numo-libsvm 0.2.0 → 1.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +5 -5
- data/.github/workflows/build.yml +27 -0
- data/.gitmodules +3 -0
- data/CHANGELOG.md +21 -1
- data/LICENSE.txt +1 -1
- data/README.md +9 -16
- data/ext/numo/libsvm/converter.c +57 -15
- data/ext/numo/libsvm/converter.h +2 -1
- data/ext/numo/libsvm/extconf.rb +7 -11
- data/ext/numo/libsvm/libsvm/svm.cpp +3182 -0
- data/ext/numo/libsvm/libsvm/svm.h +104 -0
- data/ext/numo/libsvm/libsvmext.c +94 -35
- data/ext/numo/libsvm/svm_problem.c +38 -6
- data/lib/numo/libsvm/version.rb +1 -1
- data/numo-libsvm.gemspec +15 -1
- metadata +16 -11
- data/.travis.yml +0 -14
@@ -0,0 +1,104 @@
|
|
1
|
+
#ifndef _LIBSVM_H
|
2
|
+
#define _LIBSVM_H
|
3
|
+
|
4
|
+
#define LIBSVM_VERSION 324
|
5
|
+
|
6
|
+
#ifdef __cplusplus
|
7
|
+
extern "C" {
|
8
|
+
#endif
|
9
|
+
|
10
|
+
extern int libsvm_version;
|
11
|
+
|
12
|
+
struct svm_node
|
13
|
+
{
|
14
|
+
int index;
|
15
|
+
double value;
|
16
|
+
};
|
17
|
+
|
18
|
+
struct svm_problem
|
19
|
+
{
|
20
|
+
int l;
|
21
|
+
double *y;
|
22
|
+
struct svm_node **x;
|
23
|
+
};
|
24
|
+
|
25
|
+
enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */
|
26
|
+
enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
|
27
|
+
|
28
|
+
struct svm_parameter
|
29
|
+
{
|
30
|
+
int svm_type;
|
31
|
+
int kernel_type;
|
32
|
+
int degree; /* for poly */
|
33
|
+
double gamma; /* for poly/rbf/sigmoid */
|
34
|
+
double coef0; /* for poly/sigmoid */
|
35
|
+
|
36
|
+
/* these are for training only */
|
37
|
+
double cache_size; /* in MB */
|
38
|
+
double eps; /* stopping criteria */
|
39
|
+
double C; /* for C_SVC, EPSILON_SVR and NU_SVR */
|
40
|
+
int nr_weight; /* for C_SVC */
|
41
|
+
int *weight_label; /* for C_SVC */
|
42
|
+
double* weight; /* for C_SVC */
|
43
|
+
double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */
|
44
|
+
double p; /* for EPSILON_SVR */
|
45
|
+
int shrinking; /* use the shrinking heuristics */
|
46
|
+
int probability; /* do probability estimates */
|
47
|
+
};
|
48
|
+
|
49
|
+
//
|
50
|
+
// svm_model
|
51
|
+
//
|
52
|
+
struct svm_model
|
53
|
+
{
|
54
|
+
struct svm_parameter param; /* parameter */
|
55
|
+
int nr_class; /* number of classes, = 2 in regression/one class svm */
|
56
|
+
int l; /* total #SV */
|
57
|
+
struct svm_node **SV; /* SVs (SV[l]) */
|
58
|
+
double **sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
|
59
|
+
double *rho; /* constants in decision functions (rho[k*(k-1)/2]) */
|
60
|
+
double *probA; /* pariwise probability information */
|
61
|
+
double *probB;
|
62
|
+
int *sv_indices; /* sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set */
|
63
|
+
|
64
|
+
/* for classification only */
|
65
|
+
|
66
|
+
int *label; /* label of each class (label[k]) */
|
67
|
+
int *nSV; /* number of SVs for each class (nSV[k]) */
|
68
|
+
/* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
|
69
|
+
/* XXX */
|
70
|
+
int free_sv; /* 1 if svm_model is created by svm_load_model*/
|
71
|
+
/* 0 if svm_model is created by svm_train */
|
72
|
+
};
|
73
|
+
|
74
|
+
struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
|
75
|
+
void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);
|
76
|
+
|
77
|
+
int svm_save_model(const char *model_file_name, const struct svm_model *model);
|
78
|
+
struct svm_model *svm_load_model(const char *model_file_name);
|
79
|
+
|
80
|
+
int svm_get_svm_type(const struct svm_model *model);
|
81
|
+
int svm_get_nr_class(const struct svm_model *model);
|
82
|
+
void svm_get_labels(const struct svm_model *model, int *label);
|
83
|
+
void svm_get_sv_indices(const struct svm_model *model, int *sv_indices);
|
84
|
+
int svm_get_nr_sv(const struct svm_model *model);
|
85
|
+
double svm_get_svr_probability(const struct svm_model *model);
|
86
|
+
|
87
|
+
double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
|
88
|
+
double svm_predict(const struct svm_model *model, const struct svm_node *x);
|
89
|
+
double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);
|
90
|
+
|
91
|
+
void svm_free_model_content(struct svm_model *model_ptr);
|
92
|
+
void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
|
93
|
+
void svm_destroy_param(struct svm_parameter *param);
|
94
|
+
|
95
|
+
const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
|
96
|
+
int svm_check_probability_model(const struct svm_model *model);
|
97
|
+
|
98
|
+
void svm_set_print_string_function(void (*print_func)(const char *));
|
99
|
+
|
100
|
+
#ifdef __cplusplus
|
101
|
+
}
|
102
|
+
#endif
|
103
|
+
|
104
|
+
#endif /* _LIBSVM_H */
|
data/ext/numo/libsvm/libsvmext.c
CHANGED
@@ -16,6 +16,30 @@ void print_null(const char *s) {}
|
|
16
16
|
* @param y [Numo::DFloat] (shape: [n_samples]) The labels or target values for samples.
|
17
17
|
* @param param [Hash] The parameters of an SVM model.
|
18
18
|
*
|
19
|
+
* @example
|
20
|
+
* require 'numo/libsvm'
|
21
|
+
*
|
22
|
+
* # Prepare XOR data.
|
23
|
+
* x = Numo::DFloat[[-0.8, -0.7], [0.9, 0.8], [-0.7, 0.9], [0.8, -0.9]]
|
24
|
+
* y = Numo::Int32[-1, -1, 1, 1]
|
25
|
+
*
|
26
|
+
* # Train C-Support Vector Classifier with RBF kernel.
|
27
|
+
* param = {
|
28
|
+
* svm_type: Numo::Libsvm::SvmType::C_SVC,
|
29
|
+
* kernel_type: Numo::Libsvm::KernelType::RBF,
|
30
|
+
* gamma: 2.0,
|
31
|
+
* C: 1,
|
32
|
+
* random_seed: 1
|
33
|
+
* }
|
34
|
+
* model = Numo::Libsvm.train(x, y, param)
|
35
|
+
*
|
36
|
+
* # Predict labels of test data.
|
37
|
+
* x_test = Numo::DFloat[[-0.4, -0.5], [0.5, -0.4]]
|
38
|
+
* result = Numo::Libsvm.predict(x_test, param, model)
|
39
|
+
* p result
|
40
|
+
* # Numo::DFloat#shape=[2]
|
41
|
+
* # [-1, 1]
|
42
|
+
*
|
19
43
|
* @raise [ArgumentError] If the sample array is not 2-dimensional, the label array is not 1-dimensional,
|
20
44
|
* the sample array and label array do not have the same number of samples, or
|
21
45
|
* the hyperparameter has an invalid value, this error is raised.
|
@@ -30,6 +54,8 @@ VALUE train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash)
|
|
30
54
|
narray_t* x_nary;
|
31
55
|
narray_t* y_nary;
|
32
56
|
char* err_msg;
|
57
|
+
VALUE random_seed;
|
58
|
+
VALUE verbose;
|
33
59
|
VALUE model_hash;
|
34
60
|
|
35
61
|
if (CLASS_OF(x_val) != numo_cDFloat) {
|
@@ -60,6 +86,11 @@ VALUE train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash)
|
|
60
86
|
return Qnil;
|
61
87
|
}
|
62
88
|
|
89
|
+
random_seed = rb_hash_aref(param_hash, ID2SYM(rb_intern("random_seed")));
|
90
|
+
if (!NIL_P(random_seed)) {
|
91
|
+
srand(NUM2UINT(random_seed));
|
92
|
+
}
|
93
|
+
|
63
94
|
param = rb_hash_to_svm_parameter(param_hash);
|
64
95
|
problem = dataset_to_svm_problem(x_val, y_val);
|
65
96
|
|
@@ -71,7 +102,11 @@ VALUE train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash)
|
|
71
102
|
return Qnil;
|
72
103
|
}
|
73
104
|
|
74
|
-
|
105
|
+
verbose = rb_hash_aref(param_hash, ID2SYM(rb_intern("verbose")));
|
106
|
+
if (verbose != Qtrue) {
|
107
|
+
svm_set_print_string_function(print_null);
|
108
|
+
}
|
109
|
+
|
75
110
|
model = svm_train(problem, param);
|
76
111
|
model_hash = svm_model_to_rb_hash(model);
|
77
112
|
svm_free_and_destroy_model(&model);
|
@@ -79,6 +114,9 @@ VALUE train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash)
|
|
79
114
|
xfree_svm_problem(problem);
|
80
115
|
xfree_svm_parameter(param);
|
81
116
|
|
117
|
+
RB_GC_GUARD(x_val);
|
118
|
+
RB_GC_GUARD(y_val);
|
119
|
+
|
82
120
|
return model_hash;
|
83
121
|
}
|
84
122
|
|
@@ -92,6 +130,30 @@ VALUE train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash)
|
|
92
130
|
* @param param [Hash] The parameters of an SVM model.
|
93
131
|
* @param n_folds [Integer] The number of folds.
|
94
132
|
*
|
133
|
+
* @example
|
134
|
+
* require 'numo/libsvm'
|
135
|
+
*
|
136
|
+
* # x: samples
|
137
|
+
* # y: labels
|
138
|
+
*
|
139
|
+
* # Define parameters of C-SVC with RBF Kernel.
|
140
|
+
* param = {
|
141
|
+
* svm_type: Numo::Libsvm::SvmType::C_SVC,
|
142
|
+
* kernel_type: Numo::Libsvm::KernelType::RBF,
|
143
|
+
* gamma: 1.0,
|
144
|
+
* C: 1,
|
145
|
+
* random_seed: 1,
|
146
|
+
* verbose: true
|
147
|
+
* }
|
148
|
+
*
|
149
|
+
* # Perform 5-cross validation.
|
150
|
+
* n_folds = 5
|
151
|
+
* res = Numo::Libsvm.cv(x, y, param, n_folds)
|
152
|
+
*
|
153
|
+
* # Print mean accuracy.
|
154
|
+
* mean_accuracy = y.eq(res).count.fdiv(y.size)
|
155
|
+
* puts "Accuracy: %.1f %%" % (100 * mean_accuracy)
|
156
|
+
*
|
95
157
|
* @raise [ArgumentError] If the sample array is not 2-dimensional, the label array is not 1-dimensional,
|
96
158
|
* the sample array and label array do not have the same number of samples, or
|
97
159
|
* the hyperparameter has an invalid value, this error is raised.
|
@@ -107,6 +169,8 @@ VALUE cross_validation(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash, V
|
|
107
169
|
narray_t* x_nary;
|
108
170
|
narray_t* y_nary;
|
109
171
|
char* err_msg;
|
172
|
+
VALUE random_seed;
|
173
|
+
VALUE verbose;
|
110
174
|
struct svm_problem* problem;
|
111
175
|
struct svm_parameter* param;
|
112
176
|
|
@@ -138,6 +202,11 @@ VALUE cross_validation(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash, V
|
|
138
202
|
return Qnil;
|
139
203
|
}
|
140
204
|
|
205
|
+
random_seed = rb_hash_aref(param_hash, ID2SYM(rb_intern("random_seed")));
|
206
|
+
if (!NIL_P(random_seed)) {
|
207
|
+
srand(NUM2UINT(random_seed));
|
208
|
+
}
|
209
|
+
|
141
210
|
param = rb_hash_to_svm_parameter(param_hash);
|
142
211
|
problem = dataset_to_svm_problem(x_val, y_val);
|
143
212
|
|
@@ -153,12 +222,19 @@ VALUE cross_validation(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash, V
|
|
153
222
|
t_val = rb_narray_new(numo_cDFloat, 1, t_shape);
|
154
223
|
t_pt = (double*)na_get_pointer_for_write(t_val);
|
155
224
|
|
156
|
-
|
225
|
+
verbose = rb_hash_aref(param_hash, ID2SYM(rb_intern("verbose")));
|
226
|
+
if (verbose != Qtrue) {
|
227
|
+
svm_set_print_string_function(print_null);
|
228
|
+
}
|
229
|
+
|
157
230
|
svm_cross_validation(problem, param, n_folds, t_pt);
|
158
231
|
|
159
232
|
xfree_svm_problem(problem);
|
160
233
|
xfree_svm_parameter(param);
|
161
234
|
|
235
|
+
RB_GC_GUARD(x_val);
|
236
|
+
RB_GC_GUARD(y_val);
|
237
|
+
|
162
238
|
return t_val;
|
163
239
|
}
|
164
240
|
|
@@ -184,9 +260,10 @@ VALUE predict(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash)
|
|
184
260
|
size_t y_shape[1];
|
185
261
|
VALUE y_val;
|
186
262
|
double* y_pt;
|
187
|
-
int i, j;
|
263
|
+
int i, j, k;
|
188
264
|
int n_samples;
|
189
265
|
int n_features;
|
266
|
+
int n_nonzero_features;
|
190
267
|
|
191
268
|
/* Obtain C data structures. */
|
192
269
|
if (CLASS_OF(x_val) != numo_cDFloat) {
|
@@ -215,21 +292,17 @@ VALUE predict(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash)
|
|
215
292
|
x_pt = (double*)na_get_pointer_for_read(x_val);
|
216
293
|
|
217
294
|
/* Predict values. */
|
218
|
-
x_nodes = ALLOC_N(struct svm_node, n_features + 1);
|
219
|
-
x_nodes[n_features].index = -1;
|
220
|
-
x_nodes[n_features].value = 0.0;
|
221
295
|
for (i = 0; i < n_samples; i++) {
|
222
|
-
|
223
|
-
x_nodes[j].index = j + 1;
|
224
|
-
x_nodes[j].value = (double)x_pt[i * n_features + j];
|
225
|
-
}
|
296
|
+
x_nodes = dbl_vec_to_svm_node(&x_pt[i * n_features], n_features);
|
226
297
|
y_pt[i] = svm_predict(model, x_nodes);
|
298
|
+
xfree(x_nodes);
|
227
299
|
}
|
228
300
|
|
229
|
-
xfree(x_nodes);
|
230
301
|
xfree_svm_model(model);
|
231
302
|
xfree_svm_parameter(param);
|
232
303
|
|
304
|
+
RB_GC_GUARD(x_val);
|
305
|
+
|
233
306
|
return y_val;
|
234
307
|
}
|
235
308
|
|
@@ -298,40 +371,30 @@ VALUE decision_function(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_h
|
|
298
371
|
|
299
372
|
/* Predict values. */
|
300
373
|
if (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) {
|
301
|
-
x_nodes = ALLOC_N(struct svm_node, n_features + 1);
|
302
|
-
x_nodes[n_features].index = -1;
|
303
|
-
x_nodes[n_features].value = 0.0;
|
304
374
|
for (i = 0; i < n_samples; i++) {
|
305
|
-
|
306
|
-
x_nodes[j].index = j + 1;
|
307
|
-
x_nodes[j].value = (double)x_pt[i * n_features + j];
|
308
|
-
}
|
375
|
+
x_nodes = dbl_vec_to_svm_node(&x_pt[i * n_features], n_features);
|
309
376
|
svm_predict_values(model, x_nodes, &y_pt[i]);
|
377
|
+
xfree(x_nodes);
|
310
378
|
}
|
311
|
-
xfree(x_nodes);
|
312
379
|
} else {
|
313
380
|
y_cols = (int)y_shape[1];
|
314
381
|
dec_values = ALLOC_N(double, y_cols);
|
315
|
-
x_nodes = ALLOC_N(struct svm_node, n_features + 1);
|
316
|
-
x_nodes[n_features].index = -1;
|
317
|
-
x_nodes[n_features].value = 0.0;
|
318
382
|
for (i = 0; i < n_samples; i++) {
|
319
|
-
|
320
|
-
x_nodes[j].index = j + 1;
|
321
|
-
x_nodes[j].value = (double)x_pt[i * n_features + j];
|
322
|
-
}
|
383
|
+
x_nodes = dbl_vec_to_svm_node(&x_pt[i * n_features], n_features);
|
323
384
|
svm_predict_values(model, x_nodes, dec_values);
|
385
|
+
xfree(x_nodes);
|
324
386
|
for (j = 0; j < y_cols; j++) {
|
325
387
|
y_pt[i * y_cols + j] = dec_values[j];
|
326
388
|
}
|
327
389
|
}
|
328
|
-
xfree(x_nodes);
|
329
390
|
xfree(dec_values);
|
330
391
|
}
|
331
392
|
|
332
393
|
xfree_svm_model(model);
|
333
394
|
xfree_svm_parameter(param);
|
334
395
|
|
396
|
+
RB_GC_GUARD(x_val);
|
397
|
+
|
335
398
|
return y_val;
|
336
399
|
}
|
337
400
|
|
@@ -393,26 +456,22 @@ VALUE predict_proba(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash)
|
|
393
456
|
|
394
457
|
/* Predict values. */
|
395
458
|
probs = ALLOC_N(double, model->nr_class);
|
396
|
-
x_nodes = ALLOC_N(struct svm_node, n_features + 1);
|
397
|
-
x_nodes[n_features].index = -1;
|
398
|
-
x_nodes[n_features].value = 0.0;
|
399
459
|
for (i = 0; i < n_samples; i++) {
|
400
|
-
|
401
|
-
x_nodes[j].index = j + 1;
|
402
|
-
x_nodes[j].value = (double)x_pt[i * n_features + j];
|
403
|
-
}
|
460
|
+
x_nodes = dbl_vec_to_svm_node(&x_pt[i * n_features], n_features);
|
404
461
|
svm_predict_probability(model, x_nodes, probs);
|
462
|
+
xfree(x_nodes);
|
405
463
|
for (j = 0; j < model->nr_class; j++) {
|
406
464
|
y_pt[i * model->nr_class + j] = probs[j];
|
407
465
|
}
|
408
466
|
}
|
409
|
-
xfree(x_nodes);
|
410
467
|
xfree(probs);
|
411
468
|
}
|
412
469
|
|
413
470
|
xfree_svm_model(model);
|
414
471
|
xfree_svm_parameter(param);
|
415
472
|
|
473
|
+
RB_GC_GUARD(x_val);
|
474
|
+
|
416
475
|
return y_val;
|
417
476
|
}
|
418
477
|
|
@@ -29,9 +29,12 @@ struct svm_problem* dataset_to_svm_problem(VALUE x_val, VALUE y_val)
|
|
29
29
|
narray_t* x_nary;
|
30
30
|
double* x_pt;
|
31
31
|
double* y_pt;
|
32
|
-
int i, j;
|
32
|
+
int i, j, k;
|
33
33
|
int n_samples;
|
34
34
|
int n_features;
|
35
|
+
int n_nonzero_features;
|
36
|
+
int is_padded;
|
37
|
+
int last_feature_id;
|
35
38
|
|
36
39
|
GetNArray(x_val, x_nary);
|
37
40
|
n_samples = (int)NA_SHAPE(x_nary)[0];
|
@@ -43,16 +46,45 @@ struct svm_problem* dataset_to_svm_problem(VALUE x_val, VALUE y_val)
|
|
43
46
|
problem->l = n_samples;
|
44
47
|
problem->x = ALLOC_N(struct svm_node*, n_samples);
|
45
48
|
problem->y = ALLOC_N(double, n_samples);
|
49
|
+
|
50
|
+
is_padded = 0;
|
46
51
|
for (i = 0; i < n_samples; i++) {
|
47
|
-
|
52
|
+
n_nonzero_features = 0;
|
48
53
|
for (j = 0; j < n_features; j++) {
|
49
|
-
|
50
|
-
|
54
|
+
if (x_pt[i * n_features + j] != 0.0) {
|
55
|
+
n_nonzero_features += 1;
|
56
|
+
last_feature_id = j + 1;
|
57
|
+
}
|
58
|
+
}
|
59
|
+
if (is_padded == 0 && last_feature_id == n_features) {
|
60
|
+
is_padded = 1;
|
61
|
+
}
|
62
|
+
if (is_padded == 1) {
|
63
|
+
problem->x[i] = ALLOC_N(struct svm_node, n_nonzero_features + 1);
|
64
|
+
} else {
|
65
|
+
problem->x[i] = ALLOC_N(struct svm_node, n_nonzero_features + 2);
|
66
|
+
}
|
67
|
+
for (j = 0, k = 0; j < n_features; j++) {
|
68
|
+
if (x_pt[i * n_features + j] != 0.0) {
|
69
|
+
problem->x[i][k].index = j + 1;
|
70
|
+
problem->x[i][k].value = (double)x_pt[i * n_features + j];
|
71
|
+
k++;
|
72
|
+
}
|
73
|
+
}
|
74
|
+
if (is_padded == 1) {
|
75
|
+
problem->x[i][n_nonzero_features].index = -1;
|
76
|
+
problem->x[i][n_nonzero_features].value = 0.0;
|
77
|
+
} else {
|
78
|
+
problem->x[i][n_nonzero_features].index = n_features;
|
79
|
+
problem->x[i][n_nonzero_features].value = 0.0;
|
80
|
+
problem->x[i][n_nonzero_features + 1].index = -1;
|
81
|
+
problem->x[i][n_nonzero_features + 1].value = 0.0;
|
51
82
|
}
|
52
|
-
problem->x[i][n_features].index = -1;
|
53
|
-
problem->x[i][n_features].value = 0.0;
|
54
83
|
problem->y[i] = y_pt[i];
|
55
84
|
}
|
56
85
|
|
86
|
+
RB_GC_GUARD(x_val);
|
87
|
+
RB_GC_GUARD(y_val);
|
88
|
+
|
57
89
|
return problem;
|
58
90
|
}
|
data/lib/numo/libsvm/version.rb
CHANGED
data/numo-libsvm.gemspec
CHANGED
@@ -28,14 +28,28 @@ Gem::Specification.new do |spec|
|
|
28
28
|
spec.files = Dir.chdir(File.expand_path(__dir__)) do
|
29
29
|
`git ls-files -z`.split("\x0").reject { |f| f.match(%r{^(test|spec|features)/}) }
|
30
30
|
end
|
31
|
+
|
32
|
+
gem_dir = File.expand_path(__dir__) + '/'
|
33
|
+
submodule_path = `git submodule --quiet foreach pwd`.split($OUTPUT_RECORD_SEPARATOR).first
|
34
|
+
submodule_relative_path = submodule_path.sub gem_dir, ''
|
35
|
+
spec.files << "#{submodule_relative_path}/svm.cpp"
|
36
|
+
spec.files << "#{submodule_relative_path}/svm.h"
|
37
|
+
|
31
38
|
spec.bindir = 'exe'
|
32
39
|
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
33
40
|
spec.require_paths = ['lib']
|
34
41
|
spec.extensions = ['ext/numo/libsvm/extconf.rb']
|
35
42
|
|
43
|
+
spec.metadata = {
|
44
|
+
'homepage_uri' => 'https://github.com/yoshoku/numo-libsvm',
|
45
|
+
'source_code_uri' => 'https://github.com/yoshoku/numo-libsvm',
|
46
|
+
'documentation_uri' => 'https://yoshoku.github.io/numo-libsvm/doc/'
|
47
|
+
}
|
48
|
+
|
36
49
|
spec.add_runtime_dependency 'numo-narray', '~> 0.9.1'
|
50
|
+
|
37
51
|
spec.add_development_dependency 'bundler', '~> 2.0'
|
38
|
-
spec.add_development_dependency 'rake', '~>
|
52
|
+
spec.add_development_dependency 'rake', '~> 12.0'
|
39
53
|
spec.add_development_dependency 'rake-compiler', '~> 1.0'
|
40
54
|
spec.add_development_dependency 'rspec', '~> 3.0'
|
41
55
|
end
|