e92ecc80172006f3186e4567feb322572943b31332f1147263aef5f257ea960379936c
         | 
| 7 | 
            +
              data.tar.gz: da34b077e7d299c0c7a760ecbf02b395f95606e4f87deb9e060de3330ad5ae507f81fe3d1b7dbbadfd4b54c3161af049a27302a5554249f7f7b17766a204f1aa
         | 
    
        data/.gitmodules
    ADDED
    
    
    
        data/.travis.yml
    CHANGED
    
    
    
        data/CHANGELOG.md
    CHANGED
    
    
    
        data/README.md
    CHANGED
    
    | @@ -16,15 +16,7 @@ Note: There are other useful Ruby gems binding to LIBSVM: | |
| 16 16 | 
             
            and [jrb-libsvm](https://github.com/andreaseger/jrb-libsvm) by Andreas Eger.
         | 
| 17 17 |  | 
| 18 18 | 
             
            ## Installation
         | 
| 19 | 
            -
            Numo::Libsvm  | 
| 20 | 
            -
             | 
| 21 | 
            -
            macOS:
         | 
| 22 | 
            -
             | 
| 23 | 
            -
                $ brew install libsvm
         | 
| 24 | 
            -
             | 
| 25 | 
            -
            Ubuntu:
         | 
| 26 | 
            -
             | 
| 27 | 
            -
                $ sudo apt-get install libsvm-dev
         | 
| 19 | 
            +
            Numo::Libsvm bundles LIBSVM. There is no need to install LIBSVM in advance.
         | 
| 28 20 |  | 
| 29 21 | 
             
            Add this line to your application's Gemfile:
         | 
| 30 22 |  | 
    
        data/ext/numo/libsvm/extconf.rb
    CHANGED
    
    | @@ -26,18 +26,14 @@ if RUBY_PLATFORM =~ /mswin|cygwin|mingw/ | |
| 26 26 | 
             
              end
         | 
| 27 27 | 
             
            end
         | 
| 28 28 |  | 
| 29 | 
            -
             | 
| 30 | 
            -
              $INCFLAGS = "-I/usr/include/libsvm #{$INCFLAGS}"
         | 
| 31 | 
            -
            end
         | 
| 29 | 
            +
            $LDFLAGS << ' -lstdc++ '
         | 
| 32 30 |  | 
| 33 | 
            -
             | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 | 
            -
             | 
| 39 | 
            -
              puts 'libsvm not found.'
         | 
| 40 | 
            -
              exit(1)
         | 
| 31 | 
            +
            $srcs = Dir.glob("#{$srcdir}/*.c").map { |path| File.basename(path) }
         | 
| 32 | 
            +
            $srcs << 'svm.cpp'
         | 
| 33 | 
            +
            Dir.glob("#{$srcdir}/*/") do |path|
         | 
| 34 | 
            +
              dir = File.basename(path)
         | 
| 35 | 
            +
              $INCFLAGS << " -I$(srcdir)/#{dir}"
         | 
| 36 | 
            +
              $VPATH << "$(srcdir)/#{dir}"
         | 
| 41 37 | 
             
            end
         | 
| 42 38 |  | 
| 43 39 | 
             
            create_makefile('numo/libsvm/libsvmext')
         | 
| @@ -0,0 +1,3182 @@ | |
| 1 | 
            +
            #include <math.h>
         | 
| 2 | 
            +
            #include <stdio.h>
         | 
| 3 | 
            +
            #include <stdlib.h>
         | 
| 4 | 
            +
            #include <ctype.h>
         | 
| 5 | 
            +
            #include <float.h>
         | 
| 6 | 
            +
            #include <string.h>
         | 
| 7 | 
            +
            #include <stdarg.h>
         | 
| 8 | 
            +
            #include <limits.h>
         | 
| 9 | 
            +
            #include <locale.h>
         | 
| 10 | 
            +
            #include "svm.h"
         | 
| 11 | 
            +
            int libsvm_version = LIBSVM_VERSION;
         | 
| 12 | 
            +
            typedef float Qfloat;
         | 
| 13 | 
            +
            typedef signed char schar;
         | 
| 14 | 
            +
            #ifndef min
         | 
| 15 | 
            +
            template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
         | 
| 16 | 
            +
            #endif
         | 
| 17 | 
            +
            #ifndef max
         | 
| 18 | 
            +
            template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
         | 
| 19 | 
            +
            #endif
         | 
| 20 | 
            +
            template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
         | 
| 21 | 
            +
            template <class S, class T> static inline void clone(T*& dst, S* src, int n)
         | 
| 22 | 
            +
            {
         | 
| 23 | 
            +
            	dst = new T[n];
         | 
| 24 | 
            +
            	memcpy((void *)dst,(void *)src,sizeof(T)*n);
         | 
| 25 | 
            +
            }
         | 
| 26 | 
            +
            static inline double powi(double base, int times)
         | 
| 27 | 
            +
            {
         | 
| 28 | 
            +
            	double tmp = base, ret = 1.0;
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            	for(int t=times; t>0; t/=2)
         | 
| 31 | 
            +
            	{
         | 
| 32 | 
            +
            		if(t%2==1) ret*=tmp;
         | 
| 33 | 
            +
            		tmp = tmp * tmp;
         | 
| 34 | 
            +
            	}
         | 
| 35 | 
            +
            	return ret;
         | 
| 36 | 
            +
            }
         | 
| 37 | 
            +
            #define INF HUGE_VAL
         | 
| 38 | 
            +
            #define TAU 1e-12
         | 
| 39 | 
            +
            #define Malloc(type,n) (type *)malloc((n)*sizeof(type))
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            static void print_string_stdout(const char *s)
         | 
| 42 | 
            +
            {
         | 
| 43 | 
            +
            	fputs(s,stdout);
         | 
| 44 | 
            +
            	fflush(stdout);
         | 
| 45 | 
            +
            }
         | 
| 46 | 
            +
            static void (*svm_print_string) (const char *) = &print_string_stdout;
         | 
| 47 | 
            +
            #if 1
         | 
| 48 | 
            +
            static void info(const char *fmt,...)
         | 
| 49 | 
            +
            {
         | 
| 50 | 
            +
            	char buf[BUFSIZ];
         | 
| 51 | 
            +
            	va_list ap;
         | 
| 52 | 
            +
            	va_start(ap,fmt);
         | 
| 53 | 
            +
            	vsprintf(buf,fmt,ap);
         | 
| 54 | 
            +
            	va_end(ap);
         | 
| 55 | 
            +
            	(*svm_print_string)(buf);
         | 
| 56 | 
            +
            }
         | 
| 57 | 
            +
            #else
         | 
| 58 | 
            +
            static void info(const char *fmt,...) {}
         | 
| 59 | 
            +
            #endif
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            //
         | 
| 62 | 
            +
            // Kernel Cache
         | 
| 63 | 
            +
            //
         | 
| 64 | 
            +
            // l is the number of total data items
         | 
| 65 | 
            +
            // size is the cache size limit in bytes
         | 
| 66 | 
            +
            //
         | 
| 67 | 
            +
            class Cache
         | 
| 68 | 
            +
            {
         | 
| 69 | 
            +
            public:
         | 
| 70 | 
            +
            	Cache(int l,long int size);
         | 
| 71 | 
            +
            	~Cache();
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            	// request data [0,len)
         | 
| 74 | 
            +
            	// return some position p where [p,len) need to be filled
         | 
| 75 | 
            +
            	// (p >= len if nothing needs to be filled)
         | 
| 76 | 
            +
            	int get_data(const int index, Qfloat **data, int len);
         | 
| 77 | 
            +
            	void swap_index(int i, int j);
         | 
| 78 | 
            +
            private:
         | 
| 79 | 
            +
            	int l;
         | 
| 80 | 
            +
            	long int size;
         | 
| 81 | 
            +
            	struct head_t
         | 
| 82 | 
            +
            	{
         | 
| 83 | 
            +
            		head_t *prev, *next;	// a circular list
         | 
| 84 | 
            +
            		Qfloat *data;
         | 
| 85 | 
            +
            		int len;		// data[0,len) is cached in this entry
         | 
| 86 | 
            +
            	};
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            	head_t *head;
         | 
| 89 | 
            +
            	head_t lru_head;
         | 
| 90 | 
            +
            	void lru_delete(head_t *h);
         | 
| 91 | 
            +
            	void lru_insert(head_t *h);
         | 
| 92 | 
            +
            };
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            Cache::Cache(int l_,long int size_):l(l_),size(size_)
         | 
| 95 | 
            +
            {
         | 
| 96 | 
            +
            	head = (head_t *)calloc(l,sizeof(head_t));	// initialized to 0
         | 
| 97 | 
            +
            	size /= sizeof(Qfloat);
         | 
| 98 | 
            +
            	size -= l * sizeof(head_t) / sizeof(Qfloat);
         | 
| 99 | 
            +
            	size = max(size, 2 * (long int) l);	// cache must be large enough for two columns
         | 
| 100 | 
            +
            	lru_head.next = lru_head.prev = &lru_head;
         | 
| 101 | 
            +
            }
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            Cache::~Cache()
         | 
| 104 | 
            +
            {
         | 
| 105 | 
            +
            	for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
         | 
| 106 | 
            +
            		free(h->data);
         | 
| 107 | 
            +
            	free(head);
         | 
| 108 | 
            +
            }
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            void Cache::lru_delete(head_t *h)
         | 
| 111 | 
            +
            {
         | 
| 112 | 
            +
            	// delete from current location
         | 
| 113 | 
            +
            	h->prev->next = h->next;
         | 
| 114 | 
            +
            	h->next->prev = h->prev;
         | 
| 115 | 
            +
            }
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            void Cache::lru_insert(head_t *h)
         | 
| 118 | 
            +
            {
         | 
| 119 | 
            +
            	// insert to last position
         | 
| 120 | 
            +
            	h->next = &lru_head;
         | 
| 121 | 
            +
            	h->prev = lru_head.prev;
         | 
| 122 | 
            +
            	h->prev->next = h;
         | 
| 123 | 
            +
            	h->next->prev = h;
         | 
| 124 | 
            +
            }
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            int Cache::get_data(const int index, Qfloat **data, int len)
         | 
| 127 | 
            +
            {
         | 
| 128 | 
            +
            	head_t *h = &head[index];
         | 
| 129 | 
            +
            	if(h->len) lru_delete(h);
         | 
| 130 | 
            +
            	int more = len - h->len;
         | 
| 131 | 
            +
             | 
| 132 | 
            +
            	if(more > 0)
         | 
| 133 | 
            +
            	{
         | 
| 134 | 
            +
            		// free old space
         | 
| 135 | 
            +
            		while(size < more)
         | 
| 136 | 
            +
            		{
         | 
| 137 | 
            +
            			head_t *old = lru_head.next;
         | 
| 138 | 
            +
            			lru_delete(old);
         | 
| 139 | 
            +
            			free(old->data);
         | 
| 140 | 
            +
            			size += old->len;
         | 
| 141 | 
            +
            			old->data = 0;
         | 
| 142 | 
            +
            			old->len = 0;
         | 
| 143 | 
            +
            		}
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            		// allocate new space
         | 
| 146 | 
            +
            		h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
         | 
| 147 | 
            +
            		size -= more;
         | 
| 148 | 
            +
            		swap(h->len,len);
         | 
| 149 | 
            +
            	}
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            	lru_insert(h);
         | 
| 152 | 
            +
            	*data = h->data;
         | 
| 153 | 
            +
            	return len;
         | 
| 154 | 
            +
            }
         | 
| 155 | 
            +
             | 
| 156 | 
            +
            void Cache::swap_index(int i, int j)
         | 
| 157 | 
            +
            {
         | 
| 158 | 
            +
            	if(i==j) return;
         | 
| 159 | 
            +
             | 
| 160 | 
            +
            	if(head[i].len) lru_delete(&head[i]);
         | 
| 161 | 
            +
            	if(head[j].len) lru_delete(&head[j]);
         | 
| 162 | 
            +
            	swap(head[i].data,head[j].data);
         | 
| 163 | 
            +
            	swap(head[i].len,head[j].len);
         | 
| 164 | 
            +
            	if(head[i].len) lru_insert(&head[i]);
         | 
| 165 | 
            +
            	if(head[j].len) lru_insert(&head[j]);
         | 
| 166 | 
            +
             | 
| 167 | 
            +
            	if(i>j) swap(i,j);
         | 
| 168 | 
            +
            	for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
         | 
| 169 | 
            +
            	{
         | 
| 170 | 
            +
            		if(h->len > i)
         | 
| 171 | 
            +
            		{
         | 
| 172 | 
            +
            			if(h->len > j)
         | 
| 173 | 
            +
            				swap(h->data[i],h->data[j]);
         | 
| 174 | 
            +
            			else
         | 
| 175 | 
            +
            			{
         | 
| 176 | 
            +
            				// give up
         | 
| 177 | 
            +
            				lru_delete(h);
         | 
| 178 | 
            +
            				free(h->data);
         | 
| 179 | 
            +
            				size += h->len;
         | 
| 180 | 
            +
            				h->data = 0;
         | 
| 181 | 
            +
            				h->len = 0;
         | 
| 182 | 
            +
            			}
         | 
| 183 | 
            +
            		}
         | 
| 184 | 
            +
            	}
         | 
| 185 | 
            +
            }
         | 
| 186 | 
            +
             | 
| 187 | 
            +
            //
         | 
| 188 | 
            +
            // Kernel evaluation
         | 
| 189 | 
            +
            //
         | 
| 190 | 
            +
            // the static method k_function is for doing single kernel evaluation
         | 
| 191 | 
            +
            // the constructor of Kernel prepares to calculate the l*l kernel matrix
         | 
| 192 | 
            +
            // the member function get_Q is for getting one column from the Q Matrix
         | 
| 193 | 
            +
            //
         | 
| 194 | 
            +
            class QMatrix {
         | 
| 195 | 
            +
            public:
         | 
| 196 | 
            +
            	virtual Qfloat *get_Q(int column, int len) const = 0;
         | 
| 197 | 
            +
            	virtual double *get_QD() const = 0;
         | 
| 198 | 
            +
            	virtual void swap_index(int i, int j) const = 0;
         | 
| 199 | 
            +
            	virtual ~QMatrix() {}
         | 
| 200 | 
            +
            };
         | 
| 201 | 
            +
             | 
| 202 | 
            +
            class Kernel: public QMatrix {
         | 
| 203 | 
            +
            public:
         | 
| 204 | 
            +
            	Kernel(int l, svm_node * const * x, const svm_parameter& param);
         | 
| 205 | 
            +
            	virtual ~Kernel();
         | 
| 206 | 
            +
             | 
| 207 | 
            +
            	static double k_function(const svm_node *x, const svm_node *y,
         | 
| 208 | 
            +
            				 const svm_parameter& param);
         | 
| 209 | 
            +
            	virtual Qfloat *get_Q(int column, int len) const = 0;
         | 
| 210 | 
            +
            	virtual double *get_QD() const = 0;
         | 
| 211 | 
            +
            	virtual void swap_index(int i, int j) const	// no so const...
         | 
| 212 | 
            +
            	{
         | 
| 213 | 
            +
            		swap(x[i],x[j]);
         | 
| 214 | 
            +
            		if(x_square) swap(x_square[i],x_square[j]);
         | 
| 215 | 
            +
            	}
         | 
| 216 | 
            +
            protected:
         | 
| 217 | 
            +
             | 
| 218 | 
            +
            	double (Kernel::*kernel_function)(int i, int j) const;
         | 
| 219 | 
            +
             | 
| 220 | 
            +
            private:
         | 
| 221 | 
            +
            	const svm_node **x;
         | 
| 222 | 
            +
            	double *x_square;
         | 
| 223 | 
            +
             | 
| 224 | 
            +
            	// svm_parameter
         | 
| 225 | 
            +
            	const int kernel_type;
         | 
| 226 | 
            +
            	const int degree;
         | 
| 227 | 
            +
            	const double gamma;
         | 
| 228 | 
            +
            	const double coef0;
         | 
| 229 | 
            +
             | 
| 230 | 
            +
            	static double dot(const svm_node *px, const svm_node *py);
         | 
| 231 | 
            +
            	double kernel_linear(int i, int j) const
         | 
| 232 | 
            +
            	{
         | 
| 233 | 
            +
            		return dot(x[i],x[j]);
         | 
| 234 | 
            +
            	}
         | 
| 235 | 
            +
            	double kernel_poly(int i, int j) const
         | 
| 236 | 
            +
            	{
         | 
| 237 | 
            +
            		return powi(gamma*dot(x[i],x[j])+coef0,degree);
         | 
| 238 | 
            +
            	}
         | 
| 239 | 
            +
            	double kernel_rbf(int i, int j) const
         | 
| 240 | 
            +
            	{
         | 
| 241 | 
            +
            		return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
         | 
| 242 | 
            +
            	}
         | 
| 243 | 
            +
            	double kernel_sigmoid(int i, int j) const
         | 
| 244 | 
            +
            	{
         | 
| 245 | 
            +
            		return tanh(gamma*dot(x[i],x[j])+coef0);
         | 
| 246 | 
            +
            	}
         | 
| 247 | 
            +
            	double kernel_precomputed(int i, int j) const
         | 
| 248 | 
            +
            	{
         | 
| 249 | 
            +
            		return x[i][(int)(x[j][0].value)].value;
         | 
| 250 | 
            +
            	}
         | 
| 251 | 
            +
            };
         | 
| 252 | 
            +
             | 
| 253 | 
            +
            Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
         | 
| 254 | 
            +
            :kernel_type(param.kernel_type), degree(param.degree),
         | 
| 255 | 
            +
             gamma(param.gamma), coef0(param.coef0)
         | 
| 256 | 
            +
            {
         | 
| 257 | 
            +
            	switch(kernel_type)
         | 
| 258 | 
            +
            	{
         | 
| 259 | 
            +
            		case LINEAR:
         | 
| 260 | 
            +
            			kernel_function = &Kernel::kernel_linear;
         | 
| 261 | 
            +
            			break;
         | 
| 262 | 
            +
            		case POLY:
         | 
| 263 | 
            +
            			kernel_function = &Kernel::kernel_poly;
         | 
| 264 | 
            +
            			break;
         | 
| 265 | 
            +
            		case RBF:
         | 
| 266 | 
            +
            			kernel_function = &Kernel::kernel_rbf;
         | 
| 267 | 
            +
            			break;
         | 
| 268 | 
            +
            		case SIGMOID:
         | 
| 269 | 
            +
            			kernel_function = &Kernel::kernel_sigmoid;
         | 
| 270 | 
            +
            			break;
         | 
| 271 | 
            +
            		case PRECOMPUTED:
         | 
| 272 | 
            +
            			kernel_function = &Kernel::kernel_precomputed;
         | 
| 273 | 
            +
            			break;
         | 
| 274 | 
            +
            	}
         | 
| 275 | 
            +
             | 
| 276 | 
            +
            	clone(x,x_,l);
         | 
| 277 | 
            +
             | 
| 278 | 
            +
            	if(kernel_type == RBF)
         | 
| 279 | 
            +
            	{
         | 
| 280 | 
            +
            		x_square = new double[l];
         | 
| 281 | 
            +
            		for(int i=0;i<l;i++)
         | 
| 282 | 
            +
            			x_square[i] = dot(x[i],x[i]);
         | 
| 283 | 
            +
            	}
         | 
| 284 | 
            +
            	else
         | 
| 285 | 
            +
            		x_square = 0;
         | 
| 286 | 
            +
            }
         | 
| 287 | 
            +
             | 
| 288 | 
            +
            Kernel::~Kernel()
         | 
| 289 | 
            +
            {
         | 
| 290 | 
            +
            	delete[] x;
         | 
| 291 | 
            +
            	delete[] x_square;
         | 
| 292 | 
            +
            }
         | 
| 293 | 
            +
             | 
| 294 | 
            +
            double Kernel::dot(const svm_node *px, const svm_node *py)
         | 
| 295 | 
            +
            {
         | 
| 296 | 
            +
            	double sum = 0;
         | 
| 297 | 
            +
            	while(px->index != -1 && py->index != -1)
         | 
| 298 | 
            +
            	{
         | 
| 299 | 
            +
            		if(px->index == py->index)
         | 
| 300 | 
            +
            		{
         | 
| 301 | 
            +
            			sum += px->value * py->value;
         | 
| 302 | 
            +
            			++px;
         | 
| 303 | 
            +
            			++py;
         | 
| 304 | 
            +
            		}
         | 
| 305 | 
            +
            		else
         | 
| 306 | 
            +
            		{
         | 
| 307 | 
            +
            			if(px->index > py->index)
         | 
| 308 | 
            +
            				++py;
         | 
| 309 | 
            +
            			else
         | 
| 310 | 
            +
            				++px;
         | 
| 311 | 
            +
            		}
         | 
| 312 | 
            +
            	}
         | 
| 313 | 
            +
            	return sum;
         | 
| 314 | 
            +
            }
         | 
| 315 | 
            +
             | 
| 316 | 
            +
            double Kernel::k_function(const svm_node *x, const svm_node *y,
         | 
| 317 | 
            +
            			  const svm_parameter& param)
         | 
| 318 | 
            +
            {
         | 
| 319 | 
            +
            	switch(param.kernel_type)
         | 
| 320 | 
            +
            	{
         | 
| 321 | 
            +
            		case LINEAR:
         | 
| 322 | 
            +
            			return dot(x,y);
         | 
| 323 | 
            +
            		case POLY:
         | 
| 324 | 
            +
            			return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
         | 
| 325 | 
            +
            		case RBF:
         | 
| 326 | 
            +
            		{
         | 
| 327 | 
            +
            			double sum = 0;
         | 
| 328 | 
            +
            			while(x->index != -1 && y->index !=-1)
         | 
| 329 | 
            +
            			{
         | 
| 330 | 
            +
            				if(x->index == y->index)
         | 
| 331 | 
            +
            				{
         | 
| 332 | 
            +
            					double d = x->value - y->value;
         | 
| 333 | 
            +
            					sum += d*d;
         | 
| 334 | 
            +
            					++x;
         | 
| 335 | 
            +
            					++y;
         | 
| 336 | 
            +
            				}
         | 
| 337 | 
            +
            				else
         | 
| 338 | 
            +
            				{
         | 
| 339 | 
            +
            					if(x->index > y->index)
         | 
| 340 | 
            +
            					{
         | 
| 341 | 
            +
            						sum += y->value * y->value;
         | 
| 342 | 
            +
            						++y;
         | 
| 343 | 
            +
            					}
         | 
| 344 | 
            +
            					else
         | 
| 345 | 
            +
            					{
         | 
| 346 | 
            +
            						sum += x->value * x->value;
         | 
| 347 | 
            +
            						++x;
         | 
| 348 | 
            +
            					}
         | 
| 349 | 
            +
            				}
         | 
| 350 | 
            +
            			}
         | 
| 351 | 
            +
             | 
| 352 | 
            +
            			while(x->index != -1)
         | 
| 353 | 
            +
            			{
         | 
| 354 | 
            +
            				sum += x->value * x->value;
         | 
| 355 | 
            +
            				++x;
         | 
| 356 | 
            +
            			}
         | 
| 357 | 
            +
             | 
| 358 | 
            +
            			while(y->index != -1)
         | 
| 359 | 
            +
            			{
         | 
| 360 | 
            +
            				sum += y->value * y->value;
         | 
| 361 | 
            +
            				++y;
         | 
| 362 | 
            +
            			}
         | 
| 363 | 
            +
             | 
| 364 | 
            +
            			return exp(-param.gamma*sum);
         | 
| 365 | 
            +
            		}
         | 
| 366 | 
            +
            		case SIGMOID:
         | 
| 367 | 
            +
            			return tanh(param.gamma*dot(x,y)+param.coef0);
         | 
| 368 | 
            +
            		case PRECOMPUTED:  //x: test (validation), y: SV
         | 
| 369 | 
            +
            			return x[(int)(y->value)].value;
         | 
| 370 | 
            +
            		default:
         | 
| 371 | 
            +
            			return 0;  // Unreachable
         | 
| 372 | 
            +
            	}
         | 
| 373 | 
            +
            }
         | 
| 374 | 
            +
             | 
| 375 | 
            +
            // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
         | 
| 376 | 
            +
            // Solves:
         | 
| 377 | 
            +
            //
         | 
| 378 | 
            +
            //	min 0.5(\alpha^T Q \alpha) + p^T \alpha
         | 
| 379 | 
            +
            //
         | 
| 380 | 
            +
            //		y^T \alpha = \delta
         | 
| 381 | 
            +
            //		y_i = +1 or -1
         | 
| 382 | 
            +
            //		0 <= alpha_i <= Cp for y_i = 1
         | 
| 383 | 
            +
            //		0 <= alpha_i <= Cn for y_i = -1
         | 
| 384 | 
            +
            //
         | 
| 385 | 
            +
            // Given:
         | 
| 386 | 
            +
            //
         | 
| 387 | 
            +
            //	Q, p, y, Cp, Cn, and an initial feasible point \alpha
         | 
| 388 | 
            +
            //	l is the size of vectors and matrices
         | 
| 389 | 
            +
            //	eps is the stopping tolerance
         | 
| 390 | 
            +
            //
         | 
| 391 | 
            +
            // solution will be put in \alpha, objective value will be put in obj
         | 
| 392 | 
            +
            //
         | 
| 393 | 
            +
            class Solver {
         | 
| 394 | 
            +
            public:
         | 
| 395 | 
            +
            	Solver() {};
         | 
| 396 | 
            +
            	virtual ~Solver() {};
         | 
| 397 | 
            +
             | 
| 398 | 
            +
            	struct SolutionInfo {
         | 
| 399 | 
            +
            		double obj;
         | 
| 400 | 
            +
            		double rho;
         | 
| 401 | 
            +
            		double upper_bound_p;
         | 
| 402 | 
            +
            		double upper_bound_n;
         | 
| 403 | 
            +
            		double r;	// for Solver_NU
         | 
| 404 | 
            +
            	};
         | 
| 405 | 
            +
             | 
| 406 | 
            +
            	void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
         | 
| 407 | 
            +
            		   double *alpha_, double Cp, double Cn, double eps,
         | 
| 408 | 
            +
            		   SolutionInfo* si, int shrinking);
         | 
| 409 | 
            +
            protected:
         | 
| 410 | 
            +
            	int active_size;
         | 
| 411 | 
            +
            	schar *y;
         | 
| 412 | 
            +
            	double *G;		// gradient of objective function
         | 
| 413 | 
            +
            	enum { LOWER_BOUND, UPPER_BOUND, FREE };
         | 
| 414 | 
            +
            	char *alpha_status;	// LOWER_BOUND, UPPER_BOUND, FREE
         | 
| 415 | 
            +
            	double *alpha;
         | 
| 416 | 
            +
            	const QMatrix *Q;
         | 
| 417 | 
            +
            	const double *QD;
         | 
| 418 | 
            +
            	double eps;
         | 
| 419 | 
            +
            	double Cp,Cn;
         | 
| 420 | 
            +
            	double *p;
         | 
| 421 | 
            +
            	int *active_set;
         | 
| 422 | 
            +
            	double *G_bar;		// gradient, if we treat free variables as 0
         | 
| 423 | 
            +
            	int l;
         | 
| 424 | 
            +
            	bool unshrink;	// XXX
         | 
| 425 | 
            +
             | 
| 426 | 
            +
            	double get_C(int i)
         | 
| 427 | 
            +
            	{
         | 
| 428 | 
            +
            		return (y[i] > 0)? Cp : Cn;
         | 
| 429 | 
            +
            	}
         | 
| 430 | 
            +
            	void update_alpha_status(int i)
         | 
| 431 | 
            +
            	{
         | 
| 432 | 
            +
            		if(alpha[i] >= get_C(i))
         | 
| 433 | 
            +
            			alpha_status[i] = UPPER_BOUND;
         | 
| 434 | 
            +
            		else if(alpha[i] <= 0)
         | 
| 435 | 
            +
            			alpha_status[i] = LOWER_BOUND;
         | 
| 436 | 
            +
            		else alpha_status[i] = FREE;
         | 
| 437 | 
            +
            	}
         | 
| 438 | 
            +
            	bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
         | 
| 439 | 
            +
            	bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
         | 
| 440 | 
            +
            	bool is_free(int i) { return alpha_status[i] == FREE; }
         | 
| 441 | 
            +
            	void swap_index(int i, int j);
         | 
| 442 | 
            +
            	void reconstruct_gradient();
         | 
| 443 | 
            +
            	virtual int select_working_set(int &i, int &j);
         | 
| 444 | 
            +
            	virtual double calculate_rho();
         | 
| 445 | 
            +
            	virtual void do_shrinking();
         | 
| 446 | 
            +
            private:
         | 
| 447 | 
            +
            	bool be_shrunk(int i, double Gmax1, double Gmax2);
         | 
| 448 | 
            +
            };
         | 
| 449 | 
            +
             | 
| 450 | 
            +
            void Solver::swap_index(int i, int j)
         | 
| 451 | 
            +
            {
         | 
| 452 | 
            +
            	Q->swap_index(i,j);
         | 
| 453 | 
            +
            	swap(y[i],y[j]);
         | 
| 454 | 
            +
            	swap(G[i],G[j]);
         | 
| 455 | 
            +
            	swap(alpha_status[i],alpha_status[j]);
         | 
| 456 | 
            +
            	swap(alpha[i],alpha[j]);
         | 
| 457 | 
            +
            	swap(p[i],p[j]);
         | 
| 458 | 
            +
            	swap(active_set[i],active_set[j]);
         | 
| 459 | 
            +
            	swap(G_bar[i],G_bar[j]);
         | 
| 460 | 
            +
            }
         | 
| 461 | 
            +
             | 
| 462 | 
            +
            void Solver::reconstruct_gradient()
         | 
| 463 | 
            +
            {
         | 
| 464 | 
            +
            	// reconstruct inactive elements of G from G_bar and free variables
         | 
| 465 | 
            +
             | 
| 466 | 
            +
            	if(active_size == l) return;
         | 
| 467 | 
            +
             | 
| 468 | 
            +
            	int i,j;
         | 
| 469 | 
            +
            	int nr_free = 0;
         | 
| 470 | 
            +
             | 
| 471 | 
            +
            	for(j=active_size;j<l;j++)
         | 
| 472 | 
            +
            		G[j] = G_bar[j] + p[j];
         | 
| 473 | 
            +
             | 
| 474 | 
            +
            	for(j=0;j<active_size;j++)
         | 
| 475 | 
            +
            		if(is_free(j))
         | 
| 476 | 
            +
            			nr_free++;
         | 
| 477 | 
            +
             | 
| 478 | 
            +
            	if(2*nr_free < active_size)
         | 
| 479 | 
            +
            		info("\nWARNING: using -h 0 may be faster\n");
         | 
| 480 | 
            +
             | 
| 481 | 
            +
            	if (nr_free*l > 2*active_size*(l-active_size))
         | 
| 482 | 
            +
            	{
         | 
| 483 | 
            +
            		for(i=active_size;i<l;i++)
         | 
| 484 | 
            +
            		{
         | 
| 485 | 
            +
            			const Qfloat *Q_i = Q->get_Q(i,active_size);
         | 
| 486 | 
            +
            			for(j=0;j<active_size;j++)
         | 
| 487 | 
            +
            				if(is_free(j))
         | 
| 488 | 
            +
            					G[i] += alpha[j] * Q_i[j];
         | 
| 489 | 
            +
            		}
         | 
| 490 | 
            +
            	}
         | 
| 491 | 
            +
            	else
         | 
| 492 | 
            +
            	{
         | 
| 493 | 
            +
            		for(i=0;i<active_size;i++)
         | 
| 494 | 
            +
            			if(is_free(i))
         | 
| 495 | 
            +
            			{
         | 
| 496 | 
            +
            				const Qfloat *Q_i = Q->get_Q(i,l);
         | 
| 497 | 
            +
            				double alpha_i = alpha[i];
         | 
| 498 | 
            +
            				for(j=active_size;j<l;j++)
         | 
| 499 | 
            +
            					G[j] += alpha_i * Q_i[j];
         | 
| 500 | 
            +
            			}
         | 
| 501 | 
            +
            	}
         | 
| 502 | 
            +
            }
         | 
| 503 | 
            +
             | 
| 504 | 
            +
            void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
         | 
| 505 | 
            +
            		   double *alpha_, double Cp, double Cn, double eps,
         | 
| 506 | 
            +
            		   SolutionInfo* si, int shrinking)
         | 
| 507 | 
            +
            {
         | 
| 508 | 
            +
            	this->l = l;
         | 
| 509 | 
            +
            	this->Q = &Q;
         | 
| 510 | 
            +
            	QD=Q.get_QD();
         | 
| 511 | 
            +
            	clone(p, p_,l);
         | 
| 512 | 
            +
            	clone(y, y_,l);
         | 
| 513 | 
            +
            	clone(alpha,alpha_,l);
         | 
| 514 | 
            +
            	this->Cp = Cp;
         | 
| 515 | 
            +
            	this->Cn = Cn;
         | 
| 516 | 
            +
            	this->eps = eps;
         | 
| 517 | 
            +
            	unshrink = false;
         | 
| 518 | 
            +
             | 
| 519 | 
            +
            	// initialize alpha_status
         | 
| 520 | 
            +
            	{
         | 
| 521 | 
            +
            		alpha_status = new char[l];
         | 
| 522 | 
            +
            		for(int i=0;i<l;i++)
         | 
| 523 | 
            +
            			update_alpha_status(i);
         | 
| 524 | 
            +
            	}
         | 
| 525 | 
            +
             | 
| 526 | 
            +
            	// initialize active set (for shrinking)
         | 
| 527 | 
            +
            	{
         | 
| 528 | 
            +
            		active_set = new int[l];
         | 
| 529 | 
            +
            		for(int i=0;i<l;i++)
         | 
| 530 | 
            +
            			active_set[i] = i;
         | 
| 531 | 
            +
            		active_size = l;
         | 
| 532 | 
            +
            	}
         | 
| 533 | 
            +
             | 
| 534 | 
            +
            	// initialize gradient
         | 
| 535 | 
            +
            	{
         | 
| 536 | 
            +
            		G = new double[l];
         | 
| 537 | 
            +
            		G_bar = new double[l];
         | 
| 538 | 
            +
            		int i;
         | 
| 539 | 
            +
            		for(i=0;i<l;i++)
         | 
| 540 | 
            +
            		{
         | 
| 541 | 
            +
            			G[i] = p[i];
         | 
| 542 | 
            +
            			G_bar[i] = 0;
         | 
| 543 | 
            +
            		}
         | 
| 544 | 
            +
            		for(i=0;i<l;i++)
         | 
| 545 | 
            +
            			if(!is_lower_bound(i))
         | 
| 546 | 
            +
            			{
         | 
| 547 | 
            +
            				const Qfloat *Q_i = Q.get_Q(i,l);
         | 
| 548 | 
            +
            				double alpha_i = alpha[i];
         | 
| 549 | 
            +
            				int j;
         | 
| 550 | 
            +
            				for(j=0;j<l;j++)
         | 
| 551 | 
            +
            					G[j] += alpha_i*Q_i[j];
         | 
| 552 | 
            +
            				if(is_upper_bound(i))
         | 
| 553 | 
            +
            					for(j=0;j<l;j++)
         | 
| 554 | 
            +
            						G_bar[j] += get_C(i) * Q_i[j];
         | 
| 555 | 
            +
            			}
         | 
| 556 | 
            +
            	}
         | 
| 557 | 
            +
             | 
| 558 | 
            +
            	// optimization step
         | 
| 559 | 
            +
             | 
| 560 | 
            +
            	int iter = 0;
         | 
| 561 | 
            +
            	int max_iter = max(10000000, l>INT_MAX/100 ? INT_MAX : 100*l);
         | 
| 562 | 
            +
            	int counter = min(l,1000)+1;
         | 
| 563 | 
            +
             | 
| 564 | 
            +
            	while(iter < max_iter)
         | 
| 565 | 
            +
            	{
         | 
| 566 | 
            +
            		// show progress and do shrinking
         | 
| 567 | 
            +
             | 
| 568 | 
            +
            		if(--counter == 0)
         | 
| 569 | 
            +
            		{
         | 
| 570 | 
            +
            			counter = min(l,1000);
         | 
| 571 | 
            +
            			if(shrinking) do_shrinking();
         | 
| 572 | 
            +
            			info(".");
         | 
| 573 | 
            +
            		}
         | 
| 574 | 
            +
             | 
| 575 | 
            +
            		int i,j;
         | 
| 576 | 
            +
            		if(select_working_set(i,j)!=0)
         | 
| 577 | 
            +
            		{
         | 
| 578 | 
            +
            			// reconstruct the whole gradient
         | 
| 579 | 
            +
            			reconstruct_gradient();
         | 
| 580 | 
            +
            			// reset active set size and check
         | 
| 581 | 
            +
            			active_size = l;
         | 
| 582 | 
            +
            			info("*");
         | 
| 583 | 
            +
            			if(select_working_set(i,j)!=0)
         | 
| 584 | 
            +
            				break;
         | 
| 585 | 
            +
            			else
         | 
| 586 | 
            +
            				counter = 1;	// do shrinking next iteration
         | 
| 587 | 
            +
            		}
         | 
| 588 | 
            +
             | 
| 589 | 
            +
            		++iter;
         | 
| 590 | 
            +
             | 
| 591 | 
            +
            		// update alpha[i] and alpha[j], handle bounds carefully
         | 
| 592 | 
            +
             | 
| 593 | 
            +
            		const Qfloat *Q_i = Q.get_Q(i,active_size);
         | 
| 594 | 
            +
            		const Qfloat *Q_j = Q.get_Q(j,active_size);
         | 
| 595 | 
            +
             | 
| 596 | 
            +
            		double C_i = get_C(i);
         | 
| 597 | 
            +
            		double C_j = get_C(j);
         | 
| 598 | 
            +
             | 
| 599 | 
            +
            		double old_alpha_i = alpha[i];
         | 
| 600 | 
            +
            		double old_alpha_j = alpha[j];
         | 
| 601 | 
            +
             | 
| 602 | 
            +
            		if(y[i]!=y[j])
         | 
| 603 | 
            +
            		{
         | 
| 604 | 
            +
            			double quad_coef = QD[i]+QD[j]+2*Q_i[j];
         | 
| 605 | 
            +
            			if (quad_coef <= 0)
         | 
| 606 | 
            +
            				quad_coef = TAU;
         | 
| 607 | 
            +
            			double delta = (-G[i]-G[j])/quad_coef;
         | 
| 608 | 
            +
            			double diff = alpha[i] - alpha[j];
         | 
| 609 | 
            +
            			alpha[i] += delta;
         | 
| 610 | 
            +
            			alpha[j] += delta;
         | 
| 611 | 
            +
             | 
| 612 | 
            +
            			if(diff > 0)
         | 
| 613 | 
            +
            			{
         | 
| 614 | 
            +
            				if(alpha[j] < 0)
         | 
| 615 | 
            +
            				{
         | 
| 616 | 
            +
            					alpha[j] = 0;
         | 
| 617 | 
            +
            					alpha[i] = diff;
         | 
| 618 | 
            +
            				}
         | 
| 619 | 
            +
            			}
         | 
| 620 | 
            +
            			else
         | 
| 621 | 
            +
            			{
         | 
| 622 | 
            +
            				if(alpha[i] < 0)
         | 
| 623 | 
            +
            				{
         | 
| 624 | 
            +
            					alpha[i] = 0;
         | 
| 625 | 
            +
            					alpha[j] = -diff;
         | 
| 626 | 
            +
            				}
         | 
| 627 | 
            +
            			}
         | 
| 628 | 
            +
            			if(diff > C_i - C_j)
         | 
| 629 | 
            +
            			{
         | 
| 630 | 
            +
            				if(alpha[i] > C_i)
         | 
| 631 | 
            +
            				{
         | 
| 632 | 
            +
            					alpha[i] = C_i;
         | 
| 633 | 
            +
            					alpha[j] = C_i - diff;
         | 
| 634 | 
            +
            				}
         | 
| 635 | 
            +
            			}
         | 
| 636 | 
            +
            			else
         | 
| 637 | 
            +
            			{
         | 
| 638 | 
            +
            				if(alpha[j] > C_j)
         | 
| 639 | 
            +
            				{
         | 
| 640 | 
            +
            					alpha[j] = C_j;
         | 
| 641 | 
            +
            					alpha[i] = C_j + diff;
         | 
| 642 | 
            +
            				}
         | 
| 643 | 
            +
            			}
         | 
| 644 | 
            +
            		}
         | 
| 645 | 
            +
            		else
         | 
| 646 | 
            +
            		{
         | 
| 647 | 
            +
            			double quad_coef = QD[i]+QD[j]-2*Q_i[j];
         | 
| 648 | 
            +
            			if (quad_coef <= 0)
         | 
| 649 | 
            +
            				quad_coef = TAU;
         | 
| 650 | 
            +
            			double delta = (G[i]-G[j])/quad_coef;
         | 
| 651 | 
            +
            			double sum = alpha[i] + alpha[j];
         | 
| 652 | 
            +
            			alpha[i] -= delta;
         | 
| 653 | 
            +
            			alpha[j] += delta;
         | 
| 654 | 
            +
             | 
| 655 | 
            +
            			if(sum > C_i)
         | 
| 656 | 
            +
            			{
         | 
| 657 | 
            +
            				if(alpha[i] > C_i)
         | 
| 658 | 
            +
            				{
         | 
| 659 | 
            +
            					alpha[i] = C_i;
         | 
| 660 | 
            +
            					alpha[j] = sum - C_i;
         | 
| 661 | 
            +
            				}
         | 
| 662 | 
            +
            			}
         | 
| 663 | 
            +
            			else
         | 
| 664 | 
            +
            			{
         | 
| 665 | 
            +
            				if(alpha[j] < 0)
         | 
| 666 | 
            +
            				{
         | 
| 667 | 
            +
            					alpha[j] = 0;
         | 
| 668 | 
            +
            					alpha[i] = sum;
         | 
| 669 | 
            +
            				}
         | 
| 670 | 
            +
            			}
         | 
| 671 | 
            +
            			if(sum > C_j)
         | 
| 672 | 
            +
            			{
         | 
| 673 | 
            +
            				if(alpha[j] > C_j)
         | 
| 674 | 
            +
            				{
         | 
| 675 | 
            +
            					alpha[j] = C_j;
         | 
| 676 | 
            +
            					alpha[i] = sum - C_j;
         | 
| 677 | 
            +
            				}
         | 
| 678 | 
            +
            			}
         | 
| 679 | 
            +
            			else
         | 
| 680 | 
            +
            			{
         | 
| 681 | 
            +
            				if(alpha[i] < 0)
         | 
| 682 | 
            +
            				{
         | 
| 683 | 
            +
            					alpha[i] = 0;
         | 
| 684 | 
            +
            					alpha[j] = sum;
         | 
| 685 | 
            +
            				}
         | 
| 686 | 
            +
            			}
         | 
| 687 | 
            +
            		}
         | 
| 688 | 
            +
             | 
| 689 | 
            +
            		// update G
         | 
| 690 | 
            +
             | 
| 691 | 
            +
            		double delta_alpha_i = alpha[i] - old_alpha_i;
         | 
| 692 | 
            +
            		double delta_alpha_j = alpha[j] - old_alpha_j;
         | 
| 693 | 
            +
             | 
| 694 | 
            +
            		for(int k=0;k<active_size;k++)
         | 
| 695 | 
            +
            		{
         | 
| 696 | 
            +
            			G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
         | 
| 697 | 
            +
            		}
         | 
| 698 | 
            +
             | 
| 699 | 
            +
            		// update alpha_status and G_bar
         | 
| 700 | 
            +
             | 
| 701 | 
            +
            		{
         | 
| 702 | 
            +
            			bool ui = is_upper_bound(i);
         | 
| 703 | 
            +
            			bool uj = is_upper_bound(j);
         | 
| 704 | 
            +
            			update_alpha_status(i);
         | 
| 705 | 
            +
            			update_alpha_status(j);
         | 
| 706 | 
            +
            			int k;
         | 
| 707 | 
            +
            			if(ui != is_upper_bound(i))
         | 
| 708 | 
            +
            			{
         | 
| 709 | 
            +
            				Q_i = Q.get_Q(i,l);
         | 
| 710 | 
            +
            				if(ui)
         | 
| 711 | 
            +
            					for(k=0;k<l;k++)
         | 
| 712 | 
            +
            						G_bar[k] -= C_i * Q_i[k];
         | 
| 713 | 
            +
            				else
         | 
| 714 | 
            +
            					for(k=0;k<l;k++)
         | 
| 715 | 
            +
            						G_bar[k] += C_i * Q_i[k];
         | 
| 716 | 
            +
            			}
         | 
| 717 | 
            +
             | 
| 718 | 
            +
            			if(uj != is_upper_bound(j))
         | 
| 719 | 
            +
            			{
         | 
| 720 | 
            +
            				Q_j = Q.get_Q(j,l);
         | 
| 721 | 
            +
            				if(uj)
         | 
| 722 | 
            +
            					for(k=0;k<l;k++)
         | 
| 723 | 
            +
            						G_bar[k] -= C_j * Q_j[k];
         | 
| 724 | 
            +
            				else
         | 
| 725 | 
            +
            					for(k=0;k<l;k++)
         | 
| 726 | 
            +
            						G_bar[k] += C_j * Q_j[k];
         | 
| 727 | 
            +
            			}
         | 
| 728 | 
            +
            		}
         | 
| 729 | 
            +
            	}
         | 
| 730 | 
            +
             | 
| 731 | 
            +
            	if(iter >= max_iter)
         | 
| 732 | 
            +
            	{
         | 
| 733 | 
            +
            		if(active_size < l)
         | 
| 734 | 
            +
            		{
         | 
| 735 | 
            +
            			// reconstruct the whole gradient to calculate objective value
         | 
| 736 | 
            +
            			reconstruct_gradient();
         | 
| 737 | 
            +
            			active_size = l;
         | 
| 738 | 
            +
            			info("*");
         | 
| 739 | 
            +
            		}
         | 
| 740 | 
            +
            		fprintf(stderr,"\nWARNING: reaching max number of iterations\n");
         | 
| 741 | 
            +
            	}
         | 
| 742 | 
            +
             | 
| 743 | 
            +
            	// calculate rho
         | 
| 744 | 
            +
             | 
| 745 | 
            +
            	si->rho = calculate_rho();
         | 
| 746 | 
            +
             | 
| 747 | 
            +
            	// calculate objective value
         | 
| 748 | 
            +
            	{
         | 
| 749 | 
            +
            		double v = 0;
         | 
| 750 | 
            +
            		int i;
         | 
| 751 | 
            +
            		for(i=0;i<l;i++)
         | 
| 752 | 
            +
            			v += alpha[i] * (G[i] + p[i]);
         | 
| 753 | 
            +
             | 
| 754 | 
            +
            		si->obj = v/2;
         | 
| 755 | 
            +
            	}
         | 
| 756 | 
            +
             | 
| 757 | 
            +
            	// put back the solution
         | 
| 758 | 
            +
            	{
         | 
| 759 | 
            +
            		for(int i=0;i<l;i++)
         | 
| 760 | 
            +
            			alpha_[active_set[i]] = alpha[i];
         | 
| 761 | 
            +
            	}
         | 
| 762 | 
            +
             | 
| 763 | 
            +
            	// juggle everything back
         | 
| 764 | 
            +
            	/*{
         | 
| 765 | 
            +
            		for(int i=0;i<l;i++)
         | 
| 766 | 
            +
            			while(active_set[i] != i)
         | 
| 767 | 
            +
            				swap_index(i,active_set[i]);
         | 
| 768 | 
            +
            				// or Q.swap_index(i,active_set[i]);
         | 
| 769 | 
            +
            	}*/
         | 
| 770 | 
            +
             | 
| 771 | 
            +
            	si->upper_bound_p = Cp;
         | 
| 772 | 
            +
            	si->upper_bound_n = Cn;
         | 
| 773 | 
            +
             | 
| 774 | 
            +
            	info("\noptimization finished, #iter = %d\n",iter);
         | 
| 775 | 
            +
             | 
| 776 | 
            +
            	delete[] p;
         | 
| 777 | 
            +
            	delete[] y;
         | 
| 778 | 
            +
            	delete[] alpha;
         | 
| 779 | 
            +
            	delete[] alpha_status;
         | 
| 780 | 
            +
            	delete[] active_set;
         | 
| 781 | 
            +
            	delete[] G;
         | 
| 782 | 
            +
            	delete[] G_bar;
         | 
| 783 | 
            +
            }
         | 
| 784 | 
            +
             | 
| 785 | 
            +
            // return 1 if already optimal, return 0 otherwise
         | 
| 786 | 
            +
            int Solver::select_working_set(int &out_i, int &out_j)
         | 
| 787 | 
            +
            {
         | 
| 788 | 
            +
            	// return i,j such that
         | 
| 789 | 
            +
            	// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
         | 
| 790 | 
            +
            	// j: minimizes the decrease of obj value
         | 
| 791 | 
            +
            	//    (if quadratic coefficeint <= 0, replace it with tau)
         | 
| 792 | 
            +
            	//    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
         | 
| 793 | 
            +
             | 
| 794 | 
            +
            	double Gmax = -INF;
         | 
| 795 | 
            +
            	double Gmax2 = -INF;
         | 
| 796 | 
            +
            	int Gmax_idx = -1;
         | 
| 797 | 
            +
            	int Gmin_idx = -1;
         | 
| 798 | 
            +
            	double obj_diff_min = INF;
         | 
| 799 | 
            +
             | 
| 800 | 
            +
            	for(int t=0;t<active_size;t++)
         | 
| 801 | 
            +
            		if(y[t]==+1)
         | 
| 802 | 
            +
            		{
         | 
| 803 | 
            +
            			if(!is_upper_bound(t))
         | 
| 804 | 
            +
            				if(-G[t] >= Gmax)
         | 
| 805 | 
            +
            				{
         | 
| 806 | 
            +
            					Gmax = -G[t];
         | 
| 807 | 
            +
            					Gmax_idx = t;
         | 
| 808 | 
            +
            				}
         | 
| 809 | 
            +
            		}
         | 
| 810 | 
            +
            		else
         | 
| 811 | 
            +
            		{
         | 
| 812 | 
            +
            			if(!is_lower_bound(t))
         | 
| 813 | 
            +
            				if(G[t] >= Gmax)
         | 
| 814 | 
            +
            				{
         | 
| 815 | 
            +
            					Gmax = G[t];
         | 
| 816 | 
            +
            					Gmax_idx = t;
         | 
| 817 | 
            +
            				}
         | 
| 818 | 
            +
            		}
         | 
| 819 | 
            +
             | 
| 820 | 
            +
            	int i = Gmax_idx;
         | 
| 821 | 
            +
            	const Qfloat *Q_i = NULL;
         | 
| 822 | 
            +
            	if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
         | 
| 823 | 
            +
            		Q_i = Q->get_Q(i,active_size);
         | 
| 824 | 
            +
             | 
| 825 | 
            +
            	for(int j=0;j<active_size;j++)
         | 
| 826 | 
            +
            	{
         | 
| 827 | 
            +
            		if(y[j]==+1)
         | 
| 828 | 
            +
            		{
         | 
| 829 | 
            +
            			if (!is_lower_bound(j))
         | 
| 830 | 
            +
            			{
         | 
| 831 | 
            +
            				double grad_diff=Gmax+G[j];
         | 
| 832 | 
            +
            				if (G[j] >= Gmax2)
         | 
| 833 | 
            +
            					Gmax2 = G[j];
         | 
| 834 | 
            +
            				if (grad_diff > 0)
         | 
| 835 | 
            +
            				{
         | 
| 836 | 
            +
            					double obj_diff;
         | 
| 837 | 
            +
            					double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j];
         | 
| 838 | 
            +
            					if (quad_coef > 0)
         | 
| 839 | 
            +
            						obj_diff = -(grad_diff*grad_diff)/quad_coef;
         | 
| 840 | 
            +
            					else
         | 
| 841 | 
            +
            						obj_diff = -(grad_diff*grad_diff)/TAU;
         | 
| 842 | 
            +
             | 
| 843 | 
            +
            					if (obj_diff <= obj_diff_min)
         | 
| 844 | 
            +
            					{
         | 
| 845 | 
            +
            						Gmin_idx=j;
         | 
| 846 | 
            +
            						obj_diff_min = obj_diff;
         | 
| 847 | 
            +
            					}
         | 
| 848 | 
            +
            				}
         | 
| 849 | 
            +
            			}
         | 
| 850 | 
            +
            		}
         | 
| 851 | 
            +
            		else
         | 
| 852 | 
            +
            		{
         | 
| 853 | 
            +
            			if (!is_upper_bound(j))
         | 
| 854 | 
            +
            			{
         | 
| 855 | 
            +
            				double grad_diff= Gmax-G[j];
         | 
| 856 | 
            +
            				if (-G[j] >= Gmax2)
         | 
| 857 | 
            +
            					Gmax2 = -G[j];
         | 
| 858 | 
            +
            				if (grad_diff > 0)
         | 
| 859 | 
            +
            				{
         | 
| 860 | 
            +
            					double obj_diff;
         | 
| 861 | 
            +
            					double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j];
         | 
| 862 | 
            +
            					if (quad_coef > 0)
         | 
| 863 | 
            +
            						obj_diff = -(grad_diff*grad_diff)/quad_coef;
         | 
| 864 | 
            +
            					else
         | 
| 865 | 
            +
            						obj_diff = -(grad_diff*grad_diff)/TAU;
         | 
| 866 | 
            +
             | 
| 867 | 
            +
            					if (obj_diff <= obj_diff_min)
         | 
| 868 | 
            +
            					{
         | 
| 869 | 
            +
            						Gmin_idx=j;
         | 
| 870 | 
            +
            						obj_diff_min = obj_diff;
         | 
| 871 | 
            +
            					}
         | 
| 872 | 
            +
            				}
         | 
| 873 | 
            +
            			}
         | 
| 874 | 
            +
            		}
         | 
| 875 | 
            +
            	}
         | 
| 876 | 
            +
             | 
| 877 | 
            +
            	if(Gmax+Gmax2 < eps || Gmin_idx == -1)
         | 
| 878 | 
            +
            		return 1;
         | 
| 879 | 
            +
             | 
| 880 | 
            +
            	out_i = Gmax_idx;
         | 
| 881 | 
            +
            	out_j = Gmin_idx;
         | 
| 882 | 
            +
            	return 0;
         | 
| 883 | 
            +
            }
         | 
| 884 | 
            +
             | 
| 885 | 
            +
            bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
         | 
| 886 | 
            +
            {
         | 
| 887 | 
            +
            	if(is_upper_bound(i))
         | 
| 888 | 
            +
            	{
         | 
| 889 | 
            +
            		if(y[i]==+1)
         | 
| 890 | 
            +
            			return(-G[i] > Gmax1);
         | 
| 891 | 
            +
            		else
         | 
| 892 | 
            +
            			return(-G[i] > Gmax2);
         | 
| 893 | 
            +
            	}
         | 
| 894 | 
            +
            	else if(is_lower_bound(i))
         | 
| 895 | 
            +
            	{
         | 
| 896 | 
            +
            		if(y[i]==+1)
         | 
| 897 | 
            +
            			return(G[i] > Gmax2);
         | 
| 898 | 
            +
            		else
         | 
| 899 | 
            +
            			return(G[i] > Gmax1);
         | 
| 900 | 
            +
            	}
         | 
| 901 | 
            +
            	else
         | 
| 902 | 
            +
            		return(false);
         | 
| 903 | 
            +
            }
         | 
| 904 | 
            +
             | 
| 905 | 
            +
            void Solver::do_shrinking()
         | 
| 906 | 
            +
            {
         | 
| 907 | 
            +
            	int i;
         | 
| 908 | 
            +
            	double Gmax1 = -INF;		// max { -y_i * grad(f)_i | i in I_up(\alpha) }
         | 
| 909 | 
            +
            	double Gmax2 = -INF;		// max { y_i * grad(f)_i | i in I_low(\alpha) }
         | 
| 910 | 
            +
             | 
| 911 | 
            +
            	// find maximal violating pair first
         | 
| 912 | 
            +
            	for(i=0;i<active_size;i++)
         | 
| 913 | 
            +
            	{
         | 
| 914 | 
            +
            		if(y[i]==+1)
         | 
| 915 | 
            +
            		{
         | 
| 916 | 
            +
            			if(!is_upper_bound(i))
         | 
| 917 | 
            +
            			{
         | 
| 918 | 
            +
            				if(-G[i] >= Gmax1)
         | 
| 919 | 
            +
            					Gmax1 = -G[i];
         | 
| 920 | 
            +
            			}
         | 
| 921 | 
            +
            			if(!is_lower_bound(i))
         | 
| 922 | 
            +
            			{
         | 
| 923 | 
            +
            				if(G[i] >= Gmax2)
         | 
| 924 | 
            +
            					Gmax2 = G[i];
         | 
| 925 | 
            +
            			}
         | 
| 926 | 
            +
            		}
         | 
| 927 | 
            +
            		else
         | 
| 928 | 
            +
            		{
         | 
| 929 | 
            +
            			if(!is_upper_bound(i))
         | 
| 930 | 
            +
            			{
         | 
| 931 | 
            +
            				if(-G[i] >= Gmax2)
         | 
| 932 | 
            +
            					Gmax2 = -G[i];
         | 
| 933 | 
            +
            			}
         | 
| 934 | 
            +
            			if(!is_lower_bound(i))
         | 
| 935 | 
            +
            			{
         | 
| 936 | 
            +
            				if(G[i] >= Gmax1)
         | 
| 937 | 
            +
            					Gmax1 = G[i];
         | 
| 938 | 
            +
            			}
         | 
| 939 | 
            +
            		}
         | 
| 940 | 
            +
            	}
         | 
| 941 | 
            +
             | 
| 942 | 
            +
            	if(unshrink == false && Gmax1 + Gmax2 <= eps*10)
         | 
| 943 | 
            +
            	{
         | 
| 944 | 
            +
            		unshrink = true;
         | 
| 945 | 
            +
            		reconstruct_gradient();
         | 
| 946 | 
            +
            		active_size = l;
         | 
| 947 | 
            +
            		info("*");
         | 
| 948 | 
            +
            	}
         | 
| 949 | 
            +
             | 
| 950 | 
            +
            	for(i=0;i<active_size;i++)
         | 
| 951 | 
            +
            		if (be_shrunk(i, Gmax1, Gmax2))
         | 
| 952 | 
            +
            		{
         | 
| 953 | 
            +
            			active_size--;
         | 
| 954 | 
            +
            			while (active_size > i)
         | 
| 955 | 
            +
            			{
         | 
| 956 | 
            +
            				if (!be_shrunk(active_size, Gmax1, Gmax2))
         | 
| 957 | 
            +
            				{
         | 
| 958 | 
            +
            					swap_index(i,active_size);
         | 
| 959 | 
            +
            					break;
         | 
| 960 | 
            +
            				}
         | 
| 961 | 
            +
            				active_size--;
         | 
| 962 | 
            +
            			}
         | 
| 963 | 
            +
            		}
         | 
| 964 | 
            +
            }
         | 
| 965 | 
            +
             | 
| 966 | 
            +
            double Solver::calculate_rho()
         | 
| 967 | 
            +
            {
         | 
| 968 | 
            +
            	double r;
         | 
| 969 | 
            +
            	int nr_free = 0;
         | 
| 970 | 
            +
            	double ub = INF, lb = -INF, sum_free = 0;
         | 
| 971 | 
            +
            	for(int i=0;i<active_size;i++)
         | 
| 972 | 
            +
            	{
         | 
| 973 | 
            +
            		double yG = y[i]*G[i];
         | 
| 974 | 
            +
             | 
| 975 | 
            +
            		if(is_upper_bound(i))
         | 
| 976 | 
            +
            		{
         | 
| 977 | 
            +
            			if(y[i]==-1)
         | 
| 978 | 
            +
            				ub = min(ub,yG);
         | 
| 979 | 
            +
            			else
         | 
| 980 | 
            +
            				lb = max(lb,yG);
         | 
| 981 | 
            +
            		}
         | 
| 982 | 
            +
            		else if(is_lower_bound(i))
         | 
| 983 | 
            +
            		{
         | 
| 984 | 
            +
            			if(y[i]==+1)
         | 
| 985 | 
            +
            				ub = min(ub,yG);
         | 
| 986 | 
            +
            			else
         | 
| 987 | 
            +
            				lb = max(lb,yG);
         | 
| 988 | 
            +
            		}
         | 
| 989 | 
            +
            		else
         | 
| 990 | 
            +
            		{
         | 
| 991 | 
            +
            			++nr_free;
         | 
| 992 | 
            +
            			sum_free += yG;
         | 
| 993 | 
            +
            		}
         | 
| 994 | 
            +
            	}
         | 
| 995 | 
            +
             | 
| 996 | 
            +
            	if(nr_free>0)
         | 
| 997 | 
            +
            		r = sum_free/nr_free;
         | 
| 998 | 
            +
            	else
         | 
| 999 | 
            +
            		r = (ub+lb)/2;
         | 
| 1000 | 
            +
             | 
| 1001 | 
            +
            	return r;
         | 
| 1002 | 
            +
            }
         | 
| 1003 | 
            +
             | 
| 1004 | 
            +
            //
         | 
| 1005 | 
            +
            // Solver for nu-svm classification and regression
         | 
| 1006 | 
            +
            //
         | 
| 1007 | 
            +
            // additional constraint: e^T \alpha = constant
         | 
| 1008 | 
            +
            //
         | 
| 1009 | 
            +
            class Solver_NU: public Solver
         | 
| 1010 | 
            +
            {
         | 
| 1011 | 
            +
            public:
         | 
| 1012 | 
            +
            	Solver_NU() {}
         | 
| 1013 | 
            +
            	void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
         | 
| 1014 | 
            +
            		   double *alpha, double Cp, double Cn, double eps,
         | 
| 1015 | 
            +
            		   SolutionInfo* si, int shrinking)
         | 
| 1016 | 
            +
            	{
         | 
| 1017 | 
            +
            		this->si = si;
         | 
| 1018 | 
            +
            		Solver::Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking);
         | 
| 1019 | 
            +
            	}
         | 
| 1020 | 
            +
            private:
         | 
| 1021 | 
            +
            	SolutionInfo *si;
         | 
| 1022 | 
            +
            	int select_working_set(int &i, int &j);
         | 
| 1023 | 
            +
            	double calculate_rho();
         | 
| 1024 | 
            +
            	bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
         | 
| 1025 | 
            +
            	void do_shrinking();
         | 
| 1026 | 
            +
            };
         | 
| 1027 | 
            +
             | 
| 1028 | 
            +
            // return 1 if already optimal, return 0 otherwise
         | 
| 1029 | 
            +
            int Solver_NU::select_working_set(int &out_i, int &out_j)
         | 
| 1030 | 
            +
            {
         | 
| 1031 | 
            +
            	// return i,j such that y_i = y_j and
         | 
| 1032 | 
            +
            	// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
         | 
| 1033 | 
            +
            	// j: minimizes the decrease of obj value
         | 
| 1034 | 
            +
            	//    (if quadratic coefficeint <= 0, replace it with tau)
         | 
| 1035 | 
            +
            	//    -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
         | 
| 1036 | 
            +
             | 
| 1037 | 
            +
            	double Gmaxp = -INF;
         | 
| 1038 | 
            +
            	double Gmaxp2 = -INF;
         | 
| 1039 | 
            +
            	int Gmaxp_idx = -1;
         | 
| 1040 | 
            +
             | 
| 1041 | 
            +
            	double Gmaxn = -INF;
         | 
| 1042 | 
            +
            	double Gmaxn2 = -INF;
         | 
| 1043 | 
            +
            	int Gmaxn_idx = -1;
         | 
| 1044 | 
            +
             | 
| 1045 | 
            +
            	int Gmin_idx = -1;
         | 
| 1046 | 
            +
            	double obj_diff_min = INF;
         | 
| 1047 | 
            +
             | 
| 1048 | 
            +
            	for(int t=0;t<active_size;t++)
         | 
| 1049 | 
            +
            		if(y[t]==+1)
         | 
| 1050 | 
            +
            		{
         | 
| 1051 | 
            +
            			if(!is_upper_bound(t))
         | 
| 1052 | 
            +
            				if(-G[t] >= Gmaxp)
         | 
| 1053 | 
            +
            				{
         | 
| 1054 | 
            +
            					Gmaxp = -G[t];
         | 
| 1055 | 
            +
            					Gmaxp_idx = t;
         | 
| 1056 | 
            +
            				}
         | 
| 1057 | 
            +
            		}
         | 
| 1058 | 
            +
            		else
         | 
| 1059 | 
            +
            		{
         | 
| 1060 | 
            +
            			if(!is_lower_bound(t))
         | 
| 1061 | 
            +
            				if(G[t] >= Gmaxn)
         | 
| 1062 | 
            +
            				{
         | 
| 1063 | 
            +
            					Gmaxn = G[t];
         | 
| 1064 | 
            +
            					Gmaxn_idx = t;
         | 
| 1065 | 
            +
            				}
         | 
| 1066 | 
            +
            		}
         | 
| 1067 | 
            +
             | 
| 1068 | 
            +
            	int ip = Gmaxp_idx;
         | 
| 1069 | 
            +
            	int in = Gmaxn_idx;
         | 
| 1070 | 
            +
            	const Qfloat *Q_ip = NULL;
         | 
| 1071 | 
            +
            	const Qfloat *Q_in = NULL;
         | 
| 1072 | 
            +
            	if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
         | 
| 1073 | 
            +
            		Q_ip = Q->get_Q(ip,active_size);
         | 
| 1074 | 
            +
            	if(in != -1)
         | 
| 1075 | 
            +
            		Q_in = Q->get_Q(in,active_size);
         | 
| 1076 | 
            +
             | 
| 1077 | 
            +
            	for(int j=0;j<active_size;j++)
         | 
| 1078 | 
            +
            	{
         | 
| 1079 | 
            +
            		if(y[j]==+1)
         | 
| 1080 | 
            +
            		{
         | 
| 1081 | 
            +
            			if (!is_lower_bound(j))
         | 
| 1082 | 
            +
            			{
         | 
| 1083 | 
            +
            				double grad_diff=Gmaxp+G[j];
         | 
| 1084 | 
            +
            				if (G[j] >= Gmaxp2)
         | 
| 1085 | 
            +
            					Gmaxp2 = G[j];
         | 
| 1086 | 
            +
            				if (grad_diff > 0)
         | 
| 1087 | 
            +
            				{
         | 
| 1088 | 
            +
            					double obj_diff;
         | 
| 1089 | 
            +
            					double quad_coef = QD[ip]+QD[j]-2*Q_ip[j];
         | 
| 1090 | 
            +
            					if (quad_coef > 0)
         | 
| 1091 | 
            +
            						obj_diff = -(grad_diff*grad_diff)/quad_coef;
         | 
| 1092 | 
            +
            					else
         | 
| 1093 | 
            +
            						obj_diff = -(grad_diff*grad_diff)/TAU;
         | 
| 1094 | 
            +
             | 
| 1095 | 
            +
            					if (obj_diff <= obj_diff_min)
         | 
| 1096 | 
            +
            					{
         | 
| 1097 | 
            +
            						Gmin_idx=j;
         | 
| 1098 | 
            +
            						obj_diff_min = obj_diff;
         | 
| 1099 | 
            +
            					}
         | 
| 1100 | 
            +
            				}
         | 
| 1101 | 
            +
            			}
         | 
| 1102 | 
            +
            		}
         | 
| 1103 | 
            +
            		else
         | 
| 1104 | 
            +
            		{
         | 
| 1105 | 
            +
            			if (!is_upper_bound(j))
         | 
| 1106 | 
            +
            			{
         | 
| 1107 | 
            +
            				double grad_diff=Gmaxn-G[j];
         | 
| 1108 | 
            +
            				if (-G[j] >= Gmaxn2)
         | 
| 1109 | 
            +
            					Gmaxn2 = -G[j];
         | 
| 1110 | 
            +
            				if (grad_diff > 0)
         | 
| 1111 | 
            +
            				{
         | 
| 1112 | 
            +
            					double obj_diff;
         | 
| 1113 | 
            +
            					double quad_coef = QD[in]+QD[j]-2*Q_in[j];
         | 
| 1114 | 
            +
            					if (quad_coef > 0)
         | 
| 1115 | 
            +
            						obj_diff = -(grad_diff*grad_diff)/quad_coef;
         | 
| 1116 | 
            +
            					else
         | 
| 1117 | 
            +
            						obj_diff = -(grad_diff*grad_diff)/TAU;
         | 
| 1118 | 
            +
             | 
| 1119 | 
            +
            					if (obj_diff <= obj_diff_min)
         | 
| 1120 | 
            +
            					{
         | 
| 1121 | 
            +
            						Gmin_idx=j;
         | 
| 1122 | 
            +
            						obj_diff_min = obj_diff;
         | 
| 1123 | 
            +
            					}
         | 
| 1124 | 
            +
            				}
         | 
| 1125 | 
            +
            			}
         | 
| 1126 | 
            +
            		}
         | 
| 1127 | 
            +
            	}
         | 
| 1128 | 
            +
             | 
| 1129 | 
            +
            	if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps || Gmin_idx == -1)
         | 
| 1130 | 
            +
            		return 1;
         | 
| 1131 | 
            +
             | 
| 1132 | 
            +
            	if (y[Gmin_idx] == +1)
         | 
| 1133 | 
            +
            		out_i = Gmaxp_idx;
         | 
| 1134 | 
            +
            	else
         | 
| 1135 | 
            +
            		out_i = Gmaxn_idx;
         | 
| 1136 | 
            +
            	out_j = Gmin_idx;
         | 
| 1137 | 
            +
             | 
| 1138 | 
            +
            	return 0;
         | 
| 1139 | 
            +
            }
         | 
| 1140 | 
            +
             | 
| 1141 | 
            +
            bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
         | 
| 1142 | 
            +
            {
         | 
| 1143 | 
            +
            	if(is_upper_bound(i))
         | 
| 1144 | 
            +
            	{
         | 
| 1145 | 
            +
            		if(y[i]==+1)
         | 
| 1146 | 
            +
            			return(-G[i] > Gmax1);
         | 
| 1147 | 
            +
            		else
         | 
| 1148 | 
            +
            			return(-G[i] > Gmax4);
         | 
| 1149 | 
            +
            	}
         | 
| 1150 | 
            +
            	else if(is_lower_bound(i))
         | 
| 1151 | 
            +
            	{
         | 
| 1152 | 
            +
            		if(y[i]==+1)
         | 
| 1153 | 
            +
            			return(G[i] > Gmax2);
         | 
| 1154 | 
            +
            		else
         | 
| 1155 | 
            +
            			return(G[i] > Gmax3);
         | 
| 1156 | 
            +
            	}
         | 
| 1157 | 
            +
            	else
         | 
| 1158 | 
            +
            		return(false);
         | 
| 1159 | 
            +
            }
         | 
| 1160 | 
            +
             | 
| 1161 | 
            +
            void Solver_NU::do_shrinking()
         | 
| 1162 | 
            +
            {
         | 
| 1163 | 
            +
            	double Gmax1 = -INF;	// max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
         | 
| 1164 | 
            +
            	double Gmax2 = -INF;	// max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
         | 
| 1165 | 
            +
            	double Gmax3 = -INF;	// max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
         | 
| 1166 | 
            +
            	double Gmax4 = -INF;	// max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
         | 
| 1167 | 
            +
             | 
| 1168 | 
            +
            	// find maximal violating pair first
         | 
| 1169 | 
            +
            	int i;
         | 
| 1170 | 
            +
            	for(i=0;i<active_size;i++)
         | 
| 1171 | 
            +
            	{
         | 
| 1172 | 
            +
            		if(!is_upper_bound(i))
         | 
| 1173 | 
            +
            		{
         | 
| 1174 | 
            +
            			if(y[i]==+1)
         | 
| 1175 | 
            +
            			{
         | 
| 1176 | 
            +
            				if(-G[i] > Gmax1) Gmax1 = -G[i];
         | 
| 1177 | 
            +
            			}
         | 
| 1178 | 
            +
            			else	if(-G[i] > Gmax4) Gmax4 = -G[i];
         | 
| 1179 | 
            +
            		}
         | 
| 1180 | 
            +
            		if(!is_lower_bound(i))
         | 
| 1181 | 
            +
            		{
         | 
| 1182 | 
            +
            			if(y[i]==+1)
         | 
| 1183 | 
            +
            			{
         | 
| 1184 | 
            +
            				if(G[i] > Gmax2) Gmax2 = G[i];
         | 
| 1185 | 
            +
            			}
         | 
| 1186 | 
            +
            			else	if(G[i] > Gmax3) Gmax3 = G[i];
         | 
| 1187 | 
            +
            		}
         | 
| 1188 | 
            +
            	}
         | 
| 1189 | 
            +
             | 
| 1190 | 
            +
            	if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10)
         | 
| 1191 | 
            +
            	{
         | 
| 1192 | 
            +
            		unshrink = true;
         | 
| 1193 | 
            +
            		reconstruct_gradient();
         | 
| 1194 | 
            +
            		active_size = l;
         | 
| 1195 | 
            +
            	}
         | 
| 1196 | 
            +
             | 
| 1197 | 
            +
            	for(i=0;i<active_size;i++)
         | 
| 1198 | 
            +
            		if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
         | 
| 1199 | 
            +
            		{
         | 
| 1200 | 
            +
            			active_size--;
         | 
| 1201 | 
            +
            			while (active_size > i)
         | 
| 1202 | 
            +
            			{
         | 
| 1203 | 
            +
            				if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
         | 
| 1204 | 
            +
            				{
         | 
| 1205 | 
            +
            					swap_index(i,active_size);
         | 
| 1206 | 
            +
            					break;
         | 
| 1207 | 
            +
            				}
         | 
| 1208 | 
            +
            				active_size--;
         | 
| 1209 | 
            +
            			}
         | 
| 1210 | 
            +
            		}
         | 
| 1211 | 
            +
            }
         | 
| 1212 | 
            +
             | 
| 1213 | 
            +
            double Solver_NU::calculate_rho()
         | 
| 1214 | 
            +
            {
         | 
| 1215 | 
            +
            	int nr_free1 = 0,nr_free2 = 0;
         | 
| 1216 | 
            +
            	double ub1 = INF, ub2 = INF;
         | 
| 1217 | 
            +
            	double lb1 = -INF, lb2 = -INF;
         | 
| 1218 | 
            +
            	double sum_free1 = 0, sum_free2 = 0;
         | 
| 1219 | 
            +
             | 
| 1220 | 
            +
            	for(int i=0;i<active_size;i++)
         | 
| 1221 | 
            +
            	{
         | 
| 1222 | 
            +
            		if(y[i]==+1)
         | 
| 1223 | 
            +
            		{
         | 
| 1224 | 
            +
            			if(is_upper_bound(i))
         | 
| 1225 | 
            +
            				lb1 = max(lb1,G[i]);
         | 
| 1226 | 
            +
            			else if(is_lower_bound(i))
         | 
| 1227 | 
            +
            				ub1 = min(ub1,G[i]);
         | 
| 1228 | 
            +
            			else
         | 
| 1229 | 
            +
            			{
         | 
| 1230 | 
            +
            				++nr_free1;
         | 
| 1231 | 
            +
            				sum_free1 += G[i];
         | 
| 1232 | 
            +
            			}
         | 
| 1233 | 
            +
            		}
         | 
| 1234 | 
            +
            		else
         | 
| 1235 | 
            +
            		{
         | 
| 1236 | 
            +
            			if(is_upper_bound(i))
         | 
| 1237 | 
            +
            				lb2 = max(lb2,G[i]);
         | 
| 1238 | 
            +
            			else if(is_lower_bound(i))
         | 
| 1239 | 
            +
            				ub2 = min(ub2,G[i]);
         | 
| 1240 | 
            +
            			else
         | 
| 1241 | 
            +
            			{
         | 
| 1242 | 
            +
            				++nr_free2;
         | 
| 1243 | 
            +
            				sum_free2 += G[i];
         | 
| 1244 | 
            +
            			}
         | 
| 1245 | 
            +
            		}
         | 
| 1246 | 
            +
            	}
         | 
| 1247 | 
            +
             | 
| 1248 | 
            +
            	double r1,r2;
         | 
| 1249 | 
            +
            	if(nr_free1 > 0)
         | 
| 1250 | 
            +
            		r1 = sum_free1/nr_free1;
         | 
| 1251 | 
            +
            	else
         | 
| 1252 | 
            +
            		r1 = (ub1+lb1)/2;
         | 
| 1253 | 
            +
             | 
| 1254 | 
            +
            	if(nr_free2 > 0)
         | 
| 1255 | 
            +
            		r2 = sum_free2/nr_free2;
         | 
| 1256 | 
            +
            	else
         | 
| 1257 | 
            +
            		r2 = (ub2+lb2)/2;
         | 
| 1258 | 
            +
             | 
| 1259 | 
            +
            	si->r = (r1+r2)/2;
         | 
| 1260 | 
            +
            	return (r1-r2)/2;
         | 
| 1261 | 
            +
            }
         | 
| 1262 | 
            +
             | 
| 1263 | 
            +
            //
         | 
| 1264 | 
            +
            // Q matrices for various formulations
         | 
| 1265 | 
            +
            //
         | 
| 1266 | 
            +
            class SVC_Q: public Kernel
         | 
| 1267 | 
            +
            {
         | 
| 1268 | 
            +
            public:
         | 
| 1269 | 
            +
            	SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
         | 
| 1270 | 
            +
            	:Kernel(prob.l, prob.x, param)
         | 
| 1271 | 
            +
            	{
         | 
| 1272 | 
            +
            		clone(y,y_,prob.l);
         | 
| 1273 | 
            +
            		cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
         | 
| 1274 | 
            +
            		QD = new double[prob.l];
         | 
| 1275 | 
            +
            		for(int i=0;i<prob.l;i++)
         | 
| 1276 | 
            +
            			QD[i] = (this->*kernel_function)(i,i);
         | 
| 1277 | 
            +
            	}
         | 
| 1278 | 
            +
             | 
| 1279 | 
            +
            	Qfloat *get_Q(int i, int len) const
         | 
| 1280 | 
            +
            	{
         | 
| 1281 | 
            +
            		Qfloat *data;
         | 
| 1282 | 
            +
            		int start, j;
         | 
| 1283 | 
            +
            		if((start = cache->get_data(i,&data,len)) < len)
         | 
| 1284 | 
            +
            		{
         | 
| 1285 | 
            +
            			for(j=start;j<len;j++)
         | 
| 1286 | 
            +
            				data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
         | 
| 1287 | 
            +
            		}
         | 
| 1288 | 
            +
            		return data;
         | 
| 1289 | 
            +
            	}
         | 
| 1290 | 
            +
             | 
| 1291 | 
            +
            	double *get_QD() const
         | 
| 1292 | 
            +
            	{
         | 
| 1293 | 
            +
            		return QD;
         | 
| 1294 | 
            +
            	}
         | 
| 1295 | 
            +
             | 
| 1296 | 
            +
            	void swap_index(int i, int j) const
         | 
| 1297 | 
            +
            	{
         | 
| 1298 | 
            +
            		cache->swap_index(i,j);
         | 
| 1299 | 
            +
            		Kernel::swap_index(i,j);
         | 
| 1300 | 
            +
            		swap(y[i],y[j]);
         | 
| 1301 | 
            +
            		swap(QD[i],QD[j]);
         | 
| 1302 | 
            +
            	}
         | 
| 1303 | 
            +
             | 
| 1304 | 
            +
            	~SVC_Q()
         | 
| 1305 | 
            +
            	{
         | 
| 1306 | 
            +
            		delete[] y;
         | 
| 1307 | 
            +
            		delete cache;
         | 
| 1308 | 
            +
            		delete[] QD;
         | 
| 1309 | 
            +
            	}
         | 
| 1310 | 
            +
            private:
         | 
| 1311 | 
            +
            	schar *y;
         | 
| 1312 | 
            +
            	Cache *cache;
         | 
| 1313 | 
            +
            	double *QD;
         | 
| 1314 | 
            +
            };
         | 
| 1315 | 
            +
             | 
| 1316 | 
            +
            class ONE_CLASS_Q: public Kernel
         | 
| 1317 | 
            +
            {
         | 
| 1318 | 
            +
            public:
         | 
| 1319 | 
            +
            	ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
         | 
| 1320 | 
            +
            	:Kernel(prob.l, prob.x, param)
         | 
| 1321 | 
            +
            	{
         | 
| 1322 | 
            +
            		cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
         | 
| 1323 | 
            +
            		QD = new double[prob.l];
         | 
| 1324 | 
            +
            		for(int i=0;i<prob.l;i++)
         | 
| 1325 | 
            +
            			QD[i] = (this->*kernel_function)(i,i);
         | 
| 1326 | 
            +
            	}
         | 
| 1327 | 
            +
             | 
| 1328 | 
            +
            	Qfloat *get_Q(int i, int len) const
         | 
| 1329 | 
            +
            	{
         | 
| 1330 | 
            +
            		Qfloat *data;
         | 
| 1331 | 
            +
            		int start, j;
         | 
| 1332 | 
            +
            		if((start = cache->get_data(i,&data,len)) < len)
         | 
| 1333 | 
            +
            		{
         | 
| 1334 | 
            +
            			for(j=start;j<len;j++)
         | 
| 1335 | 
            +
            				data[j] = (Qfloat)(this->*kernel_function)(i,j);
         | 
| 1336 | 
            +
            		}
         | 
| 1337 | 
            +
            		return data;
         | 
| 1338 | 
            +
            	}
         | 
| 1339 | 
            +
             | 
| 1340 | 
            +
            	double *get_QD() const
         | 
| 1341 | 
            +
            	{
         | 
| 1342 | 
            +
            		return QD;
         | 
| 1343 | 
            +
            	}
         | 
| 1344 | 
            +
             | 
| 1345 | 
            +
            	void swap_index(int i, int j) const
         | 
| 1346 | 
            +
            	{
         | 
| 1347 | 
            +
            		cache->swap_index(i,j);
         | 
| 1348 | 
            +
            		Kernel::swap_index(i,j);
         | 
| 1349 | 
            +
            		swap(QD[i],QD[j]);
         | 
| 1350 | 
            +
            	}
         | 
| 1351 | 
            +
             | 
| 1352 | 
            +
            	~ONE_CLASS_Q()
         | 
| 1353 | 
            +
            	{
         | 
| 1354 | 
            +
            		delete cache;
         | 
| 1355 | 
            +
            		delete[] QD;
         | 
| 1356 | 
            +
            	}
         | 
| 1357 | 
            +
            private:
         | 
| 1358 | 
            +
            	Cache *cache;
         | 
| 1359 | 
            +
            	double *QD;
         | 
| 1360 | 
            +
            };
         | 
| 1361 | 
            +
             | 
| 1362 | 
            +
            class SVR_Q: public Kernel
         | 
| 1363 | 
            +
            {
         | 
| 1364 | 
            +
            public:
         | 
| 1365 | 
            +
            	SVR_Q(const svm_problem& prob, const svm_parameter& param)
         | 
| 1366 | 
            +
            	:Kernel(prob.l, prob.x, param)
         | 
| 1367 | 
            +
            	{
         | 
| 1368 | 
            +
            		l = prob.l;
         | 
| 1369 | 
            +
            		cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
         | 
| 1370 | 
            +
            		QD = new double[2*l];
         | 
| 1371 | 
            +
            		sign = new schar[2*l];
         | 
| 1372 | 
            +
            		index = new int[2*l];
         | 
| 1373 | 
            +
            		for(int k=0;k<l;k++)
         | 
| 1374 | 
            +
            		{
         | 
| 1375 | 
            +
            			sign[k] = 1;
         | 
| 1376 | 
            +
            			sign[k+l] = -1;
         | 
| 1377 | 
            +
            			index[k] = k;
         | 
| 1378 | 
            +
            			index[k+l] = k;
         | 
| 1379 | 
            +
            			QD[k] = (this->*kernel_function)(k,k);
         | 
| 1380 | 
            +
            			QD[k+l] = QD[k];
         | 
| 1381 | 
            +
            		}
         | 
| 1382 | 
            +
            		buffer[0] = new Qfloat[2*l];
         | 
| 1383 | 
            +
            		buffer[1] = new Qfloat[2*l];
         | 
| 1384 | 
            +
            		next_buffer = 0;
         | 
| 1385 | 
            +
            	}
         | 
| 1386 | 
            +
             | 
| 1387 | 
            +
            	void swap_index(int i, int j) const
         | 
| 1388 | 
            +
            	{
         | 
| 1389 | 
            +
            		swap(sign[i],sign[j]);
         | 
| 1390 | 
            +
            		swap(index[i],index[j]);
         | 
| 1391 | 
            +
            		swap(QD[i],QD[j]);
         | 
| 1392 | 
            +
            	}
         | 
| 1393 | 
            +
             | 
| 1394 | 
            +
            	Qfloat *get_Q(int i, int len) const
         | 
| 1395 | 
            +
            	{
         | 
| 1396 | 
            +
            		Qfloat *data;
         | 
| 1397 | 
            +
            		int j, real_i = index[i];
         | 
| 1398 | 
            +
            		if(cache->get_data(real_i,&data,l) < l)
         | 
| 1399 | 
            +
            		{
         | 
| 1400 | 
            +
            			for(j=0;j<l;j++)
         | 
| 1401 | 
            +
            				data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
         | 
| 1402 | 
            +
            		}
         | 
| 1403 | 
            +
             | 
| 1404 | 
            +
            		// reorder and copy
         | 
| 1405 | 
            +
            		Qfloat *buf = buffer[next_buffer];
         | 
| 1406 | 
            +
            		next_buffer = 1 - next_buffer;
         | 
| 1407 | 
            +
            		schar si = sign[i];
         | 
| 1408 | 
            +
            		for(j=0;j<len;j++)
         | 
| 1409 | 
            +
            			buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
         | 
| 1410 | 
            +
            		return buf;
         | 
| 1411 | 
            +
            	}
         | 
| 1412 | 
            +
             | 
| 1413 | 
            +
            	double *get_QD() const
         | 
| 1414 | 
            +
            	{
         | 
| 1415 | 
            +
            		return QD;
         | 
| 1416 | 
            +
            	}
         | 
| 1417 | 
            +
             | 
| 1418 | 
            +
            	~SVR_Q()
         | 
| 1419 | 
            +
            	{
         | 
| 1420 | 
            +
            		delete cache;
         | 
| 1421 | 
            +
            		delete[] sign;
         | 
| 1422 | 
            +
            		delete[] index;
         | 
| 1423 | 
            +
            		delete[] buffer[0];
         | 
| 1424 | 
            +
            		delete[] buffer[1];
         | 
| 1425 | 
            +
            		delete[] QD;
         | 
| 1426 | 
            +
            	}
         | 
| 1427 | 
            +
            private:
         | 
| 1428 | 
            +
            	int l;
         | 
| 1429 | 
            +
            	Cache *cache;
         | 
| 1430 | 
            +
            	schar *sign;
         | 
| 1431 | 
            +
            	int *index;
         | 
| 1432 | 
            +
            	mutable int next_buffer;
         | 
| 1433 | 
            +
            	Qfloat *buffer[2];
         | 
| 1434 | 
            +
            	double *QD;
         | 
| 1435 | 
            +
            };
         | 
| 1436 | 
            +
             | 
| 1437 | 
            +
            //
         | 
| 1438 | 
            +
            // construct and solve various formulations
         | 
| 1439 | 
            +
            //
         | 
| 1440 | 
            +
            static void solve_c_svc(
         | 
| 1441 | 
            +
            	const svm_problem *prob, const svm_parameter* param,
         | 
| 1442 | 
            +
            	double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
         | 
| 1443 | 
            +
            {
         | 
| 1444 | 
            +
            	int l = prob->l;
         | 
| 1445 | 
            +
            	double *minus_ones = new double[l];
         | 
| 1446 | 
            +
            	schar *y = new schar[l];
         | 
| 1447 | 
            +
             | 
| 1448 | 
            +
            	int i;
         | 
| 1449 | 
            +
             | 
| 1450 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1451 | 
            +
            	{
         | 
| 1452 | 
            +
            		alpha[i] = 0;
         | 
| 1453 | 
            +
            		minus_ones[i] = -1;
         | 
| 1454 | 
            +
            		if(prob->y[i] > 0) y[i] = +1; else y[i] = -1;
         | 
| 1455 | 
            +
            	}
         | 
| 1456 | 
            +
             | 
| 1457 | 
            +
            	Solver s;
         | 
| 1458 | 
            +
            	s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
         | 
| 1459 | 
            +
            		alpha, Cp, Cn, param->eps, si, param->shrinking);
         | 
| 1460 | 
            +
             | 
| 1461 | 
            +
            	double sum_alpha=0;
         | 
| 1462 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1463 | 
            +
            		sum_alpha += alpha[i];
         | 
| 1464 | 
            +
             | 
| 1465 | 
            +
            	if (Cp==Cn)
         | 
| 1466 | 
            +
            		info("nu = %f\n", sum_alpha/(Cp*prob->l));
         | 
| 1467 | 
            +
             | 
| 1468 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1469 | 
            +
            		alpha[i] *= y[i];
         | 
| 1470 | 
            +
             | 
| 1471 | 
            +
            	delete[] minus_ones;
         | 
| 1472 | 
            +
            	delete[] y;
         | 
| 1473 | 
            +
            }
         | 
| 1474 | 
            +
             | 
| 1475 | 
            +
            static void solve_nu_svc(
         | 
| 1476 | 
            +
            	const svm_problem *prob, const svm_parameter *param,
         | 
| 1477 | 
            +
            	double *alpha, Solver::SolutionInfo* si)
         | 
| 1478 | 
            +
            {
         | 
| 1479 | 
            +
            	int i;
         | 
| 1480 | 
            +
            	int l = prob->l;
         | 
| 1481 | 
            +
            	double nu = param->nu;
         | 
| 1482 | 
            +
             | 
| 1483 | 
            +
            	schar *y = new schar[l];
         | 
| 1484 | 
            +
             | 
| 1485 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1486 | 
            +
            		if(prob->y[i]>0)
         | 
| 1487 | 
            +
            			y[i] = +1;
         | 
| 1488 | 
            +
            		else
         | 
| 1489 | 
            +
            			y[i] = -1;
         | 
| 1490 | 
            +
             | 
| 1491 | 
            +
            	double sum_pos = nu*l/2;
         | 
| 1492 | 
            +
            	double sum_neg = nu*l/2;
         | 
| 1493 | 
            +
             | 
| 1494 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1495 | 
            +
            		if(y[i] == +1)
         | 
| 1496 | 
            +
            		{
         | 
| 1497 | 
            +
            			alpha[i] = min(1.0,sum_pos);
         | 
| 1498 | 
            +
            			sum_pos -= alpha[i];
         | 
| 1499 | 
            +
            		}
         | 
| 1500 | 
            +
            		else
         | 
| 1501 | 
            +
            		{
         | 
| 1502 | 
            +
            			alpha[i] = min(1.0,sum_neg);
         | 
| 1503 | 
            +
            			sum_neg -= alpha[i];
         | 
| 1504 | 
            +
            		}
         | 
| 1505 | 
            +
             | 
| 1506 | 
            +
            	double *zeros = new double[l];
         | 
| 1507 | 
            +
             | 
| 1508 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1509 | 
            +
            		zeros[i] = 0;
         | 
| 1510 | 
            +
             | 
| 1511 | 
            +
            	Solver_NU s;
         | 
| 1512 | 
            +
            	s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
         | 
| 1513 | 
            +
            		alpha, 1.0, 1.0, param->eps, si,  param->shrinking);
         | 
| 1514 | 
            +
            	double r = si->r;
         | 
| 1515 | 
            +
             | 
| 1516 | 
            +
            	info("C = %f\n",1/r);
         | 
| 1517 | 
            +
             | 
| 1518 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1519 | 
            +
            		alpha[i] *= y[i]/r;
         | 
| 1520 | 
            +
             | 
| 1521 | 
            +
            	si->rho /= r;
         | 
| 1522 | 
            +
            	si->obj /= (r*r);
         | 
| 1523 | 
            +
            	si->upper_bound_p = 1/r;
         | 
| 1524 | 
            +
            	si->upper_bound_n = 1/r;
         | 
| 1525 | 
            +
             | 
| 1526 | 
            +
            	delete[] y;
         | 
| 1527 | 
            +
            	delete[] zeros;
         | 
| 1528 | 
            +
            }
         | 
| 1529 | 
            +
             | 
| 1530 | 
            +
            static void solve_one_class(
         | 
| 1531 | 
            +
            	const svm_problem *prob, const svm_parameter *param,
         | 
| 1532 | 
            +
            	double *alpha, Solver::SolutionInfo* si)
         | 
| 1533 | 
            +
            {
         | 
| 1534 | 
            +
            	int l = prob->l;
         | 
| 1535 | 
            +
            	double *zeros = new double[l];
         | 
| 1536 | 
            +
            	schar *ones = new schar[l];
         | 
| 1537 | 
            +
            	int i;
         | 
| 1538 | 
            +
             | 
| 1539 | 
            +
            	int n = (int)(param->nu*prob->l);	// # of alpha's at upper bound
         | 
| 1540 | 
            +
             | 
| 1541 | 
            +
            	for(i=0;i<n;i++)
         | 
| 1542 | 
            +
            		alpha[i] = 1;
         | 
| 1543 | 
            +
            	if(n<prob->l)
         | 
| 1544 | 
            +
            		alpha[n] = param->nu * prob->l - n;
         | 
| 1545 | 
            +
            	for(i=n+1;i<l;i++)
         | 
| 1546 | 
            +
            		alpha[i] = 0;
         | 
| 1547 | 
            +
             | 
| 1548 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1549 | 
            +
            	{
         | 
| 1550 | 
            +
            		zeros[i] = 0;
         | 
| 1551 | 
            +
            		ones[i] = 1;
         | 
| 1552 | 
            +
            	}
         | 
| 1553 | 
            +
             | 
| 1554 | 
            +
            	Solver s;
         | 
| 1555 | 
            +
            	s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
         | 
| 1556 | 
            +
            		alpha, 1.0, 1.0, param->eps, si, param->shrinking);
         | 
| 1557 | 
            +
             | 
| 1558 | 
            +
            	delete[] zeros;
         | 
| 1559 | 
            +
            	delete[] ones;
         | 
| 1560 | 
            +
            }
         | 
| 1561 | 
            +
             | 
| 1562 | 
            +
            static void solve_epsilon_svr(
         | 
| 1563 | 
            +
            	const svm_problem *prob, const svm_parameter *param,
         | 
| 1564 | 
            +
            	double *alpha, Solver::SolutionInfo* si)
         | 
| 1565 | 
            +
            {
         | 
| 1566 | 
            +
            	int l = prob->l;
         | 
| 1567 | 
            +
            	double *alpha2 = new double[2*l];
         | 
| 1568 | 
            +
            	double *linear_term = new double[2*l];
         | 
| 1569 | 
            +
            	schar *y = new schar[2*l];
         | 
| 1570 | 
            +
            	int i;
         | 
| 1571 | 
            +
             | 
| 1572 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1573 | 
            +
            	{
         | 
| 1574 | 
            +
            		alpha2[i] = 0;
         | 
| 1575 | 
            +
            		linear_term[i] = param->p - prob->y[i];
         | 
| 1576 | 
            +
            		y[i] = 1;
         | 
| 1577 | 
            +
             | 
| 1578 | 
            +
            		alpha2[i+l] = 0;
         | 
| 1579 | 
            +
            		linear_term[i+l] = param->p + prob->y[i];
         | 
| 1580 | 
            +
            		y[i+l] = -1;
         | 
| 1581 | 
            +
            	}
         | 
| 1582 | 
            +
             | 
| 1583 | 
            +
            	Solver s;
         | 
| 1584 | 
            +
            	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
         | 
| 1585 | 
            +
            		alpha2, param->C, param->C, param->eps, si, param->shrinking);
         | 
| 1586 | 
            +
             | 
| 1587 | 
            +
            	double sum_alpha = 0;
         | 
| 1588 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1589 | 
            +
            	{
         | 
| 1590 | 
            +
            		alpha[i] = alpha2[i] - alpha2[i+l];
         | 
| 1591 | 
            +
            		sum_alpha += fabs(alpha[i]);
         | 
| 1592 | 
            +
            	}
         | 
| 1593 | 
            +
            	info("nu = %f\n",sum_alpha/(param->C*l));
         | 
| 1594 | 
            +
             | 
| 1595 | 
            +
            	delete[] alpha2;
         | 
| 1596 | 
            +
            	delete[] linear_term;
         | 
| 1597 | 
            +
            	delete[] y;
         | 
| 1598 | 
            +
            }
         | 
| 1599 | 
            +
             | 
| 1600 | 
            +
            static void solve_nu_svr(
         | 
| 1601 | 
            +
            	const svm_problem *prob, const svm_parameter *param,
         | 
| 1602 | 
            +
            	double *alpha, Solver::SolutionInfo* si)
         | 
| 1603 | 
            +
            {
         | 
| 1604 | 
            +
            	int l = prob->l;
         | 
| 1605 | 
            +
            	double C = param->C;
         | 
| 1606 | 
            +
            	double *alpha2 = new double[2*l];
         | 
| 1607 | 
            +
            	double *linear_term = new double[2*l];
         | 
| 1608 | 
            +
            	schar *y = new schar[2*l];
         | 
| 1609 | 
            +
            	int i;
         | 
| 1610 | 
            +
             | 
| 1611 | 
            +
            	double sum = C * param->nu * l / 2;
         | 
| 1612 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1613 | 
            +
            	{
         | 
| 1614 | 
            +
            		alpha2[i] = alpha2[i+l] = min(sum,C);
         | 
| 1615 | 
            +
            		sum -= alpha2[i];
         | 
| 1616 | 
            +
             | 
| 1617 | 
            +
            		linear_term[i] = - prob->y[i];
         | 
| 1618 | 
            +
            		y[i] = 1;
         | 
| 1619 | 
            +
             | 
| 1620 | 
            +
            		linear_term[i+l] = prob->y[i];
         | 
| 1621 | 
            +
            		y[i+l] = -1;
         | 
| 1622 | 
            +
            	}
         | 
| 1623 | 
            +
             | 
| 1624 | 
            +
            	Solver_NU s;
         | 
| 1625 | 
            +
            	s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
         | 
| 1626 | 
            +
            		alpha2, C, C, param->eps, si, param->shrinking);
         | 
| 1627 | 
            +
             | 
| 1628 | 
            +
            	info("epsilon = %f\n",-si->r);
         | 
| 1629 | 
            +
             | 
| 1630 | 
            +
            	for(i=0;i<l;i++)
         | 
| 1631 | 
            +
            		alpha[i] = alpha2[i] - alpha2[i+l];
         | 
| 1632 | 
            +
             | 
| 1633 | 
            +
            	delete[] alpha2;
         | 
| 1634 | 
            +
            	delete[] linear_term;
         | 
| 1635 | 
            +
            	delete[] y;
         | 
| 1636 | 
            +
            }
         | 
| 1637 | 
            +
             | 
| 1638 | 
            +
            //
         | 
| 1639 | 
            +
            // decision_function
         | 
| 1640 | 
            +
            //
         | 
| 1641 | 
            +
            struct decision_function
         | 
| 1642 | 
            +
            {
         | 
| 1643 | 
            +
            	double *alpha;
         | 
| 1644 | 
            +
            	double rho;
         | 
| 1645 | 
            +
            };
         | 
| 1646 | 
            +
             | 
| 1647 | 
            +
            static decision_function svm_train_one(
         | 
| 1648 | 
            +
            	const svm_problem *prob, const svm_parameter *param,
         | 
| 1649 | 
            +
            	double Cp, double Cn)
         | 
| 1650 | 
            +
            {
         | 
| 1651 | 
            +
            	double *alpha = Malloc(double,prob->l);
         | 
| 1652 | 
            +
            	Solver::SolutionInfo si;
         | 
| 1653 | 
            +
            	switch(param->svm_type)
         | 
| 1654 | 
            +
            	{
         | 
| 1655 | 
            +
            		case C_SVC:
         | 
| 1656 | 
            +
            			solve_c_svc(prob,param,alpha,&si,Cp,Cn);
         | 
| 1657 | 
            +
            			break;
         | 
| 1658 | 
            +
            		case NU_SVC:
         | 
| 1659 | 
            +
            			solve_nu_svc(prob,param,alpha,&si);
         | 
| 1660 | 
            +
            			break;
         | 
| 1661 | 
            +
            		case ONE_CLASS:
         | 
| 1662 | 
            +
            			solve_one_class(prob,param,alpha,&si);
         | 
| 1663 | 
            +
            			break;
         | 
| 1664 | 
            +
            		case EPSILON_SVR:
         | 
| 1665 | 
            +
            			solve_epsilon_svr(prob,param,alpha,&si);
         | 
| 1666 | 
            +
            			break;
         | 
| 1667 | 
            +
            		case NU_SVR:
         | 
| 1668 | 
            +
            			solve_nu_svr(prob,param,alpha,&si);
         | 
| 1669 | 
            +
            			break;
         | 
| 1670 | 
            +
            	}
         | 
| 1671 | 
            +
             | 
| 1672 | 
            +
            	info("obj = %f, rho = %f\n",si.obj,si.rho);
         | 
| 1673 | 
            +
             | 
| 1674 | 
            +
            	// output SVs
         | 
| 1675 | 
            +
             | 
| 1676 | 
            +
            	int nSV = 0;
         | 
| 1677 | 
            +
            	int nBSV = 0;
         | 
| 1678 | 
            +
            	for(int i=0;i<prob->l;i++)
         | 
| 1679 | 
            +
            	{
         | 
| 1680 | 
            +
            		if(fabs(alpha[i]) > 0)
         | 
| 1681 | 
            +
            		{
         | 
| 1682 | 
            +
            			++nSV;
         | 
| 1683 | 
            +
            			if(prob->y[i] > 0)
         | 
| 1684 | 
            +
            			{
         | 
| 1685 | 
            +
            				if(fabs(alpha[i]) >= si.upper_bound_p)
         | 
| 1686 | 
            +
            					++nBSV;
         | 
| 1687 | 
            +
            			}
         | 
| 1688 | 
            +
            			else
         | 
| 1689 | 
            +
            			{
         | 
| 1690 | 
            +
            				if(fabs(alpha[i]) >= si.upper_bound_n)
         | 
| 1691 | 
            +
            					++nBSV;
         | 
| 1692 | 
            +
            			}
         | 
| 1693 | 
            +
            		}
         | 
| 1694 | 
            +
            	}
         | 
| 1695 | 
            +
             | 
| 1696 | 
            +
            	info("nSV = %d, nBSV = %d\n",nSV,nBSV);
         | 
| 1697 | 
            +
             | 
| 1698 | 
            +
            	decision_function f;
         | 
| 1699 | 
            +
            	f.alpha = alpha;
         | 
| 1700 | 
            +
            	f.rho = si.rho;
         | 
| 1701 | 
            +
            	return f;
         | 
| 1702 | 
            +
            }
         | 
| 1703 | 
            +
             | 
| 1704 | 
            +
            // Platt's binary SVM Probablistic Output: an improvement from Lin et al.
         | 
| 1705 | 
            +
            static void sigmoid_train(
         | 
| 1706 | 
            +
            	int l, const double *dec_values, const double *labels,
         | 
| 1707 | 
            +
            	double& A, double& B)
         | 
| 1708 | 
            +
            {
         | 
| 1709 | 
            +
            	double prior1=0, prior0 = 0;
         | 
| 1710 | 
            +
            	int i;
         | 
| 1711 | 
            +
             | 
| 1712 | 
            +
            	for (i=0;i<l;i++)
         | 
| 1713 | 
            +
            		if (labels[i] > 0) prior1+=1;
         | 
| 1714 | 
            +
            		else prior0+=1;
         | 
| 1715 | 
            +
             | 
| 1716 | 
            +
            	int max_iter=100;	// Maximal number of iterations
         | 
| 1717 | 
            +
            	double min_step=1e-10;	// Minimal step taken in line search
         | 
| 1718 | 
            +
            	double sigma=1e-12;	// For numerically strict PD of Hessian
         | 
| 1719 | 
            +
            	double eps=1e-5;
         | 
| 1720 | 
            +
            	double hiTarget=(prior1+1.0)/(prior1+2.0);
         | 
| 1721 | 
            +
            	double loTarget=1/(prior0+2.0);
         | 
| 1722 | 
            +
            	double *t=Malloc(double,l);
         | 
| 1723 | 
            +
            	double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
         | 
| 1724 | 
            +
            	double newA,newB,newf,d1,d2;
         | 
| 1725 | 
            +
            	int iter;
         | 
| 1726 | 
            +
             | 
| 1727 | 
            +
            	// Initial Point and Initial Fun Value
         | 
| 1728 | 
            +
            	A=0.0; B=log((prior0+1.0)/(prior1+1.0));
         | 
| 1729 | 
            +
            	double fval = 0.0;
         | 
| 1730 | 
            +
             | 
| 1731 | 
            +
            	for (i=0;i<l;i++)
         | 
| 1732 | 
            +
            	{
         | 
| 1733 | 
            +
            		if (labels[i]>0) t[i]=hiTarget;
         | 
| 1734 | 
            +
            		else t[i]=loTarget;
         | 
| 1735 | 
            +
            		fApB = dec_values[i]*A+B;
         | 
| 1736 | 
            +
            		if (fApB>=0)
         | 
| 1737 | 
            +
            			fval += t[i]*fApB + log(1+exp(-fApB));
         | 
| 1738 | 
            +
            		else
         | 
| 1739 | 
            +
            			fval += (t[i] - 1)*fApB +log(1+exp(fApB));
         | 
| 1740 | 
            +
            	}
         | 
| 1741 | 
            +
            	for (iter=0;iter<max_iter;iter++)
         | 
| 1742 | 
            +
            	{
         | 
| 1743 | 
            +
            		// Update Gradient and Hessian (use H' = H + sigma I)
         | 
| 1744 | 
            +
            		h11=sigma; // numerically ensures strict PD
         | 
| 1745 | 
            +
            		h22=sigma;
         | 
| 1746 | 
            +
            		h21=0.0;g1=0.0;g2=0.0;
         | 
| 1747 | 
            +
            		for (i=0;i<l;i++)
         | 
| 1748 | 
            +
            		{
         | 
| 1749 | 
            +
            			fApB = dec_values[i]*A+B;
         | 
| 1750 | 
            +
            			if (fApB >= 0)
         | 
| 1751 | 
            +
            			{
         | 
| 1752 | 
            +
            				p=exp(-fApB)/(1.0+exp(-fApB));
         | 
| 1753 | 
            +
            				q=1.0/(1.0+exp(-fApB));
         | 
| 1754 | 
            +
            			}
         | 
| 1755 | 
            +
            			else
         | 
| 1756 | 
            +
            			{
         | 
| 1757 | 
            +
            				p=1.0/(1.0+exp(fApB));
         | 
| 1758 | 
            +
            				q=exp(fApB)/(1.0+exp(fApB));
         | 
| 1759 | 
            +
            			}
         | 
| 1760 | 
            +
            			d2=p*q;
         | 
| 1761 | 
            +
            			h11+=dec_values[i]*dec_values[i]*d2;
         | 
| 1762 | 
            +
            			h22+=d2;
         | 
| 1763 | 
            +
            			h21+=dec_values[i]*d2;
         | 
| 1764 | 
            +
            			d1=t[i]-p;
         | 
| 1765 | 
            +
            			g1+=dec_values[i]*d1;
         | 
| 1766 | 
            +
            			g2+=d1;
         | 
| 1767 | 
            +
            		}
         | 
| 1768 | 
            +
             | 
| 1769 | 
            +
            		// Stopping Criteria
         | 
| 1770 | 
            +
            		if (fabs(g1)<eps && fabs(g2)<eps)
         | 
| 1771 | 
            +
            			break;
         | 
| 1772 | 
            +
             | 
| 1773 | 
            +
            		// Finding Newton direction: -inv(H') * g
         | 
| 1774 | 
            +
            		det=h11*h22-h21*h21;
         | 
| 1775 | 
            +
            		dA=-(h22*g1 - h21 * g2) / det;
         | 
| 1776 | 
            +
            		dB=-(-h21*g1+ h11 * g2) / det;
         | 
| 1777 | 
            +
            		gd=g1*dA+g2*dB;
         | 
| 1778 | 
            +
             | 
| 1779 | 
            +
             | 
| 1780 | 
            +
            		stepsize = 1;		// Line Search
         | 
| 1781 | 
            +
            		while (stepsize >= min_step)
         | 
| 1782 | 
            +
            		{
         | 
| 1783 | 
            +
            			newA = A + stepsize * dA;
         | 
| 1784 | 
            +
            			newB = B + stepsize * dB;
         | 
| 1785 | 
            +
             | 
| 1786 | 
            +
            			// New function value
         | 
| 1787 | 
            +
            			newf = 0.0;
         | 
| 1788 | 
            +
            			for (i=0;i<l;i++)
         | 
| 1789 | 
            +
            			{
         | 
| 1790 | 
            +
            				fApB = dec_values[i]*newA+newB;
         | 
| 1791 | 
            +
            				if (fApB >= 0)
         | 
| 1792 | 
            +
            					newf += t[i]*fApB + log(1+exp(-fApB));
         | 
| 1793 | 
            +
            				else
         | 
| 1794 | 
            +
            					newf += (t[i] - 1)*fApB +log(1+exp(fApB));
         | 
| 1795 | 
            +
            			}
         | 
| 1796 | 
            +
            			// Check sufficient decrease
         | 
| 1797 | 
            +
            			if (newf<fval+0.0001*stepsize*gd)
         | 
| 1798 | 
            +
            			{
         | 
| 1799 | 
            +
            				A=newA;B=newB;fval=newf;
         | 
| 1800 | 
            +
            				break;
         | 
| 1801 | 
            +
            			}
         | 
| 1802 | 
            +
            			else
         | 
| 1803 | 
            +
            				stepsize = stepsize / 2.0;
         | 
| 1804 | 
            +
            		}
         | 
| 1805 | 
            +
             | 
| 1806 | 
            +
            		if (stepsize < min_step)
         | 
| 1807 | 
            +
            		{
         | 
| 1808 | 
            +
            			info("Line search fails in two-class probability estimates\n");
         | 
| 1809 | 
            +
            			break;
         | 
| 1810 | 
            +
            		}
         | 
| 1811 | 
            +
            	}
         | 
| 1812 | 
            +
             | 
| 1813 | 
            +
            	if (iter>=max_iter)
         | 
| 1814 | 
            +
            		info("Reaching maximal iterations in two-class probability estimates\n");
         | 
| 1815 | 
            +
            	free(t);
         | 
| 1816 | 
            +
            }
         | 
| 1817 | 
            +
             | 
| 1818 | 
            +
            static double sigmoid_predict(double decision_value, double A, double B)
         | 
| 1819 | 
            +
            {
         | 
| 1820 | 
            +
            	double fApB = decision_value*A+B;
         | 
| 1821 | 
            +
            	// 1-p used later; avoid catastrophic cancellation
         | 
| 1822 | 
            +
            	if (fApB >= 0)
         | 
| 1823 | 
            +
            		return exp(-fApB)/(1.0+exp(-fApB));
         | 
| 1824 | 
            +
            	else
         | 
| 1825 | 
            +
            		return 1.0/(1+exp(fApB)) ;
         | 
| 1826 | 
            +
            }
         | 
| 1827 | 
            +
             | 
| 1828 | 
            +
            // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
         | 
| 1829 | 
            +
            static void multiclass_probability(int k, double **r, double *p)
         | 
| 1830 | 
            +
            {
         | 
| 1831 | 
            +
            	int t,j;
         | 
| 1832 | 
            +
            	int iter = 0, max_iter=max(100,k);
         | 
| 1833 | 
            +
            	double **Q=Malloc(double *,k);
         | 
| 1834 | 
            +
            	double *Qp=Malloc(double,k);
         | 
| 1835 | 
            +
            	double pQp, eps=0.005/k;
         | 
| 1836 | 
            +
             | 
| 1837 | 
            +
            	for (t=0;t<k;t++)
         | 
| 1838 | 
            +
            	{
         | 
| 1839 | 
            +
            		p[t]=1.0/k;  // Valid if k = 1
         | 
| 1840 | 
            +
            		Q[t]=Malloc(double,k);
         | 
| 1841 | 
            +
            		Q[t][t]=0;
         | 
| 1842 | 
            +
            		for (j=0;j<t;j++)
         | 
| 1843 | 
            +
            		{
         | 
| 1844 | 
            +
            			Q[t][t]+=r[j][t]*r[j][t];
         | 
| 1845 | 
            +
            			Q[t][j]=Q[j][t];
         | 
| 1846 | 
            +
            		}
         | 
| 1847 | 
            +
            		for (j=t+1;j<k;j++)
         | 
| 1848 | 
            +
            		{
         | 
| 1849 | 
            +
            			Q[t][t]+=r[j][t]*r[j][t];
         | 
| 1850 | 
            +
            			Q[t][j]=-r[j][t]*r[t][j];
         | 
| 1851 | 
            +
            		}
         | 
| 1852 | 
            +
            	}
         | 
| 1853 | 
            +
            	for (iter=0;iter<max_iter;iter++)
         | 
| 1854 | 
            +
            	{
         | 
| 1855 | 
            +
            		// stopping condition, recalculate QP,pQP for numerical accuracy
         | 
| 1856 | 
            +
            		pQp=0;
         | 
| 1857 | 
            +
            		for (t=0;t<k;t++)
         | 
| 1858 | 
            +
            		{
         | 
| 1859 | 
            +
            			Qp[t]=0;
         | 
| 1860 | 
            +
            			for (j=0;j<k;j++)
         | 
| 1861 | 
            +
            				Qp[t]+=Q[t][j]*p[j];
         | 
| 1862 | 
            +
            			pQp+=p[t]*Qp[t];
         | 
| 1863 | 
            +
            		}
         | 
| 1864 | 
            +
            		double max_error=0;
         | 
| 1865 | 
            +
            		for (t=0;t<k;t++)
         | 
| 1866 | 
            +
            		{
         | 
| 1867 | 
            +
            			double error=fabs(Qp[t]-pQp);
         | 
| 1868 | 
            +
            			if (error>max_error)
         | 
| 1869 | 
            +
            				max_error=error;
         | 
| 1870 | 
            +
            		}
         | 
| 1871 | 
            +
            		if (max_error<eps) break;
         | 
| 1872 | 
            +
             | 
| 1873 | 
            +
            		for (t=0;t<k;t++)
         | 
| 1874 | 
            +
            		{
         | 
| 1875 | 
            +
            			double diff=(-Qp[t]+pQp)/Q[t][t];
         | 
| 1876 | 
            +
            			p[t]+=diff;
         | 
| 1877 | 
            +
            			pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
         | 
| 1878 | 
            +
            			for (j=0;j<k;j++)
         | 
| 1879 | 
            +
            			{
         | 
| 1880 | 
            +
            				Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
         | 
| 1881 | 
            +
            				p[j]/=(1+diff);
         | 
| 1882 | 
            +
            			}
         | 
| 1883 | 
            +
            		}
         | 
| 1884 | 
            +
            	}
         | 
| 1885 | 
            +
            	if (iter>=max_iter)
         | 
| 1886 | 
            +
            		info("Exceeds max_iter in multiclass_prob\n");
         | 
| 1887 | 
            +
            	for(t=0;t<k;t++) free(Q[t]);
         | 
| 1888 | 
            +
            	free(Q);
         | 
| 1889 | 
            +
            	free(Qp);
         | 
| 1890 | 
            +
            }
         | 
| 1891 | 
            +
             | 
| 1892 | 
            +
            // Cross-validation decision values for probability estimates
         | 
| 1893 | 
            +
            static void svm_binary_svc_probability(
         | 
| 1894 | 
            +
            	const svm_problem *prob, const svm_parameter *param,
         | 
| 1895 | 
            +
            	double Cp, double Cn, double& probA, double& probB)
         | 
| 1896 | 
            +
            {
         | 
| 1897 | 
            +
            	int i;
         | 
| 1898 | 
            +
            	int nr_fold = 5;
         | 
| 1899 | 
            +
            	int *perm = Malloc(int,prob->l);
         | 
| 1900 | 
            +
            	double *dec_values = Malloc(double,prob->l);
         | 
| 1901 | 
            +
             | 
| 1902 | 
            +
            	// random shuffle
         | 
| 1903 | 
            +
            	for(i=0;i<prob->l;i++) perm[i]=i;
         | 
| 1904 | 
            +
            	for(i=0;i<prob->l;i++)
         | 
| 1905 | 
            +
            	{
         | 
| 1906 | 
            +
            		int j = i+rand()%(prob->l-i);
         | 
| 1907 | 
            +
            		swap(perm[i],perm[j]);
         | 
| 1908 | 
            +
            	}
         | 
| 1909 | 
            +
            	for(i=0;i<nr_fold;i++)
         | 
| 1910 | 
            +
            	{
         | 
| 1911 | 
            +
            		int begin = i*prob->l/nr_fold;
         | 
| 1912 | 
            +
            		int end = (i+1)*prob->l/nr_fold;
         | 
| 1913 | 
            +
            		int j,k;
         | 
| 1914 | 
            +
            		struct svm_problem subprob;
         | 
| 1915 | 
            +
             | 
| 1916 | 
            +
            		subprob.l = prob->l-(end-begin);
         | 
| 1917 | 
            +
            		subprob.x = Malloc(struct svm_node*,subprob.l);
         | 
| 1918 | 
            +
            		subprob.y = Malloc(double,subprob.l);
         | 
| 1919 | 
            +
             | 
| 1920 | 
            +
            		k=0;
         | 
| 1921 | 
            +
            		for(j=0;j<begin;j++)
         | 
| 1922 | 
            +
            		{
         | 
| 1923 | 
            +
            			subprob.x[k] = prob->x[perm[j]];
         | 
| 1924 | 
            +
            			subprob.y[k] = prob->y[perm[j]];
         | 
| 1925 | 
            +
            			++k;
         | 
| 1926 | 
            +
            		}
         | 
| 1927 | 
            +
            		for(j=end;j<prob->l;j++)
         | 
| 1928 | 
            +
            		{
         | 
| 1929 | 
            +
            			subprob.x[k] = prob->x[perm[j]];
         | 
| 1930 | 
            +
            			subprob.y[k] = prob->y[perm[j]];
         | 
| 1931 | 
            +
            			++k;
         | 
| 1932 | 
            +
            		}
         | 
| 1933 | 
            +
            		int p_count=0,n_count=0;
         | 
| 1934 | 
            +
            		for(j=0;j<k;j++)
         | 
| 1935 | 
            +
            			if(subprob.y[j]>0)
         | 
| 1936 | 
            +
            				p_count++;
         | 
| 1937 | 
            +
            			else
         | 
| 1938 | 
            +
            				n_count++;
         | 
| 1939 | 
            +
             | 
| 1940 | 
            +
            		if(p_count==0 && n_count==0)
         | 
| 1941 | 
            +
            			for(j=begin;j<end;j++)
         | 
| 1942 | 
            +
            				dec_values[perm[j]] = 0;
         | 
| 1943 | 
            +
            		else if(p_count > 0 && n_count == 0)
         | 
| 1944 | 
            +
            			for(j=begin;j<end;j++)
         | 
| 1945 | 
            +
            				dec_values[perm[j]] = 1;
         | 
| 1946 | 
            +
            		else if(p_count == 0 && n_count > 0)
         | 
| 1947 | 
            +
            			for(j=begin;j<end;j++)
         | 
| 1948 | 
            +
            				dec_values[perm[j]] = -1;
         | 
| 1949 | 
            +
            		else
         | 
| 1950 | 
            +
            		{
         | 
| 1951 | 
            +
            			svm_parameter subparam = *param;
         | 
| 1952 | 
            +
            			subparam.probability=0;
         | 
| 1953 | 
            +
            			subparam.C=1.0;
         | 
| 1954 | 
            +
            			subparam.nr_weight=2;
         | 
| 1955 | 
            +
            			subparam.weight_label = Malloc(int,2);
         | 
| 1956 | 
            +
            			subparam.weight = Malloc(double,2);
         | 
| 1957 | 
            +
            			subparam.weight_label[0]=+1;
         | 
| 1958 | 
            +
            			subparam.weight_label[1]=-1;
         | 
| 1959 | 
            +
            			subparam.weight[0]=Cp;
         | 
| 1960 | 
            +
            			subparam.weight[1]=Cn;
         | 
| 1961 | 
            +
            			struct svm_model *submodel = svm_train(&subprob,&subparam);
         | 
| 1962 | 
            +
            			for(j=begin;j<end;j++)
         | 
| 1963 | 
            +
            			{
         | 
| 1964 | 
            +
            				svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]]));
         | 
| 1965 | 
            +
            				// ensure +1 -1 order; reason not using CV subroutine
         | 
| 1966 | 
            +
            				dec_values[perm[j]] *= submodel->label[0];
         | 
| 1967 | 
            +
            			}
         | 
| 1968 | 
            +
            			svm_free_and_destroy_model(&submodel);
         | 
| 1969 | 
            +
            			svm_destroy_param(&subparam);
         | 
| 1970 | 
            +
            		}
         | 
| 1971 | 
            +
            		free(subprob.x);
         | 
| 1972 | 
            +
            		free(subprob.y);
         | 
| 1973 | 
            +
            	}
         | 
| 1974 | 
            +
            	sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
         | 
| 1975 | 
            +
            	free(dec_values);
         | 
| 1976 | 
            +
            	free(perm);
         | 
| 1977 | 
            +
            }
         | 
| 1978 | 
            +
             | 
| 1979 | 
            +
            // Return parameter of a Laplace distribution
         | 
| 1980 | 
            +
            static double svm_svr_probability(
         | 
| 1981 | 
            +
            	const svm_problem *prob, const svm_parameter *param)
         | 
| 1982 | 
            +
            {
         | 
| 1983 | 
            +
            	int i;
         | 
| 1984 | 
            +
            	int nr_fold = 5;
         | 
| 1985 | 
            +
            	double *ymv = Malloc(double,prob->l);
         | 
| 1986 | 
            +
            	double mae = 0;
         | 
| 1987 | 
            +
             | 
| 1988 | 
            +
            	svm_parameter newparam = *param;
         | 
| 1989 | 
            +
            	newparam.probability = 0;
         | 
| 1990 | 
            +
            	svm_cross_validation(prob,&newparam,nr_fold,ymv);
         | 
| 1991 | 
            +
            	for(i=0;i<prob->l;i++)
         | 
| 1992 | 
            +
            	{
         | 
| 1993 | 
            +
            		ymv[i]=prob->y[i]-ymv[i];
         | 
| 1994 | 
            +
            		mae += fabs(ymv[i]);
         | 
| 1995 | 
            +
            	}
         | 
| 1996 | 
            +
            	mae /= prob->l;
         | 
| 1997 | 
            +
            	double std=sqrt(2*mae*mae);
         | 
| 1998 | 
            +
            	int count=0;
         | 
| 1999 | 
            +
            	mae=0;
         | 
| 2000 | 
            +
            	for(i=0;i<prob->l;i++)
         | 
| 2001 | 
            +
            		if (fabs(ymv[i]) > 5*std)
         | 
| 2002 | 
            +
            			count=count+1;
         | 
| 2003 | 
            +
            		else
         | 
| 2004 | 
            +
            			mae+=fabs(ymv[i]);
         | 
| 2005 | 
            +
            	mae /= (prob->l-count);
         | 
| 2006 | 
            +
            	info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
         | 
| 2007 | 
            +
            	free(ymv);
         | 
| 2008 | 
            +
            	return mae;
         | 
| 2009 | 
            +
            }
         | 
| 2010 | 
            +
             | 
| 2011 | 
            +
             | 
| 2012 | 
            +
            // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
         | 
| 2013 | 
            +
            // perm, length l, must be allocated before calling this subroutine
         | 
| 2014 | 
            +
            static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
         | 
| 2015 | 
            +
            {
         | 
| 2016 | 
            +
            	int l = prob->l;
         | 
| 2017 | 
            +
            	int max_nr_class = 16;
         | 
| 2018 | 
            +
            	int nr_class = 0;
         | 
| 2019 | 
            +
            	int *label = Malloc(int,max_nr_class);
         | 
| 2020 | 
            +
            	int *count = Malloc(int,max_nr_class);
         | 
| 2021 | 
            +
            	int *data_label = Malloc(int,l);
         | 
| 2022 | 
            +
            	int i;
         | 
| 2023 | 
            +
             | 
| 2024 | 
            +
            	for(i=0;i<l;i++)
         | 
| 2025 | 
            +
            	{
         | 
| 2026 | 
            +
            		int this_label = (int)prob->y[i];
         | 
| 2027 | 
            +
            		int j;
         | 
| 2028 | 
            +
            		for(j=0;j<nr_class;j++)
         | 
| 2029 | 
            +
            		{
         | 
| 2030 | 
            +
            			if(this_label == label[j])
         | 
| 2031 | 
            +
            			{
         | 
| 2032 | 
            +
            				++count[j];
         | 
| 2033 | 
            +
            				break;
         | 
| 2034 | 
            +
            			}
         | 
| 2035 | 
            +
            		}
         | 
| 2036 | 
            +
            		data_label[i] = j;
         | 
| 2037 | 
            +
            		if(j == nr_class)
         | 
| 2038 | 
            +
            		{
         | 
| 2039 | 
            +
            			if(nr_class == max_nr_class)
         | 
| 2040 | 
            +
            			{
         | 
| 2041 | 
            +
            				max_nr_class *= 2;
         | 
| 2042 | 
            +
            				label = (int *)realloc(label,max_nr_class*sizeof(int));
         | 
| 2043 | 
            +
            				count = (int *)realloc(count,max_nr_class*sizeof(int));
         | 
| 2044 | 
            +
            			}
         | 
| 2045 | 
            +
            			label[nr_class] = this_label;
         | 
| 2046 | 
            +
            			count[nr_class] = 1;
         | 
| 2047 | 
            +
            			++nr_class;
         | 
| 2048 | 
            +
            		}
         | 
| 2049 | 
            +
            	}
         | 
| 2050 | 
            +
             | 
| 2051 | 
            +
            	//
         | 
| 2052 | 
            +
            	// Labels are ordered by their first occurrence in the training set.
         | 
| 2053 | 
            +
            	// However, for two-class sets with -1/+1 labels and -1 appears first,
         | 
| 2054 | 
            +
            	// we swap labels to ensure that internally the binary SVM has positive data corresponding to the +1 instances.
         | 
| 2055 | 
            +
            	//
         | 
| 2056 | 
            +
            	if (nr_class == 2 && label[0] == -1 && label[1] == 1)
         | 
| 2057 | 
            +
            	{
         | 
| 2058 | 
            +
            		swap(label[0],label[1]);
         | 
| 2059 | 
            +
            		swap(count[0],count[1]);
         | 
| 2060 | 
            +
            		for(i=0;i<l;i++)
         | 
| 2061 | 
            +
            		{
         | 
| 2062 | 
            +
            			if(data_label[i] == 0)
         | 
| 2063 | 
            +
            				data_label[i] = 1;
         | 
| 2064 | 
            +
            			else
         | 
| 2065 | 
            +
            				data_label[i] = 0;
         | 
| 2066 | 
            +
            		}
         | 
| 2067 | 
            +
            	}
         | 
| 2068 | 
            +
             | 
| 2069 | 
            +
            	int *start = Malloc(int,nr_class);
         | 
| 2070 | 
            +
            	start[0] = 0;
         | 
| 2071 | 
            +
            	for(i=1;i<nr_class;i++)
         | 
| 2072 | 
            +
            		start[i] = start[i-1]+count[i-1];
         | 
| 2073 | 
            +
            	for(i=0;i<l;i++)
         | 
| 2074 | 
            +
            	{
         | 
| 2075 | 
            +
            		perm[start[data_label[i]]] = i;
         | 
| 2076 | 
            +
            		++start[data_label[i]];
         | 
| 2077 | 
            +
            	}
         | 
| 2078 | 
            +
            	start[0] = 0;
         | 
| 2079 | 
            +
            	for(i=1;i<nr_class;i++)
         | 
| 2080 | 
            +
            		start[i] = start[i-1]+count[i-1];
         | 
| 2081 | 
            +
             | 
| 2082 | 
            +
            	*nr_class_ret = nr_class;
         | 
| 2083 | 
            +
            	*label_ret = label;
         | 
| 2084 | 
            +
            	*start_ret = start;
         | 
| 2085 | 
            +
            	*count_ret = count;
         | 
| 2086 | 
            +
            	free(data_label);
         | 
| 2087 | 
            +
            }
         | 
| 2088 | 
            +
             | 
| 2089 | 
            +
            //
         | 
| 2090 | 
            +
            // Interface functions
         | 
| 2091 | 
            +
            //
         | 
| 2092 | 
            +
            svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
         | 
| 2093 | 
            +
            {
         | 
| 2094 | 
            +
            	svm_model *model = Malloc(svm_model,1);
         | 
| 2095 | 
            +
            	model->param = *param;
         | 
| 2096 | 
            +
            	model->free_sv = 0;	// XXX
         | 
| 2097 | 
            +
             | 
| 2098 | 
            +
            	if(param->svm_type == ONE_CLASS ||
         | 
| 2099 | 
            +
            	   param->svm_type == EPSILON_SVR ||
         | 
| 2100 | 
            +
            	   param->svm_type == NU_SVR)
         | 
| 2101 | 
            +
            	{
         | 
| 2102 | 
            +
            		// regression or one-class-svm
         | 
| 2103 | 
            +
            		model->nr_class = 2;
         | 
| 2104 | 
            +
            		model->label = NULL;
         | 
| 2105 | 
            +
            		model->nSV = NULL;
         | 
| 2106 | 
            +
            		model->probA = NULL; model->probB = NULL;
         | 
| 2107 | 
            +
            		model->sv_coef = Malloc(double *,1);
         | 
| 2108 | 
            +
             | 
| 2109 | 
            +
            		if(param->probability &&
         | 
| 2110 | 
            +
            		   (param->svm_type == EPSILON_SVR ||
         | 
| 2111 | 
            +
            		    param->svm_type == NU_SVR))
         | 
| 2112 | 
            +
            		{
         | 
| 2113 | 
            +
            			model->probA = Malloc(double,1);
         | 
| 2114 | 
            +
            			model->probA[0] = svm_svr_probability(prob,param);
         | 
| 2115 | 
            +
            		}
         | 
| 2116 | 
            +
             | 
| 2117 | 
            +
            		decision_function f = svm_train_one(prob,param,0,0);
         | 
| 2118 | 
            +
            		model->rho = Malloc(double,1);
         | 
| 2119 | 
            +
            		model->rho[0] = f.rho;
         | 
| 2120 | 
            +
             | 
| 2121 | 
            +
            		int nSV = 0;
         | 
| 2122 | 
            +
            		int i;
         | 
| 2123 | 
            +
            		for(i=0;i<prob->l;i++)
         | 
| 2124 | 
            +
            			if(fabs(f.alpha[i]) > 0) ++nSV;
         | 
| 2125 | 
            +
            		model->l = nSV;
         | 
| 2126 | 
            +
            		model->SV = Malloc(svm_node *,nSV);
         | 
| 2127 | 
            +
            		model->sv_coef[0] = Malloc(double,nSV);
         | 
| 2128 | 
            +
            		model->sv_indices = Malloc(int,nSV);
         | 
| 2129 | 
            +
            		int j = 0;
         | 
| 2130 | 
            +
            		for(i=0;i<prob->l;i++)
         | 
| 2131 | 
            +
            			if(fabs(f.alpha[i]) > 0)
         | 
| 2132 | 
            +
            			{
         | 
| 2133 | 
            +
            				model->SV[j] = prob->x[i];
         | 
| 2134 | 
            +
            				model->sv_coef[0][j] = f.alpha[i];
         | 
| 2135 | 
            +
            				model->sv_indices[j] = i+1;
         | 
| 2136 | 
            +
            				++j;
         | 
| 2137 | 
            +
            			}
         | 
| 2138 | 
            +
             | 
| 2139 | 
            +
            		free(f.alpha);
         | 
| 2140 | 
            +
            	}
         | 
| 2141 | 
            +
            	else
         | 
| 2142 | 
            +
            	{
         | 
| 2143 | 
            +
            		// classification
         | 
| 2144 | 
            +
            		int l = prob->l;
         | 
| 2145 | 
            +
            		int nr_class;
         | 
| 2146 | 
            +
            		int *label = NULL;
         | 
| 2147 | 
            +
            		int *start = NULL;
         | 
| 2148 | 
            +
            		int *count = NULL;
         | 
| 2149 | 
            +
            		int *perm = Malloc(int,l);
         | 
| 2150 | 
            +
             | 
| 2151 | 
            +
            		// group training data of the same class
         | 
| 2152 | 
            +
            		svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
         | 
| 2153 | 
            +
            		if(nr_class == 1)
         | 
| 2154 | 
            +
            			info("WARNING: training data in only one class. See README for details.\n");
         | 
| 2155 | 
            +
             | 
| 2156 | 
            +
            		svm_node **x = Malloc(svm_node *,l);
         | 
| 2157 | 
            +
            		int i;
         | 
| 2158 | 
            +
            		for(i=0;i<l;i++)
         | 
| 2159 | 
            +
            			x[i] = prob->x[perm[i]];
         | 
| 2160 | 
            +
             | 
| 2161 | 
            +
            		// calculate weighted C
         | 
| 2162 | 
            +
             | 
| 2163 | 
            +
            		double *weighted_C = Malloc(double, nr_class);
         | 
| 2164 | 
            +
            		for(i=0;i<nr_class;i++)
         | 
| 2165 | 
            +
            			weighted_C[i] = param->C;
         | 
| 2166 | 
            +
            		for(i=0;i<param->nr_weight;i++)
         | 
| 2167 | 
            +
            		{
         | 
| 2168 | 
            +
            			int j;
         | 
| 2169 | 
            +
            			for(j=0;j<nr_class;j++)
         | 
| 2170 | 
            +
            				if(param->weight_label[i] == label[j])
         | 
| 2171 | 
            +
            					break;
         | 
| 2172 | 
            +
            			if(j == nr_class)
         | 
| 2173 | 
            +
            				fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
         | 
| 2174 | 
            +
            			else
         | 
| 2175 | 
            +
            				weighted_C[j] *= param->weight[i];
         | 
| 2176 | 
            +
            		}
         | 
| 2177 | 
            +
             | 
| 2178 | 
            +
            		// train k*(k-1)/2 models
         | 
| 2179 | 
            +
             | 
| 2180 | 
            +
            		bool *nonzero = Malloc(bool,l);
         | 
| 2181 | 
            +
            		for(i=0;i<l;i++)
         | 
| 2182 | 
            +
            			nonzero[i] = false;
         | 
| 2183 | 
            +
            		decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
         | 
| 2184 | 
            +
             | 
| 2185 | 
            +
            		double *probA=NULL,*probB=NULL;
         | 
| 2186 | 
            +
            		if (param->probability)
         | 
| 2187 | 
            +
            		{
         | 
| 2188 | 
            +
            			probA=Malloc(double,nr_class*(nr_class-1)/2);
         | 
| 2189 | 
            +
            			probB=Malloc(double,nr_class*(nr_class-1)/2);
         | 
| 2190 | 
            +
            		}
         | 
| 2191 | 
            +
             | 
| 2192 | 
            +
            		int p = 0;
         | 
| 2193 | 
            +
            		for(i=0;i<nr_class;i++)
         | 
| 2194 | 
            +
            			for(int j=i+1;j<nr_class;j++)
         | 
| 2195 | 
            +
            			{
         | 
| 2196 | 
            +
            				svm_problem sub_prob;
         | 
| 2197 | 
            +
            				int si = start[i], sj = start[j];
         | 
| 2198 | 
            +
            				int ci = count[i], cj = count[j];
         | 
| 2199 | 
            +
            				sub_prob.l = ci+cj;
         | 
| 2200 | 
            +
            				sub_prob.x = Malloc(svm_node *,sub_prob.l);
         | 
| 2201 | 
            +
            				sub_prob.y = Malloc(double,sub_prob.l);
         | 
| 2202 | 
            +
            				int k;
         | 
| 2203 | 
            +
            				for(k=0;k<ci;k++)
         | 
| 2204 | 
            +
            				{
         | 
| 2205 | 
            +
            					sub_prob.x[k] = x[si+k];
         | 
| 2206 | 
            +
            					sub_prob.y[k] = +1;
         | 
| 2207 | 
            +
            				}
         | 
| 2208 | 
            +
            				for(k=0;k<cj;k++)
         | 
| 2209 | 
            +
            				{
         | 
| 2210 | 
            +
            					sub_prob.x[ci+k] = x[sj+k];
         | 
| 2211 | 
            +
            					sub_prob.y[ci+k] = -1;
         | 
| 2212 | 
            +
            				}
         | 
| 2213 | 
            +
             | 
| 2214 | 
            +
            				if(param->probability)
         | 
| 2215 | 
            +
            					svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
         | 
| 2216 | 
            +
             | 
| 2217 | 
            +
            				f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
         | 
| 2218 | 
            +
            				for(k=0;k<ci;k++)
         | 
| 2219 | 
            +
            					if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
         | 
| 2220 | 
            +
            						nonzero[si+k] = true;
         | 
| 2221 | 
            +
            				for(k=0;k<cj;k++)
         | 
| 2222 | 
            +
            					if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
         | 
| 2223 | 
            +
            						nonzero[sj+k] = true;
         | 
| 2224 | 
            +
            				free(sub_prob.x);
         | 
| 2225 | 
            +
            				free(sub_prob.y);
         | 
| 2226 | 
            +
            				++p;
         | 
| 2227 | 
            +
            			}
         | 
| 2228 | 
            +
             | 
| 2229 | 
            +
            		// build output
         | 
| 2230 | 
            +
             | 
| 2231 | 
            +
            		model->nr_class = nr_class;
         | 
| 2232 | 
            +
             | 
| 2233 | 
            +
            		model->label = Malloc(int,nr_class);
         | 
| 2234 | 
            +
            		for(i=0;i<nr_class;i++)
         | 
| 2235 | 
            +
            			model->label[i] = label[i];
         | 
| 2236 | 
            +
             | 
| 2237 | 
            +
            		model->rho = Malloc(double,nr_class*(nr_class-1)/2);
         | 
| 2238 | 
            +
            		for(i=0;i<nr_class*(nr_class-1)/2;i++)
         | 
| 2239 | 
            +
            			model->rho[i] = f[i].rho;
         | 
| 2240 | 
            +
             | 
| 2241 | 
            +
            		if(param->probability)
         | 
| 2242 | 
            +
            		{
         | 
| 2243 | 
            +
            			model->probA = Malloc(double,nr_class*(nr_class-1)/2);
         | 
| 2244 | 
            +
            			model->probB = Malloc(double,nr_class*(nr_class-1)/2);
         | 
| 2245 | 
            +
            			for(i=0;i<nr_class*(nr_class-1)/2;i++)
         | 
| 2246 | 
            +
            			{
         | 
| 2247 | 
            +
            				model->probA[i] = probA[i];
         | 
| 2248 | 
            +
            				model->probB[i] = probB[i];
         | 
| 2249 | 
            +
            			}
         | 
| 2250 | 
            +
            		}
         | 
| 2251 | 
            +
            		else
         | 
| 2252 | 
            +
            		{
         | 
| 2253 | 
            +
            			model->probA=NULL;
         | 
| 2254 | 
            +
            			model->probB=NULL;
         | 
| 2255 | 
            +
            		}
         | 
| 2256 | 
            +
             | 
| 2257 | 
            +
            		int total_sv = 0;
         | 
| 2258 | 
            +
            		int *nz_count = Malloc(int,nr_class);
         | 
| 2259 | 
            +
            		model->nSV = Malloc(int,nr_class);
         | 
| 2260 | 
            +
            		for(i=0;i<nr_class;i++)
         | 
| 2261 | 
            +
            		{
         | 
| 2262 | 
            +
            			int nSV = 0;
         | 
| 2263 | 
            +
            			for(int j=0;j<count[i];j++)
         | 
| 2264 | 
            +
            				if(nonzero[start[i]+j])
         | 
| 2265 | 
            +
            				{
         | 
| 2266 | 
            +
            					++nSV;
         | 
| 2267 | 
            +
            					++total_sv;
         | 
| 2268 | 
            +
            				}
         | 
| 2269 | 
            +
            			model->nSV[i] = nSV;
         | 
| 2270 | 
            +
            			nz_count[i] = nSV;
         | 
| 2271 | 
            +
            		}
         | 
| 2272 | 
            +
             | 
| 2273 | 
            +
            		info("Total nSV = %d\n",total_sv);
         | 
| 2274 | 
            +
             | 
| 2275 | 
            +
            		model->l = total_sv;
         | 
| 2276 | 
            +
            		model->SV = Malloc(svm_node *,total_sv);
         | 
| 2277 | 
            +
            		model->sv_indices = Malloc(int,total_sv);
         | 
| 2278 | 
            +
            		p = 0;
         | 
| 2279 | 
            +
            		for(i=0;i<l;i++)
         | 
| 2280 | 
            +
            			if(nonzero[i])
         | 
| 2281 | 
            +
            			{
         | 
| 2282 | 
            +
            				model->SV[p] = x[i];
         | 
| 2283 | 
            +
            				model->sv_indices[p++] = perm[i] + 1;
         | 
| 2284 | 
            +
            			}
         | 
| 2285 | 
            +
             | 
| 2286 | 
            +
            		int *nz_start = Malloc(int,nr_class);
         | 
| 2287 | 
            +
            		nz_start[0] = 0;
         | 
| 2288 | 
            +
            		for(i=1;i<nr_class;i++)
         | 
| 2289 | 
            +
            			nz_start[i] = nz_start[i-1]+nz_count[i-1];
         | 
| 2290 | 
            +
             | 
| 2291 | 
            +
            		model->sv_coef = Malloc(double *,nr_class-1);
         | 
| 2292 | 
            +
            		for(i=0;i<nr_class-1;i++)
         | 
| 2293 | 
            +
            			model->sv_coef[i] = Malloc(double,total_sv);
         | 
| 2294 | 
            +
             | 
| 2295 | 
            +
            		p = 0;
         | 
| 2296 | 
            +
            		for(i=0;i<nr_class;i++)
         | 
| 2297 | 
            +
            			for(int j=i+1;j<nr_class;j++)
         | 
| 2298 | 
            +
            			{
         | 
| 2299 | 
            +
            				// classifier (i,j): coefficients with
         | 
| 2300 | 
            +
            				// i are in sv_coef[j-1][nz_start[i]...],
         | 
| 2301 | 
            +
            				// j are in sv_coef[i][nz_start[j]...]
         | 
| 2302 | 
            +
             | 
| 2303 | 
            +
            				int si = start[i];
         | 
| 2304 | 
            +
            				int sj = start[j];
         | 
| 2305 | 
            +
            				int ci = count[i];
         | 
| 2306 | 
            +
            				int cj = count[j];
         | 
| 2307 | 
            +
             | 
| 2308 | 
            +
            				int q = nz_start[i];
         | 
| 2309 | 
            +
            				int k;
         | 
| 2310 | 
            +
            				for(k=0;k<ci;k++)
         | 
| 2311 | 
            +
            					if(nonzero[si+k])
         | 
| 2312 | 
            +
            						model->sv_coef[j-1][q++] = f[p].alpha[k];
         | 
| 2313 | 
            +
            				q = nz_start[j];
         | 
| 2314 | 
            +
            				for(k=0;k<cj;k++)
         | 
| 2315 | 
            +
            					if(nonzero[sj+k])
         | 
| 2316 | 
            +
            						model->sv_coef[i][q++] = f[p].alpha[ci+k];
         | 
| 2317 | 
            +
            				++p;
         | 
| 2318 | 
            +
            			}
         | 
| 2319 | 
            +
             | 
| 2320 | 
            +
            		free(label);
         | 
| 2321 | 
            +
            		free(probA);
         | 
| 2322 | 
            +
            		free(probB);
         | 
| 2323 | 
            +
            		free(count);
         | 
| 2324 | 
            +
            		free(perm);
         | 
| 2325 | 
            +
            		free(start);
         | 
| 2326 | 
            +
            		free(x);
         | 
| 2327 | 
            +
            		free(weighted_C);
         | 
| 2328 | 
            +
            		free(nonzero);
         | 
| 2329 | 
            +
            		for(i=0;i<nr_class*(nr_class-1)/2;i++)
         | 
| 2330 | 
            +
            			free(f[i].alpha);
         | 
| 2331 | 
            +
            		free(f);
         | 
| 2332 | 
            +
            		free(nz_count);
         | 
| 2333 | 
            +
            		free(nz_start);
         | 
| 2334 | 
            +
            	}
         | 
| 2335 | 
            +
            	return model;
         | 
| 2336 | 
            +
            }
         | 
| 2337 | 
            +
             | 
| 2338 | 
            +
            // Stratified cross validation
         | 
| 2339 | 
            +
            void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
         | 
| 2340 | 
            +
            {
         | 
| 2341 | 
            +
            	int i;
         | 
| 2342 | 
            +
            	int *fold_start;
         | 
| 2343 | 
            +
            	int l = prob->l;
         | 
| 2344 | 
            +
            	int *perm = Malloc(int,l);
         | 
| 2345 | 
            +
            	int nr_class;
         | 
| 2346 | 
            +
            	if (nr_fold > l)
         | 
| 2347 | 
            +
            	{
         | 
| 2348 | 
            +
            		nr_fold = l;
         | 
| 2349 | 
            +
            		fprintf(stderr,"WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
         | 
| 2350 | 
            +
            	}
         | 
| 2351 | 
            +
            	fold_start = Malloc(int,nr_fold+1);
         | 
| 2352 | 
            +
            	// stratified cv may not give leave-one-out rate
         | 
| 2353 | 
            +
            	// Each class to l folds -> some folds may have zero elements
         | 
| 2354 | 
            +
            	if((param->svm_type == C_SVC ||
         | 
| 2355 | 
            +
            	    param->svm_type == NU_SVC) && nr_fold < l)
         | 
| 2356 | 
            +
            	{
         | 
| 2357 | 
            +
            		int *start = NULL;
         | 
| 2358 | 
            +
            		int *label = NULL;
         | 
| 2359 | 
            +
            		int *count = NULL;
         | 
| 2360 | 
            +
            		svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
         | 
| 2361 | 
            +
             | 
| 2362 | 
            +
            		// random shuffle and then data grouped by fold using the array perm
         | 
| 2363 | 
            +
            		int *fold_count = Malloc(int,nr_fold);
         | 
| 2364 | 
            +
            		int c;
         | 
| 2365 | 
            +
            		int *index = Malloc(int,l);
         | 
| 2366 | 
            +
            		for(i=0;i<l;i++)
         | 
| 2367 | 
            +
            			index[i]=perm[i];
         | 
| 2368 | 
            +
            		for (c=0; c<nr_class; c++)
         | 
| 2369 | 
            +
            			for(i=0;i<count[c];i++)
         | 
| 2370 | 
            +
            			{
         | 
| 2371 | 
            +
            				int j = i+rand()%(count[c]-i);
         | 
| 2372 | 
            +
            				swap(index[start[c]+j],index[start[c]+i]);
         | 
| 2373 | 
            +
            			}
         | 
| 2374 | 
            +
            		for(i=0;i<nr_fold;i++)
         | 
| 2375 | 
            +
            		{
         | 
| 2376 | 
            +
            			fold_count[i] = 0;
         | 
| 2377 | 
            +
            			for (c=0; c<nr_class;c++)
         | 
| 2378 | 
            +
            				fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
         | 
| 2379 | 
            +
            		}
         | 
| 2380 | 
            +
            		fold_start[0]=0;
         | 
| 2381 | 
            +
            		for (i=1;i<=nr_fold;i++)
         | 
| 2382 | 
            +
            			fold_start[i] = fold_start[i-1]+fold_count[i-1];
         | 
| 2383 | 
            +
            		for (c=0; c<nr_class;c++)
         | 
| 2384 | 
            +
            			for(i=0;i<nr_fold;i++)
         | 
| 2385 | 
            +
            			{
         | 
| 2386 | 
            +
            				int begin = start[c]+i*count[c]/nr_fold;
         | 
| 2387 | 
            +
            				int end = start[c]+(i+1)*count[c]/nr_fold;
         | 
| 2388 | 
            +
            				for(int j=begin;j<end;j++)
         | 
| 2389 | 
            +
            				{
         | 
| 2390 | 
            +
            					perm[fold_start[i]] = index[j];
         | 
| 2391 | 
            +
            					fold_start[i]++;
         | 
| 2392 | 
            +
            				}
         | 
| 2393 | 
            +
            			}
         | 
| 2394 | 
            +
            		fold_start[0]=0;
         | 
| 2395 | 
            +
            		for (i=1;i<=nr_fold;i++)
         | 
| 2396 | 
            +
            			fold_start[i] = fold_start[i-1]+fold_count[i-1];
         | 
| 2397 | 
            +
            		free(start);
         | 
| 2398 | 
            +
            		free(label);
         | 
| 2399 | 
            +
            		free(count);
         | 
| 2400 | 
            +
            		free(index);
         | 
| 2401 | 
            +
            		free(fold_count);
         | 
| 2402 | 
            +
            	}
         | 
| 2403 | 
            +
            	else
         | 
| 2404 | 
            +
            	{
         | 
| 2405 | 
            +
            		for(i=0;i<l;i++) perm[i]=i;
         | 
| 2406 | 
            +
            		for(i=0;i<l;i++)
         | 
| 2407 | 
            +
            		{
         | 
| 2408 | 
            +
            			int j = i+rand()%(l-i);
         | 
| 2409 | 
            +
            			swap(perm[i],perm[j]);
         | 
| 2410 | 
            +
            		}
         | 
| 2411 | 
            +
            		for(i=0;i<=nr_fold;i++)
         | 
| 2412 | 
            +
            			fold_start[i]=i*l/nr_fold;
         | 
| 2413 | 
            +
            	}
         | 
| 2414 | 
            +
             | 
| 2415 | 
            +
            	for(i=0;i<nr_fold;i++)
         | 
| 2416 | 
            +
            	{
         | 
| 2417 | 
            +
            		int begin = fold_start[i];
         | 
| 2418 | 
            +
            		int end = fold_start[i+1];
         | 
| 2419 | 
            +
            		int j,k;
         | 
| 2420 | 
            +
            		struct svm_problem subprob;
         | 
| 2421 | 
            +
             | 
| 2422 | 
            +
            		subprob.l = l-(end-begin);
         | 
| 2423 | 
            +
            		subprob.x = Malloc(struct svm_node*,subprob.l);
         | 
| 2424 | 
            +
            		subprob.y = Malloc(double,subprob.l);
         | 
| 2425 | 
            +
             | 
| 2426 | 
            +
            		k=0;
         | 
| 2427 | 
            +
            		for(j=0;j<begin;j++)
         | 
| 2428 | 
            +
            		{
         | 
| 2429 | 
            +
            			subprob.x[k] = prob->x[perm[j]];
         | 
| 2430 | 
            +
            			subprob.y[k] = prob->y[perm[j]];
         | 
| 2431 | 
            +
            			++k;
         | 
| 2432 | 
            +
            		}
         | 
| 2433 | 
            +
            		for(j=end;j<l;j++)
         | 
| 2434 | 
            +
            		{
         | 
| 2435 | 
            +
            			subprob.x[k] = prob->x[perm[j]];
         | 
| 2436 | 
            +
            			subprob.y[k] = prob->y[perm[j]];
         | 
| 2437 | 
            +
            			++k;
         | 
| 2438 | 
            +
            		}
         | 
| 2439 | 
            +
            		struct svm_model *submodel = svm_train(&subprob,param);
         | 
| 2440 | 
            +
            		if(param->probability &&
         | 
| 2441 | 
            +
            		   (param->svm_type == C_SVC || param->svm_type == NU_SVC))
         | 
| 2442 | 
            +
            		{
         | 
| 2443 | 
            +
            			double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
         | 
| 2444 | 
            +
            			for(j=begin;j<end;j++)
         | 
| 2445 | 
            +
            				target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
         | 
| 2446 | 
            +
            			free(prob_estimates);
         | 
| 2447 | 
            +
            		}
         | 
| 2448 | 
            +
            		else
         | 
| 2449 | 
            +
            			for(j=begin;j<end;j++)
         | 
| 2450 | 
            +
            				target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
         | 
| 2451 | 
            +
            		svm_free_and_destroy_model(&submodel);
         | 
| 2452 | 
            +
            		free(subprob.x);
         | 
| 2453 | 
            +
            		free(subprob.y);
         | 
| 2454 | 
            +
            	}
         | 
| 2455 | 
            +
            	free(fold_start);
         | 
| 2456 | 
            +
            	free(perm);
         | 
| 2457 | 
            +
            }
         | 
| 2458 | 
            +
             | 
| 2459 | 
            +
             | 
| 2460 | 
            +
            int svm_get_svm_type(const svm_model *model)
         | 
| 2461 | 
            +
            {
         | 
| 2462 | 
            +
            	return model->param.svm_type;
         | 
| 2463 | 
            +
            }
         | 
| 2464 | 
            +
             | 
| 2465 | 
            +
            int svm_get_nr_class(const svm_model *model)
         | 
| 2466 | 
            +
            {
         | 
| 2467 | 
            +
            	return model->nr_class;
         | 
| 2468 | 
            +
            }
         | 
| 2469 | 
            +
             | 
| 2470 | 
            +
            void svm_get_labels(const svm_model *model, int* label)
         | 
| 2471 | 
            +
            {
         | 
| 2472 | 
            +
            	if (model->label != NULL)
         | 
| 2473 | 
            +
            		for(int i=0;i<model->nr_class;i++)
         | 
| 2474 | 
            +
            			label[i] = model->label[i];
         | 
| 2475 | 
            +
            }
         | 
| 2476 | 
            +
             | 
| 2477 | 
            +
            void svm_get_sv_indices(const svm_model *model, int* indices)
         | 
| 2478 | 
            +
            {
         | 
| 2479 | 
            +
            	if (model->sv_indices != NULL)
         | 
| 2480 | 
            +
            		for(int i=0;i<model->l;i++)
         | 
| 2481 | 
            +
            			indices[i] = model->sv_indices[i];
         | 
| 2482 | 
            +
            }
         | 
| 2483 | 
            +
             | 
| 2484 | 
            +
            int svm_get_nr_sv(const svm_model *model)
         | 
| 2485 | 
            +
            {
         | 
| 2486 | 
            +
            	return model->l;
         | 
| 2487 | 
            +
            }
         | 
| 2488 | 
            +
             | 
| 2489 | 
            +
            double svm_get_svr_probability(const svm_model *model)
         | 
| 2490 | 
            +
            {
         | 
| 2491 | 
            +
            	if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
         | 
| 2492 | 
            +
            	    model->probA!=NULL)
         | 
| 2493 | 
            +
            		return model->probA[0];
         | 
| 2494 | 
            +
            	else
         | 
| 2495 | 
            +
            	{
         | 
| 2496 | 
            +
            		fprintf(stderr,"Model doesn't contain information for SVR probability inference\n");
         | 
| 2497 | 
            +
            		return 0;
         | 
| 2498 | 
            +
            	}
         | 
| 2499 | 
            +
            }
         | 
| 2500 | 
            +
             | 
| 2501 | 
            +
            double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
         | 
| 2502 | 
            +
            {
         | 
| 2503 | 
            +
            	int i;
         | 
| 2504 | 
            +
            	if(model->param.svm_type == ONE_CLASS ||
         | 
| 2505 | 
            +
            	   model->param.svm_type == EPSILON_SVR ||
         | 
| 2506 | 
            +
            	   model->param.svm_type == NU_SVR)
         | 
| 2507 | 
            +
            	{
         | 
| 2508 | 
            +
            		double *sv_coef = model->sv_coef[0];
         | 
| 2509 | 
            +
            		double sum = 0;
         | 
| 2510 | 
            +
            		for(i=0;i<model->l;i++)
         | 
| 2511 | 
            +
            			sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
         | 
| 2512 | 
            +
            		sum -= model->rho[0];
         | 
| 2513 | 
            +
            		*dec_values = sum;
         | 
| 2514 | 
            +
             | 
| 2515 | 
            +
            		if(model->param.svm_type == ONE_CLASS)
         | 
| 2516 | 
            +
            			return (sum>0)?1:-1;
         | 
| 2517 | 
            +
            		else
         | 
| 2518 | 
            +
            			return sum;
         | 
| 2519 | 
            +
            	}
         | 
| 2520 | 
            +
            	else
         | 
| 2521 | 
            +
            	{
         | 
| 2522 | 
            +
            		int nr_class = model->nr_class;
         | 
| 2523 | 
            +
            		int l = model->l;
         | 
| 2524 | 
            +
             | 
| 2525 | 
            +
            		double *kvalue = Malloc(double,l);
         | 
| 2526 | 
            +
            		for(i=0;i<l;i++)
         | 
| 2527 | 
            +
            			kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
         | 
| 2528 | 
            +
             | 
| 2529 | 
            +
            		int *start = Malloc(int,nr_class);
         | 
| 2530 | 
            +
            		start[0] = 0;
         | 
| 2531 | 
            +
            		for(i=1;i<nr_class;i++)
         | 
| 2532 | 
            +
            			start[i] = start[i-1]+model->nSV[i-1];
         | 
| 2533 | 
            +
             | 
| 2534 | 
            +
            		int *vote = Malloc(int,nr_class);
         | 
| 2535 | 
            +
            		for(i=0;i<nr_class;i++)
         | 
| 2536 | 
            +
            			vote[i] = 0;
         | 
| 2537 | 
            +
             | 
| 2538 | 
            +
            		int p=0;
         | 
| 2539 | 
            +
            		for(i=0;i<nr_class;i++)
         | 
| 2540 | 
            +
            			for(int j=i+1;j<nr_class;j++)
         | 
| 2541 | 
            +
            			{
         | 
| 2542 | 
            +
            				double sum = 0;
         | 
| 2543 | 
            +
            				int si = start[i];
         | 
| 2544 | 
            +
            				int sj = start[j];
         | 
| 2545 | 
            +
            				int ci = model->nSV[i];
         | 
| 2546 | 
            +
            				int cj = model->nSV[j];
         | 
| 2547 | 
            +
             | 
| 2548 | 
            +
            				int k;
         | 
| 2549 | 
            +
            				double *coef1 = model->sv_coef[j-1];
         | 
| 2550 | 
            +
            				double *coef2 = model->sv_coef[i];
         | 
| 2551 | 
            +
            				for(k=0;k<ci;k++)
         | 
| 2552 | 
            +
            					sum += coef1[si+k] * kvalue[si+k];
         | 
| 2553 | 
            +
            				for(k=0;k<cj;k++)
         | 
| 2554 | 
            +
            					sum += coef2[sj+k] * kvalue[sj+k];
         | 
| 2555 | 
            +
            				sum -= model->rho[p];
         | 
| 2556 | 
            +
            				dec_values[p] = sum;
         | 
| 2557 | 
            +
             | 
| 2558 | 
            +
            				if(dec_values[p] > 0)
         | 
| 2559 | 
            +
            					++vote[i];
         | 
| 2560 | 
            +
            				else
         | 
| 2561 | 
            +
            					++vote[j];
         | 
| 2562 | 
            +
            				p++;
         | 
| 2563 | 
            +
            			}
         | 
| 2564 | 
            +
             | 
| 2565 | 
            +
            		int vote_max_idx = 0;
         | 
| 2566 | 
            +
            		for(i=1;i<nr_class;i++)
         | 
| 2567 | 
            +
            			if(vote[i] > vote[vote_max_idx])
         | 
| 2568 | 
            +
            				vote_max_idx = i;
         | 
| 2569 | 
            +
             | 
| 2570 | 
            +
            		free(kvalue);
         | 
| 2571 | 
            +
            		free(start);
         | 
| 2572 | 
            +
            		free(vote);
         | 
| 2573 | 
            +
            		return model->label[vote_max_idx];
         | 
| 2574 | 
            +
            	}
         | 
| 2575 | 
            +
            }
         | 
| 2576 | 
            +
             | 
| 2577 | 
            +
            double svm_predict(const svm_model *model, const svm_node *x)
         | 
| 2578 | 
            +
            {
         | 
| 2579 | 
            +
            	int nr_class = model->nr_class;
         | 
| 2580 | 
            +
            	double *dec_values;
         | 
| 2581 | 
            +
            	if(model->param.svm_type == ONE_CLASS ||
         | 
| 2582 | 
            +
            	   model->param.svm_type == EPSILON_SVR ||
         | 
| 2583 | 
            +
            	   model->param.svm_type == NU_SVR)
         | 
| 2584 | 
            +
            		dec_values = Malloc(double, 1);
         | 
| 2585 | 
            +
            	else
         | 
| 2586 | 
            +
            		dec_values = Malloc(double, nr_class*(nr_class-1)/2);
         | 
| 2587 | 
            +
            	double pred_result = svm_predict_values(model, x, dec_values);
         | 
| 2588 | 
            +
            	free(dec_values);
         | 
| 2589 | 
            +
            	return pred_result;
         | 
| 2590 | 
            +
            }
         | 
| 2591 | 
            +
             | 
| 2592 | 
            +
            double svm_predict_probability(
         | 
| 2593 | 
            +
            	const svm_model *model, const svm_node *x, double *prob_estimates)
         | 
| 2594 | 
            +
            {
         | 
| 2595 | 
            +
            	if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
         | 
| 2596 | 
            +
            	    model->probA!=NULL && model->probB!=NULL)
         | 
| 2597 | 
            +
            	{
         | 
| 2598 | 
            +
            		int i;
         | 
| 2599 | 
            +
            		int nr_class = model->nr_class;
         | 
| 2600 | 
            +
            		double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
         | 
| 2601 | 
            +
            		svm_predict_values(model, x, dec_values);
         | 
| 2602 | 
            +
             | 
| 2603 | 
            +
            		double min_prob=1e-7;
         | 
| 2604 | 
            +
            		double **pairwise_prob=Malloc(double *,nr_class);
         | 
| 2605 | 
            +
            		for(i=0;i<nr_class;i++)
         | 
| 2606 | 
            +
            			pairwise_prob[i]=Malloc(double,nr_class);
         | 
| 2607 | 
            +
            		int k=0;
         | 
| 2608 | 
            +
            		for(i=0;i<nr_class;i++)
         | 
| 2609 | 
            +
            			for(int j=i+1;j<nr_class;j++)
         | 
| 2610 | 
            +
            			{
         | 
| 2611 | 
            +
            				pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
         | 
| 2612 | 
            +
            				pairwise_prob[j][i]=1-pairwise_prob[i][j];
         | 
| 2613 | 
            +
            				k++;
         | 
| 2614 | 
            +
            			}
         | 
| 2615 | 
            +
            		if (nr_class == 2)
         | 
| 2616 | 
            +
            		{
         | 
| 2617 | 
            +
            			prob_estimates[0] = pairwise_prob[0][1];
         | 
| 2618 | 
            +
            			prob_estimates[1] = pairwise_prob[1][0];
         | 
| 2619 | 
            +
            		}
         | 
| 2620 | 
            +
            		else
         | 
| 2621 | 
            +
            			multiclass_probability(nr_class,pairwise_prob,prob_estimates);
         | 
| 2622 | 
            +
             | 
| 2623 | 
            +
            		int prob_max_idx = 0;
         | 
| 2624 | 
            +
            		for(i=1;i<nr_class;i++)
         | 
| 2625 | 
            +
            			if(prob_estimates[i] > prob_estimates[prob_max_idx])
         | 
| 2626 | 
            +
            				prob_max_idx = i;
         | 
| 2627 | 
            +
            		for(i=0;i<nr_class;i++)
         | 
| 2628 | 
            +
            			free(pairwise_prob[i]);
         | 
| 2629 | 
            +
            		free(dec_values);
         | 
| 2630 | 
            +
            		free(pairwise_prob);
         | 
| 2631 | 
            +
            		return model->label[prob_max_idx];
         | 
| 2632 | 
            +
            	}
         | 
| 2633 | 
            +
            	else
         | 
| 2634 | 
            +
            		return svm_predict(model, x);
         | 
| 2635 | 
            +
            }
         | 
| 2636 | 
            +
             | 
| 2637 | 
            +
            static const char *svm_type_table[] =
         | 
| 2638 | 
            +
            {
         | 
| 2639 | 
            +
            	"c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
         | 
| 2640 | 
            +
            };
         | 
| 2641 | 
            +
             | 
| 2642 | 
            +
            static const char *kernel_type_table[]=
         | 
| 2643 | 
            +
            {
         | 
| 2644 | 
            +
            	"linear","polynomial","rbf","sigmoid","precomputed",NULL
         | 
| 2645 | 
            +
            };
         | 
| 2646 | 
            +
             | 
| 2647 | 
            +
            int svm_save_model(const char *model_file_name, const svm_model *model)
         | 
| 2648 | 
            +
            {
         | 
| 2649 | 
            +
            	FILE *fp = fopen(model_file_name,"w");
         | 
| 2650 | 
            +
            	if(fp==NULL) return -1;
         | 
| 2651 | 
            +
             | 
| 2652 | 
            +
            	char *old_locale = setlocale(LC_ALL, NULL);
         | 
| 2653 | 
            +
            	if (old_locale) {
         | 
| 2654 | 
            +
            		old_locale = strdup(old_locale);
         | 
| 2655 | 
            +
            	}
         | 
| 2656 | 
            +
            	setlocale(LC_ALL, "C");
         | 
| 2657 | 
            +
             | 
| 2658 | 
            +
            	const svm_parameter& param = model->param;
         | 
| 2659 | 
            +
             | 
| 2660 | 
            +
            	fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
         | 
| 2661 | 
            +
            	fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
         | 
| 2662 | 
            +
             | 
| 2663 | 
            +
            	if(param.kernel_type == POLY)
         | 
| 2664 | 
            +
            		fprintf(fp,"degree %d\n", param.degree);
         | 
| 2665 | 
            +
             | 
| 2666 | 
            +
            	if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
         | 
| 2667 | 
            +
            		fprintf(fp,"gamma %.17g\n", param.gamma);
         | 
| 2668 | 
            +
             | 
| 2669 | 
            +
            	if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
         | 
| 2670 | 
            +
            		fprintf(fp,"coef0 %.17g\n", param.coef0);
         | 
| 2671 | 
            +
             | 
| 2672 | 
            +
            	int nr_class = model->nr_class;
         | 
| 2673 | 
            +
            	int l = model->l;
         | 
| 2674 | 
            +
            	fprintf(fp, "nr_class %d\n", nr_class);
         | 
| 2675 | 
            +
            	fprintf(fp, "total_sv %d\n",l);
         | 
| 2676 | 
            +
             | 
| 2677 | 
            +
            	{
         | 
| 2678 | 
            +
            		fprintf(fp, "rho");
         | 
| 2679 | 
            +
            		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
         | 
| 2680 | 
            +
            			fprintf(fp," %.17g",model->rho[i]);
         | 
| 2681 | 
            +
            		fprintf(fp, "\n");
         | 
| 2682 | 
            +
            	}
         | 
| 2683 | 
            +
             | 
| 2684 | 
            +
            	if(model->label)
         | 
| 2685 | 
            +
            	{
         | 
| 2686 | 
            +
            		fprintf(fp, "label");
         | 
| 2687 | 
            +
            		for(int i=0;i<nr_class;i++)
         | 
| 2688 | 
            +
            			fprintf(fp," %d",model->label[i]);
         | 
| 2689 | 
            +
            		fprintf(fp, "\n");
         | 
| 2690 | 
            +
            	}
         | 
| 2691 | 
            +
             | 
| 2692 | 
            +
            	if(model->probA) // regression has probA only
         | 
| 2693 | 
            +
            	{
         | 
| 2694 | 
            +
            		fprintf(fp, "probA");
         | 
| 2695 | 
            +
            		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
         | 
| 2696 | 
            +
            			fprintf(fp," %.17g",model->probA[i]);
         | 
| 2697 | 
            +
            		fprintf(fp, "\n");
         | 
| 2698 | 
            +
            	}
         | 
| 2699 | 
            +
            	if(model->probB)
         | 
| 2700 | 
            +
            	{
         | 
| 2701 | 
            +
            		fprintf(fp, "probB");
         | 
| 2702 | 
            +
            		for(int i=0;i<nr_class*(nr_class-1)/2;i++)
         | 
| 2703 | 
            +
            			fprintf(fp," %.17g",model->probB[i]);
         | 
| 2704 | 
            +
            		fprintf(fp, "\n");
         | 
| 2705 | 
            +
            	}
         | 
| 2706 | 
            +
             | 
| 2707 | 
            +
            	if(model->nSV)
         | 
| 2708 | 
            +
            	{
         | 
| 2709 | 
            +
            		fprintf(fp, "nr_sv");
         | 
| 2710 | 
            +
            		for(int i=0;i<nr_class;i++)
         | 
| 2711 | 
            +
            			fprintf(fp," %d",model->nSV[i]);
         | 
| 2712 | 
            +
            		fprintf(fp, "\n");
         | 
| 2713 | 
            +
            	}
         | 
| 2714 | 
            +
             | 
| 2715 | 
            +
            	fprintf(fp, "SV\n");
         | 
| 2716 | 
            +
            	const double * const *sv_coef = model->sv_coef;
         | 
| 2717 | 
            +
            	const svm_node * const *SV = model->SV;
         | 
| 2718 | 
            +
             | 
| 2719 | 
            +
            	for(int i=0;i<l;i++)
         | 
| 2720 | 
            +
            	{
         | 
| 2721 | 
            +
            		for(int j=0;j<nr_class-1;j++)
         | 
| 2722 | 
            +
            			fprintf(fp, "%.17g ",sv_coef[j][i]);
         | 
| 2723 | 
            +
             | 
| 2724 | 
            +
            		const svm_node *p = SV[i];
         | 
| 2725 | 
            +
             | 
| 2726 | 
            +
            		if(param.kernel_type == PRECOMPUTED)
         | 
| 2727 | 
            +
            			fprintf(fp,"0:%d ",(int)(p->value));
         | 
| 2728 | 
            +
            		else
         | 
| 2729 | 
            +
            			while(p->index != -1)
         | 
| 2730 | 
            +
            			{
         | 
| 2731 | 
            +
            				fprintf(fp,"%d:%.8g ",p->index,p->value);
         | 
| 2732 | 
            +
            				p++;
         | 
| 2733 | 
            +
            			}
         | 
| 2734 | 
            +
            		fprintf(fp, "\n");
         | 
| 2735 | 
            +
            	}
         | 
| 2736 | 
            +
             | 
| 2737 | 
            +
            	setlocale(LC_ALL, old_locale);
         | 
| 2738 | 
            +
            	free(old_locale);
         | 
| 2739 | 
            +
             | 
| 2740 | 
            +
            	if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
         | 
| 2741 | 
            +
            	else return 0;
         | 
| 2742 | 
            +
            }
         | 
| 2743 | 
            +
             | 
| 2744 | 
            +
            static char *line = NULL;
         | 
| 2745 | 
            +
            static int max_line_len;
         | 
| 2746 | 
            +
             | 
| 2747 | 
            +
            static char* readline(FILE *input)
         | 
| 2748 | 
            +
            {
         | 
| 2749 | 
            +
            	int len;
         | 
| 2750 | 
            +
             | 
| 2751 | 
            +
            	if(fgets(line,max_line_len,input) == NULL)
         | 
| 2752 | 
            +
            		return NULL;
         | 
| 2753 | 
            +
             | 
| 2754 | 
            +
            	while(strrchr(line,'\n') == NULL)
         | 
| 2755 | 
            +
            	{
         | 
| 2756 | 
            +
            		max_line_len *= 2;
         | 
| 2757 | 
            +
            		line = (char *) realloc(line,max_line_len);
         | 
| 2758 | 
            +
            		len = (int) strlen(line);
         | 
| 2759 | 
            +
            		if(fgets(line+len,max_line_len-len,input) == NULL)
         | 
| 2760 | 
            +
            			break;
         | 
| 2761 | 
            +
            	}
         | 
| 2762 | 
            +
            	return line;
         | 
| 2763 | 
            +
            }
         | 
| 2764 | 
            +
             | 
| 2765 | 
            +
            //
         | 
| 2766 | 
            +
            // FSCANF helps to handle fscanf failures.
         | 
| 2767 | 
            +
            // Its do-while block avoids the ambiguity when
         | 
| 2768 | 
            +
            // if (...)
         | 
| 2769 | 
            +
            //    FSCANF();
         | 
| 2770 | 
            +
            // is used
         | 
| 2771 | 
            +
            //
         | 
| 2772 | 
            +
            #define FSCANF(_stream, _format, _var) do{ if (fscanf(_stream, _format, _var) != 1) return false; }while(0)
         | 
| 2773 | 
            +
            bool read_model_header(FILE *fp, svm_model* model)
         | 
| 2774 | 
            +
            {
         | 
| 2775 | 
            +
            	svm_parameter& param = model->param;
         | 
| 2776 | 
            +
            	// parameters for training only won't be assigned, but arrays are assigned as NULL for safety
         | 
| 2777 | 
            +
            	param.nr_weight = 0;
         | 
| 2778 | 
            +
            	param.weight_label = NULL;
         | 
| 2779 | 
            +
            	param.weight = NULL;
         | 
| 2780 | 
            +
             | 
| 2781 | 
            +
            	char cmd[81];
         | 
| 2782 | 
            +
            	while(1)
         | 
| 2783 | 
            +
            	{
         | 
| 2784 | 
            +
            		FSCANF(fp,"%80s",cmd);
         | 
| 2785 | 
            +
             | 
| 2786 | 
            +
            		if(strcmp(cmd,"svm_type")==0)
         | 
| 2787 | 
            +
            		{
         | 
| 2788 | 
            +
            			FSCANF(fp,"%80s",cmd);
         | 
| 2789 | 
            +
            			int i;
         | 
| 2790 | 
            +
            			for(i=0;svm_type_table[i];i++)
         | 
| 2791 | 
            +
            			{
         | 
| 2792 | 
            +
            				if(strcmp(svm_type_table[i],cmd)==0)
         | 
| 2793 | 
            +
            				{
         | 
| 2794 | 
            +
            					param.svm_type=i;
         | 
| 2795 | 
            +
            					break;
         | 
| 2796 | 
            +
            				}
         | 
| 2797 | 
            +
            			}
         | 
| 2798 | 
            +
            			if(svm_type_table[i] == NULL)
         | 
| 2799 | 
            +
            			{
         | 
| 2800 | 
            +
            				fprintf(stderr,"unknown svm type.\n");
         | 
| 2801 | 
            +
            				return false;
         | 
| 2802 | 
            +
            			}
         | 
| 2803 | 
            +
            		}
         | 
| 2804 | 
            +
            		else if(strcmp(cmd,"kernel_type")==0)
         | 
| 2805 | 
            +
            		{
         | 
| 2806 | 
            +
            			FSCANF(fp,"%80s",cmd);
         | 
| 2807 | 
            +
            			int i;
         | 
| 2808 | 
            +
            			for(i=0;kernel_type_table[i];i++)
         | 
| 2809 | 
            +
            			{
         | 
| 2810 | 
            +
            				if(strcmp(kernel_type_table[i],cmd)==0)
         | 
| 2811 | 
            +
            				{
         | 
| 2812 | 
            +
            					param.kernel_type=i;
         | 
| 2813 | 
            +
            					break;
         | 
| 2814 | 
            +
            				}
         | 
| 2815 | 
            +
            			}
         | 
| 2816 | 
            +
            			if(kernel_type_table[i] == NULL)
         | 
| 2817 | 
            +
            			{
         | 
| 2818 | 
            +
            				fprintf(stderr,"unknown kernel function.\n");
         | 
| 2819 | 
            +
            				return false;
         | 
| 2820 | 
            +
            			}
         | 
| 2821 | 
            +
            		}
         | 
| 2822 | 
            +
            		else if(strcmp(cmd,"degree")==0)
         | 
| 2823 | 
            +
            			FSCANF(fp,"%d",¶m.degree);
         | 
| 2824 | 
            +
            		else if(strcmp(cmd,"gamma")==0)
         | 
| 2825 | 
            +
            			FSCANF(fp,"%lf",¶m.gamma);
         | 
| 2826 | 
            +
            		else if(strcmp(cmd,"coef0")==0)
         | 
| 2827 | 
            +
            			FSCANF(fp,"%lf",¶m.coef0);
         | 
| 2828 | 
            +
            		else if(strcmp(cmd,"nr_class")==0)
         | 
| 2829 | 
            +
            			FSCANF(fp,"%d",&model->nr_class);
         | 
| 2830 | 
            +
            		else if(strcmp(cmd,"total_sv")==0)
         | 
| 2831 | 
            +
            			FSCANF(fp,"%d",&model->l);
         | 
| 2832 | 
            +
            		else if(strcmp(cmd,"rho")==0)
         | 
| 2833 | 
            +
            		{
         | 
| 2834 | 
            +
            			int n = model->nr_class * (model->nr_class-1)/2;
         | 
| 2835 | 
            +
            			model->rho = Malloc(double,n);
         | 
| 2836 | 
            +
            			for(int i=0;i<n;i++)
         | 
| 2837 | 
            +
            				FSCANF(fp,"%lf",&model->rho[i]);
         | 
| 2838 | 
            +
            		}
         | 
| 2839 | 
            +
            		else if(strcmp(cmd,"label")==0)
         | 
| 2840 | 
            +
            		{
         | 
| 2841 | 
            +
            			int n = model->nr_class;
         | 
| 2842 | 
            +
            			model->label = Malloc(int,n);
         | 
| 2843 | 
            +
            			for(int i=0;i<n;i++)
         | 
| 2844 | 
            +
            				FSCANF(fp,"%d",&model->label[i]);
         | 
| 2845 | 
            +
            		}
         | 
| 2846 | 
            +
            		else if(strcmp(cmd,"probA")==0)
         | 
| 2847 | 
            +
            		{
         | 
| 2848 | 
            +
            			int n = model->nr_class * (model->nr_class-1)/2;
         | 
| 2849 | 
            +
            			model->probA = Malloc(double,n);
         | 
| 2850 | 
            +
            			for(int i=0;i<n;i++)
         | 
| 2851 | 
            +
            				FSCANF(fp,"%lf",&model->probA[i]);
         | 
| 2852 | 
            +
            		}
         | 
| 2853 | 
            +
            		else if(strcmp(cmd,"probB")==0)
         | 
| 2854 | 
            +
            		{
         | 
| 2855 | 
            +
            			int n = model->nr_class * (model->nr_class-1)/2;
         | 
| 2856 | 
            +
            			model->probB = Malloc(double,n);
         | 
| 2857 | 
            +
            			for(int i=0;i<n;i++)
         | 
| 2858 | 
            +
            				FSCANF(fp,"%lf",&model->probB[i]);
         | 
| 2859 | 
            +
            		}
         | 
| 2860 | 
            +
            		else if(strcmp(cmd,"nr_sv")==0)
         | 
| 2861 | 
            +
            		{
         | 
| 2862 | 
            +
            			int n = model->nr_class;
         | 
| 2863 | 
            +
            			model->nSV = Malloc(int,n);
         | 
| 2864 | 
            +
            			for(int i=0;i<n;i++)
         | 
| 2865 | 
            +
            				FSCANF(fp,"%d",&model->nSV[i]);
         | 
| 2866 | 
            +
            		}
         | 
| 2867 | 
            +
            		else if(strcmp(cmd,"SV")==0)
         | 
| 2868 | 
            +
            		{
         | 
| 2869 | 
            +
            			while(1)
         | 
| 2870 | 
            +
            			{
         | 
| 2871 | 
            +
            				int c = getc(fp);
         | 
| 2872 | 
            +
            				if(c==EOF || c=='\n') break;
         | 
| 2873 | 
            +
            			}
         | 
| 2874 | 
            +
            			break;
         | 
| 2875 | 
            +
            		}
         | 
| 2876 | 
            +
            		else
         | 
| 2877 | 
            +
            		{
         | 
| 2878 | 
            +
            			fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
         | 
| 2879 | 
            +
            			return false;
         | 
| 2880 | 
            +
            		}
         | 
| 2881 | 
            +
            	}
         | 
| 2882 | 
            +
             | 
| 2883 | 
            +
            	return true;
         | 
| 2884 | 
            +
             | 
| 2885 | 
            +
            }
         | 
| 2886 | 
            +
             | 
| 2887 | 
            +
            svm_model *svm_load_model(const char *model_file_name)
         | 
| 2888 | 
            +
            {
         | 
| 2889 | 
            +
            	FILE *fp = fopen(model_file_name,"rb");
         | 
| 2890 | 
            +
            	if(fp==NULL) return NULL;
         | 
| 2891 | 
            +
             | 
| 2892 | 
            +
            	char *old_locale = setlocale(LC_ALL, NULL);
         | 
| 2893 | 
            +
            	if (old_locale) {
         | 
| 2894 | 
            +
            		old_locale = strdup(old_locale);
         | 
| 2895 | 
            +
            	}
         | 
| 2896 | 
            +
            	setlocale(LC_ALL, "C");
         | 
| 2897 | 
            +
             | 
| 2898 | 
            +
            	// read parameters
         | 
| 2899 | 
            +
             | 
| 2900 | 
            +
            	svm_model *model = Malloc(svm_model,1);
         | 
| 2901 | 
            +
            	model->rho = NULL;
         | 
| 2902 | 
            +
            	model->probA = NULL;
         | 
| 2903 | 
            +
            	model->probB = NULL;
         | 
| 2904 | 
            +
            	model->sv_indices = NULL;
         | 
| 2905 | 
            +
            	model->label = NULL;
         | 
| 2906 | 
            +
            	model->nSV = NULL;
         | 
| 2907 | 
            +
             | 
| 2908 | 
            +
            	// read header
         | 
| 2909 | 
            +
            	if (!read_model_header(fp, model))
         | 
| 2910 | 
            +
            	{
         | 
| 2911 | 
            +
            		fprintf(stderr, "ERROR: fscanf failed to read model\n");
         | 
| 2912 | 
            +
            		setlocale(LC_ALL, old_locale);
         | 
| 2913 | 
            +
            		free(old_locale);
         | 
| 2914 | 
            +
            		free(model->rho);
         | 
| 2915 | 
            +
            		free(model->label);
         | 
| 2916 | 
            +
            		free(model->nSV);
         | 
| 2917 | 
            +
            		free(model);
         | 
| 2918 | 
            +
            		return NULL;
         | 
| 2919 | 
            +
            	}
         | 
| 2920 | 
            +
             | 
| 2921 | 
            +
            	// read sv_coef and SV
         | 
| 2922 | 
            +
             | 
| 2923 | 
            +
            	int elements = 0;
         | 
| 2924 | 
            +
            	long pos = ftell(fp);
         | 
| 2925 | 
            +
             | 
| 2926 | 
            +
            	max_line_len = 1024;
         | 
| 2927 | 
            +
            	line = Malloc(char,max_line_len);
         | 
| 2928 | 
            +
            	char *p,*endptr,*idx,*val;
         | 
| 2929 | 
            +
             | 
| 2930 | 
            +
            	while(readline(fp)!=NULL)
         | 
| 2931 | 
            +
            	{
         | 
| 2932 | 
            +
            		p = strtok(line,":");
         | 
| 2933 | 
            +
            		while(1)
         | 
| 2934 | 
            +
            		{
         | 
| 2935 | 
            +
            			p = strtok(NULL,":");
         | 
| 2936 | 
            +
            			if(p == NULL)
         | 
| 2937 | 
            +
            				break;
         | 
| 2938 | 
            +
            			++elements;
         | 
| 2939 | 
            +
            		}
         | 
| 2940 | 
            +
            	}
         | 
| 2941 | 
            +
            	elements += model->l;
         | 
| 2942 | 
            +
             | 
| 2943 | 
            +
            	fseek(fp,pos,SEEK_SET);
         | 
| 2944 | 
            +
             | 
| 2945 | 
            +
            	int m = model->nr_class - 1;
         | 
| 2946 | 
            +
            	int l = model->l;
         | 
| 2947 | 
            +
            	model->sv_coef = Malloc(double *,m);
         | 
| 2948 | 
            +
            	int i;
         | 
| 2949 | 
            +
            	for(i=0;i<m;i++)
         | 
| 2950 | 
            +
            		model->sv_coef[i] = Malloc(double,l);
         | 
| 2951 | 
            +
            	model->SV = Malloc(svm_node*,l);
         | 
| 2952 | 
            +
            	svm_node *x_space = NULL;
         | 
| 2953 | 
            +
            	if(l>0) x_space = Malloc(svm_node,elements);
         | 
| 2954 | 
            +
             | 
| 2955 | 
            +
            	int j=0;
         | 
| 2956 | 
            +
            	for(i=0;i<l;i++)
         | 
| 2957 | 
            +
            	{
         | 
| 2958 | 
            +
            		readline(fp);
         | 
| 2959 | 
            +
            		model->SV[i] = &x_space[j];
         | 
| 2960 | 
            +
             | 
| 2961 | 
            +
            		p = strtok(line, " \t");
         | 
| 2962 | 
            +
            		model->sv_coef[0][i] = strtod(p,&endptr);
         | 
| 2963 | 
            +
            		for(int k=1;k<m;k++)
         | 
| 2964 | 
            +
            		{
         | 
| 2965 | 
            +
            			p = strtok(NULL, " \t");
         | 
| 2966 | 
            +
            			model->sv_coef[k][i] = strtod(p,&endptr);
         | 
| 2967 | 
            +
            		}
         | 
| 2968 | 
            +
             | 
| 2969 | 
            +
            		while(1)
         | 
| 2970 | 
            +
            		{
         | 
| 2971 | 
            +
            			idx = strtok(NULL, ":");
         | 
| 2972 | 
            +
            			val = strtok(NULL, " \t");
         | 
| 2973 | 
            +
             | 
| 2974 | 
            +
            			if(val == NULL)
         | 
| 2975 | 
            +
            				break;
         | 
| 2976 | 
            +
            			x_space[j].index = (int) strtol(idx,&endptr,10);
         | 
| 2977 | 
            +
            			x_space[j].value = strtod(val,&endptr);
         | 
| 2978 | 
            +
             | 
| 2979 | 
            +
            			++j;
         | 
| 2980 | 
            +
            		}
         | 
| 2981 | 
            +
            		x_space[j++].index = -1;
         | 
| 2982 | 
            +
            	}
         | 
| 2983 | 
            +
            	free(line);
         | 
| 2984 | 
            +
             | 
| 2985 | 
            +
            	setlocale(LC_ALL, old_locale);
         | 
| 2986 | 
            +
            	free(old_locale);
         | 
| 2987 | 
            +
             | 
| 2988 | 
            +
            	if (ferror(fp) != 0 || fclose(fp) != 0)
         | 
| 2989 | 
            +
            		return NULL;
         | 
| 2990 | 
            +
             | 
| 2991 | 
            +
            	model->free_sv = 1;	// XXX
         | 
| 2992 | 
            +
            	return model;
         | 
| 2993 | 
            +
            }
         | 
| 2994 | 
            +
             | 
| 2995 | 
            +
            void svm_free_model_content(svm_model* model_ptr)
         | 
| 2996 | 
            +
            {
         | 
| 2997 | 
            +
            	if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL)
         | 
| 2998 | 
            +
            		free((void *)(model_ptr->SV[0]));
         | 
| 2999 | 
            +
            	if(model_ptr->sv_coef)
         | 
| 3000 | 
            +
            	{
         | 
| 3001 | 
            +
            		for(int i=0;i<model_ptr->nr_class-1;i++)
         | 
| 3002 | 
            +
            			free(model_ptr->sv_coef[i]);
         | 
| 3003 | 
            +
            	}
         | 
| 3004 | 
            +
             | 
| 3005 | 
            +
            	free(model_ptr->SV);
         | 
| 3006 | 
            +
            	model_ptr->SV = NULL;
         | 
| 3007 | 
            +
             | 
| 3008 | 
            +
            	free(model_ptr->sv_coef);
         | 
| 3009 | 
            +
            	model_ptr->sv_coef = NULL;
         | 
| 3010 | 
            +
             | 
| 3011 | 
            +
            	free(model_ptr->rho);
         | 
| 3012 | 
            +
            	model_ptr->rho = NULL;
         | 
| 3013 | 
            +
             | 
| 3014 | 
            +
            	free(model_ptr->label);
         | 
| 3015 | 
            +
            	model_ptr->label= NULL;
         | 
| 3016 | 
            +
             | 
| 3017 | 
            +
            	free(model_ptr->probA);
         | 
| 3018 | 
            +
            	model_ptr->probA = NULL;
         | 
| 3019 | 
            +
             | 
| 3020 | 
            +
            	free(model_ptr->probB);
         | 
| 3021 | 
            +
            	model_ptr->probB= NULL;
         | 
| 3022 | 
            +
             | 
| 3023 | 
            +
            	free(model_ptr->sv_indices);
         | 
| 3024 | 
            +
            	model_ptr->sv_indices = NULL;
         | 
| 3025 | 
            +
             | 
| 3026 | 
            +
            	free(model_ptr->nSV);
         | 
| 3027 | 
            +
            	model_ptr->nSV = NULL;
         | 
| 3028 | 
            +
            }
         | 
| 3029 | 
            +
             | 
| 3030 | 
            +
            void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
         | 
| 3031 | 
            +
            {
         | 
| 3032 | 
            +
            	if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)
         | 
| 3033 | 
            +
            	{
         | 
| 3034 | 
            +
            		svm_free_model_content(*model_ptr_ptr);
         | 
| 3035 | 
            +
            		free(*model_ptr_ptr);
         | 
| 3036 | 
            +
            		*model_ptr_ptr = NULL;
         | 
| 3037 | 
            +
            	}
         | 
| 3038 | 
            +
            }
         | 
| 3039 | 
            +
             | 
| 3040 | 
            +
            void svm_destroy_param(svm_parameter* param)
         | 
| 3041 | 
            +
            {
         | 
| 3042 | 
            +
            	free(param->weight_label);
         | 
| 3043 | 
            +
            	free(param->weight);
         | 
| 3044 | 
            +
            }
         | 
| 3045 | 
            +
             | 
| 3046 | 
            +
            const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
         | 
| 3047 | 
            +
            {
         | 
| 3048 | 
            +
            	// svm_type
         | 
| 3049 | 
            +
             | 
| 3050 | 
            +
            	int svm_type = param->svm_type;
         | 
| 3051 | 
            +
            	if(svm_type != C_SVC &&
         | 
| 3052 | 
            +
            	   svm_type != NU_SVC &&
         | 
| 3053 | 
            +
            	   svm_type != ONE_CLASS &&
         | 
| 3054 | 
            +
            	   svm_type != EPSILON_SVR &&
         | 
| 3055 | 
            +
            	   svm_type != NU_SVR)
         | 
| 3056 | 
            +
            		return "unknown svm type";
         | 
| 3057 | 
            +
             | 
| 3058 | 
            +
            	// kernel_type, degree
         | 
| 3059 | 
            +
             | 
| 3060 | 
            +
            	int kernel_type = param->kernel_type;
         | 
| 3061 | 
            +
            	if(kernel_type != LINEAR &&
         | 
| 3062 | 
            +
            	   kernel_type != POLY &&
         | 
| 3063 | 
            +
            	   kernel_type != RBF &&
         | 
| 3064 | 
            +
            	   kernel_type != SIGMOID &&
         | 
| 3065 | 
            +
            	   kernel_type != PRECOMPUTED)
         | 
| 3066 | 
            +
            		return "unknown kernel type";
         | 
| 3067 | 
            +
             | 
| 3068 | 
            +
            	if((kernel_type == POLY || kernel_type == RBF || kernel_type == SIGMOID) &&
         | 
| 3069 | 
            +
            	   param->gamma < 0)
         | 
| 3070 | 
            +
            		return "gamma < 0";
         | 
| 3071 | 
            +
             | 
| 3072 | 
            +
            	if(kernel_type == POLY && param->degree < 0)
         | 
| 3073 | 
            +
            		return "degree of polynomial kernel < 0";
         | 
| 3074 | 
            +
             | 
| 3075 | 
            +
            	// cache_size,eps,C,nu,p,shrinking
         | 
| 3076 | 
            +
             | 
| 3077 | 
            +
            	if(param->cache_size <= 0)
         | 
| 3078 | 
            +
            		return "cache_size <= 0";
         | 
| 3079 | 
            +
             | 
| 3080 | 
            +
            	if(param->eps <= 0)
         | 
| 3081 | 
            +
            		return "eps <= 0";
         | 
| 3082 | 
            +
             | 
| 3083 | 
            +
            	if(svm_type == C_SVC ||
         | 
| 3084 | 
            +
            	   svm_type == EPSILON_SVR ||
         | 
| 3085 | 
            +
            	   svm_type == NU_SVR)
         | 
| 3086 | 
            +
            		if(param->C <= 0)
         | 
| 3087 | 
            +
            			return "C <= 0";
         | 
| 3088 | 
            +
             | 
| 3089 | 
            +
            	if(svm_type == NU_SVC ||
         | 
| 3090 | 
            +
            	   svm_type == ONE_CLASS ||
         | 
| 3091 | 
            +
            	   svm_type == NU_SVR)
         | 
| 3092 | 
            +
            		if(param->nu <= 0 || param->nu > 1)
         | 
| 3093 | 
            +
            			return "nu <= 0 or nu > 1";
         | 
| 3094 | 
            +
             | 
| 3095 | 
            +
            	if(svm_type == EPSILON_SVR)
         | 
| 3096 | 
            +
            		if(param->p < 0)
         | 
| 3097 | 
            +
            			return "p < 0";
         | 
| 3098 | 
            +
             | 
| 3099 | 
            +
            	if(param->shrinking != 0 &&
         | 
| 3100 | 
            +
            	   param->shrinking != 1)
         | 
| 3101 | 
            +
            		return "shrinking != 0 and shrinking != 1";
         | 
| 3102 | 
            +
             | 
| 3103 | 
            +
            	if(param->probability != 0 &&
         | 
| 3104 | 
            +
            	   param->probability != 1)
         | 
| 3105 | 
            +
            		return "probability != 0 and probability != 1";
         | 
| 3106 | 
            +
             | 
| 3107 | 
            +
            	if(param->probability == 1 &&
         | 
| 3108 | 
            +
            	   svm_type == ONE_CLASS)
         | 
| 3109 | 
            +
            		return "one-class SVM probability output not supported yet";
         | 
| 3110 | 
            +
             | 
| 3111 | 
            +
             | 
| 3112 | 
            +
            	// check whether nu-svc is feasible
         | 
| 3113 | 
            +
             | 
| 3114 | 
            +
            	if(svm_type == NU_SVC)
         | 
| 3115 | 
            +
            	{
         | 
| 3116 | 
            +
            		int l = prob->l;
         | 
| 3117 | 
            +
            		int max_nr_class = 16;
         | 
| 3118 | 
            +
            		int nr_class = 0;
         | 
| 3119 | 
            +
            		int *label = Malloc(int,max_nr_class);
         | 
| 3120 | 
            +
            		int *count = Malloc(int,max_nr_class);
         | 
| 3121 | 
            +
             | 
| 3122 | 
            +
            		int i;
         | 
| 3123 | 
            +
            		for(i=0;i<l;i++)
         | 
| 3124 | 
            +
            		{
         | 
| 3125 | 
            +
            			int this_label = (int)prob->y[i];
         | 
| 3126 | 
            +
            			int j;
         | 
| 3127 | 
            +
            			for(j=0;j<nr_class;j++)
         | 
| 3128 | 
            +
            				if(this_label == label[j])
         | 
| 3129 | 
            +
            				{
         | 
| 3130 | 
            +
            					++count[j];
         | 
| 3131 | 
            +
            					break;
         | 
| 3132 | 
            +
            				}
         | 
| 3133 | 
            +
            			if(j == nr_class)
         | 
| 3134 | 
            +
            			{
         | 
| 3135 | 
            +
            				if(nr_class == max_nr_class)
         | 
| 3136 | 
            +
            				{
         | 
| 3137 | 
            +
            					max_nr_class *= 2;
         | 
| 3138 | 
            +
            					label = (int *)realloc(label,max_nr_class*sizeof(int));
         | 
| 3139 | 
            +
            					count = (int *)realloc(count,max_nr_class*sizeof(int));
         | 
| 3140 | 
            +
            				}
         | 
| 3141 | 
            +
            				label[nr_class] = this_label;
         | 
| 3142 | 
            +
            				count[nr_class] = 1;
         | 
| 3143 | 
            +
            				++nr_class;
         | 
| 3144 | 
            +
            			}
         | 
| 3145 | 
            +
            		}
         | 
| 3146 | 
            +
             | 
| 3147 | 
            +
            		for(i=0;i<nr_class;i++)
         | 
| 3148 | 
            +
            		{
         | 
| 3149 | 
            +
            			int n1 = count[i];
         | 
| 3150 | 
            +
            			for(int j=i+1;j<nr_class;j++)
         | 
| 3151 | 
            +
            			{
         | 
| 3152 | 
            +
            				int n2 = count[j];
         | 
| 3153 | 
            +
            				if(param->nu*(n1+n2)/2 > min(n1,n2))
         | 
| 3154 | 
            +
            				{
         | 
| 3155 | 
            +
            					free(label);
         | 
| 3156 | 
            +
            					free(count);
         | 
| 3157 | 
            +
            					return "specified nu is infeasible";
         | 
| 3158 | 
            +
            				}
         | 
| 3159 | 
            +
            			}
         | 
| 3160 | 
            +
            		}
         | 
| 3161 | 
            +
            		free(label);
         | 
| 3162 | 
            +
            		free(count);
         | 
| 3163 | 
            +
            	}
         | 
| 3164 | 
            +
             | 
| 3165 | 
            +
            	return NULL;
         | 
| 3166 | 
            +
            }
         | 
| 3167 | 
            +
             | 
| 3168 | 
            +
            int svm_check_probability_model(const svm_model *model)
         | 
| 3169 | 
            +
            {
         | 
| 3170 | 
            +
            	return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
         | 
| 3171 | 
            +
            		model->probA!=NULL && model->probB!=NULL) ||
         | 
| 3172 | 
            +
            		((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
         | 
| 3173 | 
            +
            		 model->probA!=NULL);
         | 
| 3174 | 
            +
            }
         | 
| 3175 | 
            +
             | 
| 3176 | 
            +
            void svm_set_print_string_function(void (*print_func)(const char *))
         | 
| 3177 | 
            +
            {
         | 
| 3178 | 
            +
            	if(print_func == NULL)
         | 
| 3179 | 
            +
            		svm_print_string = &print_string_stdout;
         | 
| 3180 | 
            +
            	else
         | 
| 3181 | 
            +
            		svm_print_string = print_func;
         | 
| 3182 | 
            +
            }
         |