numo-liblinear 1.0.0 → 1.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,7 +1,7 @@
1
1
  #ifndef _LIBLINEAR_H
2
2
  #define _LIBLINEAR_H
3
3
 
4
- #define LIBLINEAR_VERSION 230
4
+ #define LIBLINEAR_VERSION 241
5
5
 
6
6
  #ifdef __cplusplus
7
7
  extern "C" {
@@ -23,7 +23,7 @@ struct problem
23
23
  double bias; /* < 0 if no bias term */
24
24
  };
25
25
 
26
- enum { L2R_LR, L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, L1R_LR, L2R_LR_DUAL, L2R_L2LOSS_SVR = 11, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL }; /* solver_type */
26
+ enum { L2R_LR, L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, L1R_LR, L2R_LR_DUAL, L2R_L2LOSS_SVR = 11, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL, ONECLASS_SVM = 21 }; /* solver_type */
27
27
 
28
28
  struct parameter
29
29
  {
@@ -36,7 +36,9 @@ struct parameter
36
36
  int *weight_label;
37
37
  double* weight;
38
38
  double p;
39
+ double nu;
39
40
  double *init_sol;
41
+ int regularize_bias;
40
42
  };
41
43
 
42
44
  struct model
@@ -47,6 +49,7 @@ struct model
47
49
  double *w;
48
50
  int *label; /* label of each class */
49
51
  double bias;
52
+ double rho; /* one-class SVM only */
50
53
  };
51
54
 
52
55
  struct model* train(const struct problem *prob, const struct parameter *param);
@@ -65,6 +68,7 @@ int get_nr_class(const struct model *model_);
65
68
  void get_labels(const struct model *model_, int* label);
66
69
  double get_decfun_coef(const struct model *model_, int feat_idx, int label_idx);
67
70
  double get_decfun_bias(const struct model *model_, int label_idx);
71
+ double get_decfun_rho(const struct model *model_);
68
72
 
69
73
  void free_model_content(struct model *model_ptr);
70
74
  void free_and_destroy_model(struct model **model_ptr_ptr);
@@ -73,6 +77,7 @@ void destroy_param(struct parameter *param);
73
77
  const char *check_parameter(const struct problem *prob, const struct parameter *param);
74
78
  int check_probability_model(const struct model *model);
75
79
  int check_regression_model(const struct model *model);
80
+ int check_oneclass_model(const struct model *model);
76
81
  void set_print_string_function(void (*print_func) (const char*));
77
82
 
78
83
  #ifdef __cplusplus
@@ -0,0 +1,245 @@
1
+ #include <math.h>
2
+ #include <stdio.h>
3
+ #include <string.h>
4
+ #include <stdarg.h>
5
+ #include "newton.h"
6
+
7
+ #ifndef min
8
+ template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
9
+ #endif
10
+
11
+ #ifndef max
12
+ template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
13
+ #endif
14
+
15
+ #ifdef __cplusplus
16
+ extern "C" {
17
+ #endif
18
+
19
+ extern double dnrm2_(int *, double *, int *);
20
+ extern double ddot_(int *, double *, int *, double *, int *);
21
+ extern int daxpy_(int *, double *, double *, int *, double *, int *);
22
+ extern int dscal_(int *, double *, double *, int *);
23
+
24
+ #ifdef __cplusplus
25
+ }
26
+ #endif
27
+
28
+ static void default_print(const char *buf)
29
+ {
30
+ fputs(buf,stdout);
31
+ fflush(stdout);
32
+ }
33
+
34
+ // On entry *f must be the function value of w
35
+ // On exit w is updated and *f is the new function value
36
+ double function::linesearch_and_update(double *w, double *s, double *f, double *g, double alpha)
37
+ {
38
+ double gTs = 0;
39
+ double eta = 0.01;
40
+ int n = get_nr_variable();
41
+ int max_num_linesearch = 20;
42
+ double *w_new = new double[n];
43
+ double fold = *f;
44
+
45
+ for (int i=0;i<n;i++)
46
+ gTs += s[i] * g[i];
47
+
48
+ int num_linesearch = 0;
49
+ for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
50
+ {
51
+ for (int i=0;i<n;i++)
52
+ w_new[i] = w[i] + alpha*s[i];
53
+ *f = fun(w_new);
54
+ if (*f - fold <= eta * alpha * gTs)
55
+ break;
56
+ else
57
+ alpha *= 0.5;
58
+ }
59
+
60
+ if (num_linesearch >= max_num_linesearch)
61
+ {
62
+ *f = fold;
63
+ return 0;
64
+ }
65
+ else
66
+ memcpy(w, w_new, sizeof(double)*n);
67
+
68
+ delete [] w_new;
69
+ return alpha;
70
+ }
71
+
72
+ void NEWTON::info(const char *fmt,...)
73
+ {
74
+ char buf[BUFSIZ];
75
+ va_list ap;
76
+ va_start(ap,fmt);
77
+ vsprintf(buf,fmt,ap);
78
+ va_end(ap);
79
+ (*newton_print_string)(buf);
80
+ }
81
+
82
+ NEWTON::NEWTON(const function *fun_obj, double eps, double eps_cg, int max_iter)
83
+ {
84
+ this->fun_obj=const_cast<function *>(fun_obj);
85
+ this->eps=eps;
86
+ this->eps_cg=eps_cg;
87
+ this->max_iter=max_iter;
88
+ newton_print_string = default_print;
89
+ }
90
+
91
+ NEWTON::~NEWTON()
92
+ {
93
+ }
94
+
95
+ void NEWTON::newton(double *w)
96
+ {
97
+ int n = fun_obj->get_nr_variable();
98
+ int i, cg_iter;
99
+ double step_size;
100
+ double f, fold, actred;
101
+ double init_step_size = 1;
102
+ int search = 1, iter = 1, inc = 1;
103
+ double *s = new double[n];
104
+ double *r = new double[n];
105
+ double *g = new double[n];
106
+
107
+ const double alpha_pcg = 0.01;
108
+ double *M = new double[n];
109
+
110
+ // calculate gradient norm at w=0 for stopping condition.
111
+ double *w0 = new double[n];
112
+ for (i=0; i<n; i++)
113
+ w0[i] = 0;
114
+ fun_obj->fun(w0);
115
+ fun_obj->grad(w0, g);
116
+ double gnorm0 = dnrm2_(&n, g, &inc);
117
+ delete [] w0;
118
+
119
+ f = fun_obj->fun(w);
120
+ info("init f %5.3e\n", f);
121
+ fun_obj->grad(w, g);
122
+ double gnorm = dnrm2_(&n, g, &inc);
123
+
124
+ if (gnorm <= eps*gnorm0)
125
+ search = 0;
126
+
127
+ double *w_new = new double[n];
128
+ while (iter <= max_iter && search)
129
+ {
130
+ fun_obj->get_diag_preconditioner(M);
131
+ for(i=0; i<n; i++)
132
+ M[i] = (1-alpha_pcg) + alpha_pcg*M[i];
133
+ cg_iter = pcg(g, M, s, r);
134
+
135
+ fold = f;
136
+ step_size = fun_obj->linesearch_and_update(w, s, & f, g, init_step_size);
137
+
138
+ if (step_size == 0)
139
+ {
140
+ info("WARNING: line search fails\n");
141
+ break;
142
+ }
143
+
144
+ info("iter %2d f %5.3e |g| %5.3e CG %3d step_size %4.2e \n", iter, f, gnorm, cg_iter, step_size);
145
+
146
+ actred = fold - f;
147
+ iter++;
148
+
149
+ fun_obj->grad(w, g);
150
+
151
+ gnorm = dnrm2_(&n, g, &inc);
152
+ if (gnorm <= eps*gnorm0)
153
+ break;
154
+ if (f < -1.0e+32)
155
+ {
156
+ info("WARNING: f < -1.0e+32\n");
157
+ break;
158
+ }
159
+ if (fabs(actred) <= 1.0e-12*fabs(f))
160
+ {
161
+ info("WARNING: actred too small\n");
162
+ break;
163
+ }
164
+ }
165
+
166
+ delete[] g;
167
+ delete[] r;
168
+ delete[] w_new;
169
+ delete[] s;
170
+ delete[] M;
171
+ }
172
+
173
+ int NEWTON::pcg(double *g, double *M, double *s, double *r)
174
+ {
175
+ int i, inc = 1;
176
+ int n = fun_obj->get_nr_variable();
177
+ double one = 1;
178
+ double *d = new double[n];
179
+ double *Hd = new double[n];
180
+ double zTr, znewTrnew, alpha, beta, cgtol;
181
+ double *z = new double[n];
182
+ double Q = 0, newQ, Qdiff;
183
+
184
+ for (i=0; i<n; i++)
185
+ {
186
+ s[i] = 0;
187
+ r[i] = -g[i];
188
+ z[i] = r[i] / M[i];
189
+ d[i] = z[i];
190
+ }
191
+
192
+ zTr = ddot_(&n, z, &inc, r, &inc);
193
+ double gMinv_norm = sqrt(zTr);
194
+ cgtol = min(eps_cg, sqrt(gMinv_norm));
195
+ int cg_iter = 0;
196
+ int max_cg_iter = max(n, 5);
197
+
198
+ while (cg_iter < max_cg_iter)
199
+ {
200
+ cg_iter++;
201
+ fun_obj->Hv(d, Hd);
202
+
203
+ alpha = zTr/ddot_(&n, d, &inc, Hd, &inc);
204
+ daxpy_(&n, &alpha, d, &inc, s, &inc);
205
+ alpha = -alpha;
206
+ daxpy_(&n, &alpha, Hd, &inc, r, &inc);
207
+
208
+ // Using quadratic approximation as CG stopping criterion
209
+ newQ = -0.5*(ddot_(&n, s, &inc, r, &inc) - ddot_(&n, s, &inc, g, &inc));
210
+ Qdiff = newQ - Q;
211
+ if (newQ <= 0 && Qdiff <= 0)
212
+ {
213
+ if (cg_iter * Qdiff >= cgtol * newQ)
214
+ break;
215
+ }
216
+ else
217
+ {
218
+ info("WARNING: quadratic approximation > 0 or increasing in CG\n");
219
+ break;
220
+ }
221
+ Q = newQ;
222
+
223
+ for (i=0; i<n; i++)
224
+ z[i] = r[i] / M[i];
225
+ znewTrnew = ddot_(&n, z, &inc, r, &inc);
226
+ beta = znewTrnew/zTr;
227
+ dscal_(&n, &beta, d, &inc);
228
+ daxpy_(&n, &one, z, &inc, d, &inc);
229
+ zTr = znewTrnew;
230
+ }
231
+
232
+ if (cg_iter == max_cg_iter)
233
+ info("WARNING: reaching maximal number of CG steps\n");
234
+
235
+ delete[] d;
236
+ delete[] Hd;
237
+ delete[] z;
238
+
239
+ return(cg_iter);
240
+ }
241
+
242
+ void NEWTON::set_print_string(void (*print_string) (const char *buf))
243
+ {
244
+ newton_print_string = print_string;
245
+ }
@@ -1,5 +1,5 @@
1
- #ifndef _TRON_H
2
- #define _TRON_H
1
+ #ifndef _NEWTON_H
2
+ #define _NEWTON_H
3
3
 
4
4
  class function
5
5
  {
@@ -7,30 +7,31 @@ public:
7
7
  virtual double fun(double *w) = 0 ;
8
8
  virtual void grad(double *w, double *g) = 0 ;
9
9
  virtual void Hv(double *s, double *Hs) = 0 ;
10
-
11
10
  virtual int get_nr_variable(void) = 0 ;
12
11
  virtual void get_diag_preconditioner(double *M) = 0 ;
13
12
  virtual ~function(void){}
13
+
14
+ // base implementation in newton.cpp
15
+ virtual double linesearch_and_update(double *w, double *s, double *f, double *g, double alpha);
14
16
  };
15
17
 
16
- class TRON
18
+ class NEWTON
17
19
  {
18
20
  public:
19
- TRON(const function *fun_obj, double eps = 0.1, double eps_cg = 0.1, int max_iter = 1000);
20
- ~TRON();
21
+ NEWTON(const function *fun_obj, double eps = 0.1, double eps_cg = 0.5, int max_iter = 1000);
22
+ ~NEWTON();
21
23
 
22
- void tron(double *w);
24
+ void newton(double *w);
23
25
  void set_print_string(void (*i_print) (const char *buf));
24
26
 
25
27
  private:
26
- int trpcg(double delta, double *g, double *M, double *s, double *r, bool *reach_boundary);
27
- double norm_inf(int n, double *x);
28
+ int pcg(double *g, double *M, double *s, double *r);
28
29
 
29
30
  double eps;
30
31
  double eps_cg;
31
32
  int max_iter;
32
33
  function *fun_obj;
33
34
  void info(const char *fmt,...);
34
- void (*tron_print_string)(const char *buf);
35
+ void (*newton_print_string)(const char *buf);
35
36
  };
36
37
  #endif
@@ -14,6 +14,8 @@ struct model* rb_hash_to_model(VALUE model_hash)
14
14
  model->label = nary_to_int_vec(el);
15
15
  el = rb_hash_aref(model_hash, ID2SYM(rb_intern("bias")));
16
16
  model->bias = NUM2DBL(el);
17
+ el = rb_hash_aref(model_hash, ID2SYM(rb_intern("rho")));
18
+ model->rho = NUM2DBL(el);
17
19
  return model;
18
20
  }
19
21
 
@@ -29,6 +31,7 @@ VALUE model_to_rb_hash(struct model* const model)
29
31
  rb_hash_aset(model_hash, ID2SYM(rb_intern("label")),
30
32
  model->label ? int_vec_to_nary(model->label, model->nr_class) : Qnil);
31
33
  rb_hash_aset(model_hash, ID2SYM(rb_intern("bias")), DBL2NUM(model->bias));
34
+ rb_hash_aset(model_hash, ID2SYM(rb_intern("rho")), DBL2NUM(model->rho));
32
35
  return model_hash;
33
36
  }
34
37
 
@@ -5,36 +5,39 @@ struct parameter* rb_hash_to_parameter(VALUE param_hash)
5
5
  VALUE el;
6
6
  struct parameter* param = ALLOC(struct parameter);
7
7
  el = rb_hash_aref(param_hash, ID2SYM(rb_intern("solver_type")));
8
- param->solver_type = !NIL_P(el) ? NUM2INT(el) : L2R_L2LOSS_SVC_DUAL;
8
+ param->solver_type = !NIL_P(el) ? NUM2INT(el) : L2R_L2LOSS_SVC_DUAL;
9
9
  el = rb_hash_aref(param_hash, ID2SYM(rb_intern("eps")));
10
- if (!NIL_P(el)) {
10
+ if (!NIL_P(el)) {
11
11
  param->eps = NUM2DBL(el);
12
- } else {
13
- switch(param->solver_type)
14
- {
15
- case L2R_LR:
16
- case L2R_L2LOSS_SVC:
17
- param->eps = 0.01;
18
- break;
19
- case L2R_L2LOSS_SVR:
20
- param->eps = 0.0001;
21
- break;
22
- case L2R_L2LOSS_SVC_DUAL:
23
- case L2R_L1LOSS_SVC_DUAL:
24
- case MCSVM_CS:
25
- case L2R_LR_DUAL:
26
- param->eps = 0.1;
27
- break;
28
- case L1R_L2LOSS_SVC:
29
- case L1R_LR:
30
- param->eps = 0.01;
31
- break;
32
- case L2R_L1LOSS_SVR_DUAL:
33
- case L2R_L2LOSS_SVR_DUAL:
34
- param->eps = 0.1;
35
- break;
12
+ } else {
13
+ switch(param->solver_type)
14
+ {
15
+ case L2R_LR:
16
+ case L2R_L2LOSS_SVC:
17
+ param->eps = 0.01;
18
+ break;
19
+ case L2R_L2LOSS_SVR:
20
+ param->eps = 0.0001;
21
+ break;
22
+ case L2R_L2LOSS_SVC_DUAL:
23
+ case L2R_L1LOSS_SVC_DUAL:
24
+ case MCSVM_CS:
25
+ case L2R_LR_DUAL:
26
+ param->eps = 0.1;
27
+ break;
28
+ case L1R_L2LOSS_SVC:
29
+ case L1R_LR:
30
+ param->eps = 0.01;
31
+ break;
32
+ case L2R_L1LOSS_SVR_DUAL:
33
+ case L2R_L2LOSS_SVR_DUAL:
34
+ param->eps = 0.1;
35
+ break;
36
+ case ONECLASS_SVM:
37
+ param->eps = 0.01;
38
+ break;
36
39
  }
37
- }
40
+ }
38
41
  el = rb_hash_aref(param_hash, ID2SYM(rb_intern("C")));
39
42
  param->C = !NIL_P(el) ? NUM2DBL(el) : 1;
40
43
  el = rb_hash_aref(param_hash, ID2SYM(rb_intern("nr_weight")));
@@ -53,11 +56,14 @@ struct parameter* rb_hash_to_parameter(VALUE param_hash)
53
56
  }
54
57
  el = rb_hash_aref(param_hash, ID2SYM(rb_intern("p")));
55
58
  param->p = !NIL_P(el) ? NUM2DBL(el) : 0.1;
59
+ el = rb_hash_aref(param_hash, ID2SYM(rb_intern("nu")));
60
+ param->nu = !NIL_P(el) ? NUM2DBL(el) : 0.5;
56
61
  el = rb_hash_aref(param_hash, ID2SYM(rb_intern("init_sol")));
57
62
  param->init_sol = NULL;
58
63
  if (!NIL_P(el)) {
59
64
  param->init_sol = nary_to_dbl_vec(el);
60
65
  }
66
+ param->regularize_bias = 1;
61
67
  return param;
62
68
  }
63
69
 
@@ -73,6 +79,7 @@ VALUE parameter_to_rb_hash(struct parameter* const param)
73
79
  rb_hash_aset(param_hash, ID2SYM(rb_intern("weight")),
74
80
  param->weight ? dbl_vec_to_nary(param->weight, param->nr_weight) : Qnil);
75
81
  rb_hash_aset(param_hash, ID2SYM(rb_intern("p")), DBL2NUM(param->p));
82
+ rb_hash_aset(param_hash, ID2SYM(rb_intern("nu")), DBL2NUM(param->nu));
76
83
  rb_hash_aset(param_hash, ID2SYM(rb_intern("init_sol")), Qnil);
77
84
  return param_hash;
78
85
  }
@@ -17,18 +17,20 @@ void rb_init_solver_type_module()
17
17
  rb_define_const(mSolverType, "L2R_L2LOSS_SVC", INT2NUM(L2R_L2LOSS_SVC));
18
18
  /* L2-regularized L1-loss support vector classification (dual) */
19
19
  rb_define_const(mSolverType, "L2R_L1LOSS_SVC_DUAL", INT2NUM(L2R_L1LOSS_SVC_DUAL));
20
- /* support vector classification by Crammer and Singer */
20
+ /* support vector classification by Crammer and Singer */
21
21
  rb_define_const(mSolverType, "MCSVM_CS", INT2NUM(MCSVM_CS));
22
- /* L1-regularized L2-loss support vector classification */
22
+ /* L1-regularized L2-loss support vector classification */
23
23
  rb_define_const(mSolverType, "L1R_L2LOSS_SVC", INT2NUM(L1R_L2LOSS_SVC));
24
- /* L1-regularized logistic regression */
24
+ /* L1-regularized logistic regression */
25
25
  rb_define_const(mSolverType, "L1R_LR", INT2NUM(L1R_LR));
26
26
  /* L2-regularized logistic regression (dual) */
27
27
  rb_define_const(mSolverType, "L2R_LR_DUAL", INT2NUM(L2R_LR_DUAL));
28
- /* L2-regularized L2-loss support vector regression (primal) */
28
+ /* L2-regularized L2-loss support vector regression (primal) */
29
29
  rb_define_const(mSolverType, "L2R_L2LOSS_SVR", INT2NUM(L2R_L2LOSS_SVR));
30
- /* L2-regularized L2-loss support vector regression (dual) */
30
+ /* L2-regularized L2-loss support vector regression (dual) */
31
31
  rb_define_const(mSolverType, "L2R_L2LOSS_SVR_DUAL", INT2NUM(L2R_L2LOSS_SVR_DUAL));
32
- /* L2-regularized L1-loss support vector regression (dual) */
32
+ /* L2-regularized L1-loss support vector regression (dual) */
33
33
  rb_define_const(mSolverType, "L2R_L1LOSS_SVR_DUAL", INT2NUM(L2R_L1LOSS_SVR_DUAL));
34
+ /* one-class support vector machine (dual) */
35
+ rb_define_const(mSolverType, "ONECLASS_SVM", INT2NUM(ONECLASS_SVM));
34
36
  }