numo-liblinear 0.3.0 → 1.1.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +5 -5
- data/.github/workflows/build.yml +27 -0
- data/.gitmodules +3 -0
- data/CHANGELOG.md +20 -0
- data/LICENSE.txt +1 -1
- data/README.md +13 -25
- data/ext/numo/liblinear/converter.c +31 -0
- data/ext/numo/liblinear/converter.h +2 -0
- data/ext/numo/liblinear/extconf.rb +7 -8
- data/ext/numo/liblinear/liblinear/blas/blas.h +25 -0
- data/ext/numo/liblinear/liblinear/blas/blasp.h +438 -0
- data/ext/numo/liblinear/liblinear/blas/daxpy.c +57 -0
- data/ext/numo/liblinear/liblinear/blas/ddot.c +58 -0
- data/ext/numo/liblinear/liblinear/blas/dnrm2.c +70 -0
- data/ext/numo/liblinear/liblinear/blas/dscal.c +52 -0
- data/ext/numo/liblinear/liblinear/linear.cpp +3725 -0
- data/ext/numo/liblinear/liblinear/linear.h +88 -0
- data/ext/numo/liblinear/liblinear/newton.cpp +245 -0
- data/ext/numo/liblinear/liblinear/newton.h +37 -0
- data/ext/numo/liblinear/liblinearext.c +57 -34
- data/ext/numo/liblinear/model.c +3 -0
- data/ext/numo/liblinear/parameter.c +34 -27
- data/ext/numo/liblinear/problem.c +37 -6
- data/ext/numo/liblinear/solver_type.c +8 -6
- data/lib/numo/liblinear/version.rb +1 -1
- data/numo-liblinear.gemspec +15 -1
- metadata +24 -11
- data/.travis.yml +0 -14
@@ -0,0 +1,57 @@
|
|
1
|
+
#include "blas.h"
|
2
|
+
|
3
|
+
#ifdef __cplusplus
|
4
|
+
extern "C" {
|
5
|
+
#endif
|
6
|
+
|
7
|
+
int daxpy_(int *n, double *sa, double *sx, int *incx, double *sy,
|
8
|
+
int *incy)
|
9
|
+
{
|
10
|
+
long int i, m, ix, iy, nn, iincx, iincy;
|
11
|
+
register double ssa;
|
12
|
+
|
13
|
+
/* constant times a vector plus a vector.
|
14
|
+
uses unrolled loop for increments equal to one.
|
15
|
+
jack dongarra, linpack, 3/11/78.
|
16
|
+
modified 12/3/93, array(1) declarations changed to array(*) */
|
17
|
+
|
18
|
+
/* Dereference inputs */
|
19
|
+
nn = *n;
|
20
|
+
ssa = *sa;
|
21
|
+
iincx = *incx;
|
22
|
+
iincy = *incy;
|
23
|
+
|
24
|
+
if( nn > 0 && ssa != 0.0 )
|
25
|
+
{
|
26
|
+
if (iincx == 1 && iincy == 1) /* code for both increments equal to 1 */
|
27
|
+
{
|
28
|
+
m = nn-3;
|
29
|
+
for (i = 0; i < m; i += 4)
|
30
|
+
{
|
31
|
+
sy[i] += ssa * sx[i];
|
32
|
+
sy[i+1] += ssa * sx[i+1];
|
33
|
+
sy[i+2] += ssa * sx[i+2];
|
34
|
+
sy[i+3] += ssa * sx[i+3];
|
35
|
+
}
|
36
|
+
for ( ; i < nn; ++i) /* clean-up loop */
|
37
|
+
sy[i] += ssa * sx[i];
|
38
|
+
}
|
39
|
+
else /* code for unequal increments or equal increments not equal to 1 */
|
40
|
+
{
|
41
|
+
ix = iincx >= 0 ? 0 : (1 - nn) * iincx;
|
42
|
+
iy = iincy >= 0 ? 0 : (1 - nn) * iincy;
|
43
|
+
for (i = 0; i < nn; i++)
|
44
|
+
{
|
45
|
+
sy[iy] += ssa * sx[ix];
|
46
|
+
ix += iincx;
|
47
|
+
iy += iincy;
|
48
|
+
}
|
49
|
+
}
|
50
|
+
}
|
51
|
+
|
52
|
+
return 0;
|
53
|
+
} /* daxpy_ */
|
54
|
+
|
55
|
+
#ifdef __cplusplus
|
56
|
+
}
|
57
|
+
#endif
|
@@ -0,0 +1,58 @@
|
|
1
|
+
#include "blas.h"
|
2
|
+
|
3
|
+
#ifdef __cplusplus
|
4
|
+
extern "C" {
|
5
|
+
#endif
|
6
|
+
|
7
|
+
double ddot_(int *n, double *sx, int *incx, double *sy, int *incy)
|
8
|
+
{
|
9
|
+
long int i, m, nn, iincx, iincy;
|
10
|
+
double stemp;
|
11
|
+
long int ix, iy;
|
12
|
+
|
13
|
+
/* forms the dot product of two vectors.
|
14
|
+
uses unrolled loops for increments equal to one.
|
15
|
+
jack dongarra, linpack, 3/11/78.
|
16
|
+
modified 12/3/93, array(1) declarations changed to array(*) */
|
17
|
+
|
18
|
+
/* Dereference inputs */
|
19
|
+
nn = *n;
|
20
|
+
iincx = *incx;
|
21
|
+
iincy = *incy;
|
22
|
+
|
23
|
+
stemp = 0.0;
|
24
|
+
if (nn > 0)
|
25
|
+
{
|
26
|
+
if (iincx == 1 && iincy == 1) /* code for both increments equal to 1 */
|
27
|
+
{
|
28
|
+
m = nn-4;
|
29
|
+
for (i = 0; i < m; i += 5)
|
30
|
+
stemp += sx[i] * sy[i] + sx[i+1] * sy[i+1] + sx[i+2] * sy[i+2] +
|
31
|
+
sx[i+3] * sy[i+3] + sx[i+4] * sy[i+4];
|
32
|
+
|
33
|
+
for ( ; i < nn; i++) /* clean-up loop */
|
34
|
+
stemp += sx[i] * sy[i];
|
35
|
+
}
|
36
|
+
else /* code for unequal increments or equal increments not equal to 1 */
|
37
|
+
{
|
38
|
+
ix = 0;
|
39
|
+
iy = 0;
|
40
|
+
if (iincx < 0)
|
41
|
+
ix = (1 - nn) * iincx;
|
42
|
+
if (iincy < 0)
|
43
|
+
iy = (1 - nn) * iincy;
|
44
|
+
for (i = 0; i < nn; i++)
|
45
|
+
{
|
46
|
+
stemp += sx[ix] * sy[iy];
|
47
|
+
ix += iincx;
|
48
|
+
iy += iincy;
|
49
|
+
}
|
50
|
+
}
|
51
|
+
}
|
52
|
+
|
53
|
+
return stemp;
|
54
|
+
} /* ddot_ */
|
55
|
+
|
56
|
+
#ifdef __cplusplus
|
57
|
+
}
|
58
|
+
#endif
|
@@ -0,0 +1,70 @@
|
|
1
|
+
#include <math.h> /* Needed for fabs() and sqrt() */
|
2
|
+
#include "blas.h"
|
3
|
+
|
4
|
+
#ifdef __cplusplus
|
5
|
+
extern "C" {
|
6
|
+
#endif
|
7
|
+
|
8
|
+
double dnrm2_(int *n, double *x, int *incx)
|
9
|
+
{
|
10
|
+
long int ix, nn, iincx;
|
11
|
+
double norm, scale, absxi, ssq, temp;
|
12
|
+
|
13
|
+
/* DNRM2 returns the euclidean norm of a vector via the function
|
14
|
+
name, so that
|
15
|
+
|
16
|
+
DNRM2 := sqrt( x'*x )
|
17
|
+
|
18
|
+
-- This version written on 25-October-1982.
|
19
|
+
Modified on 14-October-1993 to inline the call to SLASSQ.
|
20
|
+
Sven Hammarling, Nag Ltd. */
|
21
|
+
|
22
|
+
/* Dereference inputs */
|
23
|
+
nn = *n;
|
24
|
+
iincx = *incx;
|
25
|
+
|
26
|
+
if( nn > 0 && iincx > 0 )
|
27
|
+
{
|
28
|
+
if (nn == 1)
|
29
|
+
{
|
30
|
+
norm = fabs(x[0]);
|
31
|
+
}
|
32
|
+
else
|
33
|
+
{
|
34
|
+
scale = 0.0;
|
35
|
+
ssq = 1.0;
|
36
|
+
|
37
|
+
/* The following loop is equivalent to this call to the LAPACK
|
38
|
+
auxiliary routine: CALL SLASSQ( N, X, INCX, SCALE, SSQ ) */
|
39
|
+
|
40
|
+
for (ix=(nn-1)*iincx; ix>=0; ix-=iincx)
|
41
|
+
{
|
42
|
+
if (x[ix] != 0.0)
|
43
|
+
{
|
44
|
+
absxi = fabs(x[ix]);
|
45
|
+
if (scale < absxi)
|
46
|
+
{
|
47
|
+
temp = scale / absxi;
|
48
|
+
ssq = ssq * (temp * temp) + 1.0;
|
49
|
+
scale = absxi;
|
50
|
+
}
|
51
|
+
else
|
52
|
+
{
|
53
|
+
temp = absxi / scale;
|
54
|
+
ssq += temp * temp;
|
55
|
+
}
|
56
|
+
}
|
57
|
+
}
|
58
|
+
norm = scale * sqrt(ssq);
|
59
|
+
}
|
60
|
+
}
|
61
|
+
else
|
62
|
+
norm = 0.0;
|
63
|
+
|
64
|
+
return norm;
|
65
|
+
|
66
|
+
} /* dnrm2_ */
|
67
|
+
|
68
|
+
#ifdef __cplusplus
|
69
|
+
}
|
70
|
+
#endif
|
@@ -0,0 +1,52 @@
|
|
1
|
+
#include "blas.h"
|
2
|
+
|
3
|
+
#ifdef __cplusplus
|
4
|
+
extern "C" {
|
5
|
+
#endif
|
6
|
+
|
7
|
+
int dscal_(int *n, double *sa, double *sx, int *incx)
|
8
|
+
{
|
9
|
+
long int i, m, nincx, nn, iincx;
|
10
|
+
double ssa;
|
11
|
+
|
12
|
+
/* scales a vector by a constant.
|
13
|
+
uses unrolled loops for increment equal to 1.
|
14
|
+
jack dongarra, linpack, 3/11/78.
|
15
|
+
modified 3/93 to return if incx .le. 0.
|
16
|
+
modified 12/3/93, array(1) declarations changed to array(*) */
|
17
|
+
|
18
|
+
/* Dereference inputs */
|
19
|
+
nn = *n;
|
20
|
+
iincx = *incx;
|
21
|
+
ssa = *sa;
|
22
|
+
|
23
|
+
if (nn > 0 && iincx > 0)
|
24
|
+
{
|
25
|
+
if (iincx == 1) /* code for increment equal to 1 */
|
26
|
+
{
|
27
|
+
m = nn-4;
|
28
|
+
for (i = 0; i < m; i += 5)
|
29
|
+
{
|
30
|
+
sx[i] = ssa * sx[i];
|
31
|
+
sx[i+1] = ssa * sx[i+1];
|
32
|
+
sx[i+2] = ssa * sx[i+2];
|
33
|
+
sx[i+3] = ssa * sx[i+3];
|
34
|
+
sx[i+4] = ssa * sx[i+4];
|
35
|
+
}
|
36
|
+
for ( ; i < nn; ++i) /* clean-up loop */
|
37
|
+
sx[i] = ssa * sx[i];
|
38
|
+
}
|
39
|
+
else /* code for increment not equal to 1 */
|
40
|
+
{
|
41
|
+
nincx = nn * iincx;
|
42
|
+
for (i = 0; i < nincx; i += iincx)
|
43
|
+
sx[i] = ssa * sx[i];
|
44
|
+
}
|
45
|
+
}
|
46
|
+
|
47
|
+
return 0;
|
48
|
+
} /* dscal_ */
|
49
|
+
|
50
|
+
#ifdef __cplusplus
|
51
|
+
}
|
52
|
+
#endif
|
@@ -0,0 +1,3725 @@
|
|
1
|
+
#include <math.h>
|
2
|
+
#include <stdio.h>
|
3
|
+
#include <stdlib.h>
|
4
|
+
#include <string.h>
|
5
|
+
#include <stdarg.h>
|
6
|
+
#include <locale.h>
|
7
|
+
#include "linear.h"
|
8
|
+
#include "newton.h"
|
9
|
+
int liblinear_version = LIBLINEAR_VERSION;
|
10
|
+
typedef signed char schar;
|
11
|
+
template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
|
12
|
+
#ifndef min
|
13
|
+
template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
|
14
|
+
#endif
|
15
|
+
#ifndef max
|
16
|
+
template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
|
17
|
+
#endif
|
18
|
+
template <class S, class T> static inline void clone(T*& dst, S* src, int n)
|
19
|
+
{
|
20
|
+
dst = new T[n];
|
21
|
+
memcpy((void *)dst,(void *)src,sizeof(T)*n);
|
22
|
+
}
|
23
|
+
#define INF HUGE_VAL
|
24
|
+
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
|
25
|
+
|
26
|
+
static void print_string_stdout(const char *s)
|
27
|
+
{
|
28
|
+
fputs(s,stdout);
|
29
|
+
fflush(stdout);
|
30
|
+
}
|
31
|
+
static void print_null(const char *s) {}
|
32
|
+
|
33
|
+
static void (*liblinear_print_string) (const char *) = &print_string_stdout;
|
34
|
+
|
35
|
+
#if 1
|
36
|
+
static void info(const char *fmt,...)
|
37
|
+
{
|
38
|
+
char buf[BUFSIZ];
|
39
|
+
va_list ap;
|
40
|
+
va_start(ap,fmt);
|
41
|
+
vsprintf(buf,fmt,ap);
|
42
|
+
va_end(ap);
|
43
|
+
(*liblinear_print_string)(buf);
|
44
|
+
}
|
45
|
+
#else
|
46
|
+
static void info(const char *fmt,...) {}
|
47
|
+
#endif
|
48
|
+
class sparse_operator
|
49
|
+
{
|
50
|
+
public:
|
51
|
+
static double nrm2_sq(const feature_node *x)
|
52
|
+
{
|
53
|
+
double ret = 0;
|
54
|
+
while(x->index != -1)
|
55
|
+
{
|
56
|
+
ret += x->value*x->value;
|
57
|
+
x++;
|
58
|
+
}
|
59
|
+
return (ret);
|
60
|
+
}
|
61
|
+
|
62
|
+
static double dot(const double *s, const feature_node *x)
|
63
|
+
{
|
64
|
+
double ret = 0;
|
65
|
+
while(x->index != -1)
|
66
|
+
{
|
67
|
+
ret += s[x->index-1]*x->value;
|
68
|
+
x++;
|
69
|
+
}
|
70
|
+
return (ret);
|
71
|
+
}
|
72
|
+
|
73
|
+
static double sparse_dot(const feature_node *x1, const feature_node *x2)
|
74
|
+
{
|
75
|
+
double ret = 0;
|
76
|
+
while(x1->index != -1 && x2->index != -1)
|
77
|
+
{
|
78
|
+
if(x1->index == x2->index)
|
79
|
+
{
|
80
|
+
ret += x1->value * x2->value;
|
81
|
+
++x1;
|
82
|
+
++x2;
|
83
|
+
}
|
84
|
+
else
|
85
|
+
{
|
86
|
+
if(x1->index > x2->index)
|
87
|
+
++x2;
|
88
|
+
else
|
89
|
+
++x1;
|
90
|
+
}
|
91
|
+
}
|
92
|
+
return (ret);
|
93
|
+
}
|
94
|
+
|
95
|
+
static void axpy(const double a, const feature_node *x, double *y)
|
96
|
+
{
|
97
|
+
while(x->index != -1)
|
98
|
+
{
|
99
|
+
y[x->index-1] += a*x->value;
|
100
|
+
x++;
|
101
|
+
}
|
102
|
+
}
|
103
|
+
};
|
104
|
+
|
105
|
+
// L2-regularized empirical risk minimization
|
106
|
+
// min_w w^Tw/2 + \sum C_i \xi(w^Tx_i), where \xi() is the loss
|
107
|
+
|
108
|
+
class l2r_erm_fun: public function
|
109
|
+
{
|
110
|
+
public:
|
111
|
+
l2r_erm_fun(const problem *prob, const parameter *param, double *C);
|
112
|
+
~l2r_erm_fun();
|
113
|
+
|
114
|
+
double fun(double *w);
|
115
|
+
double linesearch_and_update(double *w, double *d, double *f, double *g, double alpha);
|
116
|
+
int get_nr_variable(void);
|
117
|
+
|
118
|
+
protected:
|
119
|
+
virtual double C_times_loss(int i, double wx_i) = 0;
|
120
|
+
void Xv(double *v, double *Xv);
|
121
|
+
void XTv(double *v, double *XTv);
|
122
|
+
|
123
|
+
double *C;
|
124
|
+
const problem *prob;
|
125
|
+
double *wx;
|
126
|
+
double *tmp; // a working array
|
127
|
+
double wTw;
|
128
|
+
int regularize_bias;
|
129
|
+
};
|
130
|
+
|
131
|
+
l2r_erm_fun::l2r_erm_fun(const problem *prob, const parameter *param, double *C)
|
132
|
+
{
|
133
|
+
int l=prob->l;
|
134
|
+
|
135
|
+
this->prob = prob;
|
136
|
+
|
137
|
+
wx = new double[l];
|
138
|
+
tmp = new double[l];
|
139
|
+
this->C = C;
|
140
|
+
this->regularize_bias = param->regularize_bias;
|
141
|
+
}
|
142
|
+
|
143
|
+
l2r_erm_fun::~l2r_erm_fun()
|
144
|
+
{
|
145
|
+
delete[] wx;
|
146
|
+
delete[] tmp;
|
147
|
+
}
|
148
|
+
|
149
|
+
double l2r_erm_fun::fun(double *w)
|
150
|
+
{
|
151
|
+
int i;
|
152
|
+
double f=0;
|
153
|
+
int l=prob->l;
|
154
|
+
int w_size=get_nr_variable();
|
155
|
+
|
156
|
+
wTw = 0;
|
157
|
+
Xv(w, wx);
|
158
|
+
|
159
|
+
for(i=0;i<w_size;i++)
|
160
|
+
wTw += w[i]*w[i];
|
161
|
+
if(regularize_bias == 0)
|
162
|
+
wTw -= w[w_size-1]*w[w_size-1];
|
163
|
+
for(i=0;i<l;i++)
|
164
|
+
f += C_times_loss(i, wx[i]);
|
165
|
+
f = f + 0.5 * wTw;
|
166
|
+
|
167
|
+
return(f);
|
168
|
+
}
|
169
|
+
|
170
|
+
int l2r_erm_fun::get_nr_variable(void)
|
171
|
+
{
|
172
|
+
return prob->n;
|
173
|
+
}
|
174
|
+
|
175
|
+
// On entry *f must be the function value of w
|
176
|
+
// On exit w is updated and *f is the new function value
|
177
|
+
double l2r_erm_fun::linesearch_and_update(double *w, double *s, double *f, double *g, double alpha)
|
178
|
+
{
|
179
|
+
int i;
|
180
|
+
int l = prob->l;
|
181
|
+
double sTs = 0;
|
182
|
+
double wTs = 0;
|
183
|
+
double gTs = 0;
|
184
|
+
double eta = 0.01;
|
185
|
+
int w_size = get_nr_variable();
|
186
|
+
int max_num_linesearch = 20;
|
187
|
+
double fold = *f;
|
188
|
+
Xv(s, tmp);
|
189
|
+
|
190
|
+
for (i=0;i<w_size;i++)
|
191
|
+
{
|
192
|
+
sTs += s[i] * s[i];
|
193
|
+
wTs += s[i] * w[i];
|
194
|
+
gTs += s[i] * g[i];
|
195
|
+
}
|
196
|
+
if(regularize_bias == 0)
|
197
|
+
{
|
198
|
+
// bias not used in calculating (w + \alpha s)^T (w + \alpha s)
|
199
|
+
sTs -= s[w_size-1] * s[w_size-1];
|
200
|
+
wTs -= s[w_size-1] * w[w_size-1];
|
201
|
+
}
|
202
|
+
|
203
|
+
int num_linesearch = 0;
|
204
|
+
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
|
205
|
+
{
|
206
|
+
double loss = 0;
|
207
|
+
for(i=0;i<l;i++)
|
208
|
+
{
|
209
|
+
double inner_product = tmp[i] * alpha + wx[i];
|
210
|
+
loss += C_times_loss(i, inner_product);
|
211
|
+
}
|
212
|
+
*f = loss + (alpha * alpha * sTs + wTw) / 2.0 + alpha * wTs;
|
213
|
+
if (*f - fold <= eta * alpha * gTs)
|
214
|
+
{
|
215
|
+
for (i=0;i<l;i++)
|
216
|
+
wx[i] += alpha * tmp[i];
|
217
|
+
break;
|
218
|
+
}
|
219
|
+
else
|
220
|
+
alpha *= 0.5;
|
221
|
+
}
|
222
|
+
|
223
|
+
if (num_linesearch >= max_num_linesearch)
|
224
|
+
{
|
225
|
+
*f = fold;
|
226
|
+
return 0;
|
227
|
+
}
|
228
|
+
else
|
229
|
+
for (i=0;i<w_size;i++)
|
230
|
+
w[i] += alpha * s[i];
|
231
|
+
|
232
|
+
wTw += alpha * alpha * sTs + 2* alpha * wTs;
|
233
|
+
return alpha;
|
234
|
+
}
|
235
|
+
|
236
|
+
void l2r_erm_fun::Xv(double *v, double *Xv)
|
237
|
+
{
|
238
|
+
int i;
|
239
|
+
int l=prob->l;
|
240
|
+
feature_node **x=prob->x;
|
241
|
+
|
242
|
+
for(i=0;i<l;i++)
|
243
|
+
Xv[i]=sparse_operator::dot(v, x[i]);
|
244
|
+
}
|
245
|
+
|
246
|
+
void l2r_erm_fun::XTv(double *v, double *XTv)
|
247
|
+
{
|
248
|
+
int i;
|
249
|
+
int l=prob->l;
|
250
|
+
int w_size=get_nr_variable();
|
251
|
+
feature_node **x=prob->x;
|
252
|
+
|
253
|
+
for(i=0;i<w_size;i++)
|
254
|
+
XTv[i]=0;
|
255
|
+
for(i=0;i<l;i++)
|
256
|
+
sparse_operator::axpy(v[i], x[i], XTv);
|
257
|
+
}
|
258
|
+
|
259
|
+
class l2r_lr_fun: public l2r_erm_fun
|
260
|
+
{
|
261
|
+
public:
|
262
|
+
l2r_lr_fun(const problem *prob, const parameter *param, double *C);
|
263
|
+
~l2r_lr_fun();
|
264
|
+
|
265
|
+
void grad(double *w, double *g);
|
266
|
+
void Hv(double *s, double *Hs);
|
267
|
+
|
268
|
+
void get_diag_preconditioner(double *M);
|
269
|
+
|
270
|
+
private:
|
271
|
+
double *D;
|
272
|
+
double C_times_loss(int i, double wx_i);
|
273
|
+
};
|
274
|
+
|
275
|
+
l2r_lr_fun::l2r_lr_fun(const problem *prob, const parameter *param, double *C):
|
276
|
+
l2r_erm_fun(prob, param, C)
|
277
|
+
{
|
278
|
+
int l=prob->l;
|
279
|
+
D = new double[l];
|
280
|
+
}
|
281
|
+
|
282
|
+
l2r_lr_fun::~l2r_lr_fun()
|
283
|
+
{
|
284
|
+
delete[] D;
|
285
|
+
}
|
286
|
+
|
287
|
+
double l2r_lr_fun::C_times_loss(int i, double wx_i)
|
288
|
+
{
|
289
|
+
double ywx_i = wx_i * prob->y[i];
|
290
|
+
if (ywx_i >= 0)
|
291
|
+
return C[i]*log(1 + exp(-ywx_i));
|
292
|
+
else
|
293
|
+
return C[i]*(-ywx_i + log(1 + exp(ywx_i)));
|
294
|
+
}
|
295
|
+
|
296
|
+
void l2r_lr_fun::grad(double *w, double *g)
|
297
|
+
{
|
298
|
+
int i;
|
299
|
+
double *y=prob->y;
|
300
|
+
int l=prob->l;
|
301
|
+
int w_size=get_nr_variable();
|
302
|
+
|
303
|
+
for(i=0;i<l;i++)
|
304
|
+
{
|
305
|
+
tmp[i] = 1/(1 + exp(-y[i]*wx[i]));
|
306
|
+
D[i] = tmp[i]*(1-tmp[i]);
|
307
|
+
tmp[i] = C[i]*(tmp[i]-1)*y[i];
|
308
|
+
}
|
309
|
+
XTv(tmp, g);
|
310
|
+
|
311
|
+
for(i=0;i<w_size;i++)
|
312
|
+
g[i] = w[i] + g[i];
|
313
|
+
if(regularize_bias == 0)
|
314
|
+
g[w_size-1] -= w[w_size-1];
|
315
|
+
}
|
316
|
+
|
317
|
+
void l2r_lr_fun::get_diag_preconditioner(double *M)
|
318
|
+
{
|
319
|
+
int i;
|
320
|
+
int l = prob->l;
|
321
|
+
int w_size=get_nr_variable();
|
322
|
+
feature_node **x = prob->x;
|
323
|
+
|
324
|
+
for (i=0; i<w_size; i++)
|
325
|
+
M[i] = 1;
|
326
|
+
if(regularize_bias == 0)
|
327
|
+
M[w_size-1] = 0;
|
328
|
+
|
329
|
+
for (i=0; i<l; i++)
|
330
|
+
{
|
331
|
+
feature_node *xi = x[i];
|
332
|
+
while (xi->index!=-1)
|
333
|
+
{
|
334
|
+
M[xi->index-1] += xi->value*xi->value*C[i]*D[i];
|
335
|
+
xi++;
|
336
|
+
}
|
337
|
+
}
|
338
|
+
}
|
339
|
+
|
340
|
+
void l2r_lr_fun::Hv(double *s, double *Hs)
|
341
|
+
{
|
342
|
+
int i;
|
343
|
+
int l=prob->l;
|
344
|
+
int w_size=get_nr_variable();
|
345
|
+
feature_node **x=prob->x;
|
346
|
+
|
347
|
+
for(i=0;i<w_size;i++)
|
348
|
+
Hs[i] = 0;
|
349
|
+
for(i=0;i<l;i++)
|
350
|
+
{
|
351
|
+
feature_node * const xi=x[i];
|
352
|
+
double xTs = sparse_operator::dot(s, xi);
|
353
|
+
|
354
|
+
xTs = C[i]*D[i]*xTs;
|
355
|
+
|
356
|
+
sparse_operator::axpy(xTs, xi, Hs);
|
357
|
+
}
|
358
|
+
for(i=0;i<w_size;i++)
|
359
|
+
Hs[i] = s[i] + Hs[i];
|
360
|
+
if(regularize_bias == 0)
|
361
|
+
Hs[w_size-1] -= s[w_size-1];
|
362
|
+
}
|
363
|
+
|
364
|
+
class l2r_l2_svc_fun: public l2r_erm_fun
|
365
|
+
{
|
366
|
+
public:
|
367
|
+
l2r_l2_svc_fun(const problem *prob, const parameter *param, double *C);
|
368
|
+
~l2r_l2_svc_fun();
|
369
|
+
|
370
|
+
void grad(double *w, double *g);
|
371
|
+
void Hv(double *s, double *Hs);
|
372
|
+
|
373
|
+
void get_diag_preconditioner(double *M);
|
374
|
+
|
375
|
+
protected:
|
376
|
+
void subXTv(double *v, double *XTv);
|
377
|
+
|
378
|
+
int *I;
|
379
|
+
int sizeI;
|
380
|
+
|
381
|
+
private:
|
382
|
+
double C_times_loss(int i, double wx_i);
|
383
|
+
};
|
384
|
+
|
385
|
+
l2r_l2_svc_fun::l2r_l2_svc_fun(const problem *prob, const parameter *param, double *C):
|
386
|
+
l2r_erm_fun(prob, param, C)
|
387
|
+
{
|
388
|
+
I = new int[prob->l];
|
389
|
+
}
|
390
|
+
|
391
|
+
l2r_l2_svc_fun::~l2r_l2_svc_fun()
|
392
|
+
{
|
393
|
+
delete[] I;
|
394
|
+
}
|
395
|
+
|
396
|
+
double l2r_l2_svc_fun::C_times_loss(int i, double wx_i)
|
397
|
+
{
|
398
|
+
double d = 1 - prob->y[i] * wx_i;
|
399
|
+
if (d > 0)
|
400
|
+
return C[i] * d * d;
|
401
|
+
else
|
402
|
+
return 0;
|
403
|
+
}
|
404
|
+
|
405
|
+
void l2r_l2_svc_fun::grad(double *w, double *g)
|
406
|
+
{
|
407
|
+
int i;
|
408
|
+
double *y=prob->y;
|
409
|
+
int l=prob->l;
|
410
|
+
int w_size=get_nr_variable();
|
411
|
+
|
412
|
+
sizeI = 0;
|
413
|
+
for (i=0;i<l;i++)
|
414
|
+
{
|
415
|
+
tmp[i] = wx[i] * y[i];
|
416
|
+
if (tmp[i] < 1)
|
417
|
+
{
|
418
|
+
tmp[sizeI] = C[i]*y[i]*(tmp[i]-1);
|
419
|
+
I[sizeI] = i;
|
420
|
+
sizeI++;
|
421
|
+
}
|
422
|
+
}
|
423
|
+
subXTv(tmp, g);
|
424
|
+
|
425
|
+
for(i=0;i<w_size;i++)
|
426
|
+
g[i] = w[i] + 2*g[i];
|
427
|
+
if(regularize_bias == 0)
|
428
|
+
g[w_size-1] -= w[w_size-1];
|
429
|
+
}
|
430
|
+
|
431
|
+
void l2r_l2_svc_fun::get_diag_preconditioner(double *M)
|
432
|
+
{
|
433
|
+
int i;
|
434
|
+
int w_size=get_nr_variable();
|
435
|
+
feature_node **x = prob->x;
|
436
|
+
|
437
|
+
for (i=0; i<w_size; i++)
|
438
|
+
M[i] = 1;
|
439
|
+
if(regularize_bias == 0)
|
440
|
+
M[w_size-1] = 0;
|
441
|
+
|
442
|
+
for (i=0; i<sizeI; i++)
|
443
|
+
{
|
444
|
+
int idx = I[i];
|
445
|
+
feature_node *xi = x[idx];
|
446
|
+
while (xi->index!=-1)
|
447
|
+
{
|
448
|
+
M[xi->index-1] += xi->value*xi->value*C[idx]*2;
|
449
|
+
xi++;
|
450
|
+
}
|
451
|
+
}
|
452
|
+
}
|
453
|
+
|
454
|
+
void l2r_l2_svc_fun::Hv(double *s, double *Hs)
|
455
|
+
{
|
456
|
+
int i;
|
457
|
+
int w_size=get_nr_variable();
|
458
|
+
feature_node **x=prob->x;
|
459
|
+
|
460
|
+
for(i=0;i<w_size;i++)
|
461
|
+
Hs[i]=0;
|
462
|
+
for(i=0;i<sizeI;i++)
|
463
|
+
{
|
464
|
+
feature_node * const xi=x[I[i]];
|
465
|
+
double xTs = sparse_operator::dot(s, xi);
|
466
|
+
|
467
|
+
xTs = C[I[i]]*xTs;
|
468
|
+
|
469
|
+
sparse_operator::axpy(xTs, xi, Hs);
|
470
|
+
}
|
471
|
+
for(i=0;i<w_size;i++)
|
472
|
+
Hs[i] = s[i] + 2*Hs[i];
|
473
|
+
if(regularize_bias == 0)
|
474
|
+
Hs[w_size-1] -= s[w_size-1];
|
475
|
+
}
|
476
|
+
|
477
|
+
void l2r_l2_svc_fun::subXTv(double *v, double *XTv)
|
478
|
+
{
|
479
|
+
int i;
|
480
|
+
int w_size=get_nr_variable();
|
481
|
+
feature_node **x=prob->x;
|
482
|
+
|
483
|
+
for(i=0;i<w_size;i++)
|
484
|
+
XTv[i]=0;
|
485
|
+
for(i=0;i<sizeI;i++)
|
486
|
+
sparse_operator::axpy(v[i], x[I[i]], XTv);
|
487
|
+
}
|
488
|
+
|
489
|
+
class l2r_l2_svr_fun: public l2r_l2_svc_fun
|
490
|
+
{
|
491
|
+
public:
|
492
|
+
l2r_l2_svr_fun(const problem *prob, const parameter *param, double *C);
|
493
|
+
|
494
|
+
void grad(double *w, double *g);
|
495
|
+
|
496
|
+
private:
|
497
|
+
double C_times_loss(int i, double wx_i);
|
498
|
+
double p;
|
499
|
+
};
|
500
|
+
|
501
|
+
l2r_l2_svr_fun::l2r_l2_svr_fun(const problem *prob, const parameter *param, double *C):
|
502
|
+
l2r_l2_svc_fun(prob, param, C)
|
503
|
+
{
|
504
|
+
this->p = param->p;
|
505
|
+
this->regularize_bias = param->regularize_bias;
|
506
|
+
}
|
507
|
+
|
508
|
+
double l2r_l2_svr_fun::C_times_loss(int i, double wx_i)
|
509
|
+
{
|
510
|
+
double d = wx_i - prob->y[i];
|
511
|
+
if(d < -p)
|
512
|
+
return C[i]*(d+p)*(d+p);
|
513
|
+
else if(d > p)
|
514
|
+
return C[i]*(d-p)*(d-p);
|
515
|
+
return 0;
|
516
|
+
}
|
517
|
+
|
518
|
+
void l2r_l2_svr_fun::grad(double *w, double *g)
|
519
|
+
{
|
520
|
+
int i;
|
521
|
+
double *y=prob->y;
|
522
|
+
int l=prob->l;
|
523
|
+
int w_size=get_nr_variable();
|
524
|
+
double d;
|
525
|
+
|
526
|
+
sizeI = 0;
|
527
|
+
for(i=0;i<l;i++)
|
528
|
+
{
|
529
|
+
d = wx[i] - y[i];
|
530
|
+
|
531
|
+
// generate index set I
|
532
|
+
if(d < -p)
|
533
|
+
{
|
534
|
+
tmp[sizeI] = C[i]*(d+p);
|
535
|
+
I[sizeI] = i;
|
536
|
+
sizeI++;
|
537
|
+
}
|
538
|
+
else if(d > p)
|
539
|
+
{
|
540
|
+
tmp[sizeI] = C[i]*(d-p);
|
541
|
+
I[sizeI] = i;
|
542
|
+
sizeI++;
|
543
|
+
}
|
544
|
+
|
545
|
+
}
|
546
|
+
subXTv(tmp, g);
|
547
|
+
|
548
|
+
for(i=0;i<w_size;i++)
|
549
|
+
g[i] = w[i] + 2*g[i];
|
550
|
+
if(regularize_bias == 0)
|
551
|
+
g[w_size-1] -= w[w_size-1];
|
552
|
+
}
|
553
|
+
|
554
|
+
// A coordinate descent algorithm for
|
555
|
+
// multi-class support vector machines by Crammer and Singer
|
556
|
+
//
|
557
|
+
// min_{\alpha} 0.5 \sum_m ||w_m(\alpha)||^2 + \sum_i \sum_m e^m_i alpha^m_i
|
558
|
+
// s.t. \alpha^m_i <= C^m_i \forall m,i , \sum_m \alpha^m_i=0 \forall i
|
559
|
+
//
|
560
|
+
// where e^m_i = 0 if y_i = m,
|
561
|
+
// e^m_i = 1 if y_i != m,
|
562
|
+
// C^m_i = C if m = y_i,
|
563
|
+
// C^m_i = 0 if m != y_i,
|
564
|
+
// and w_m(\alpha) = \sum_i \alpha^m_i x_i
|
565
|
+
//
|
566
|
+
// Given:
|
567
|
+
// x, y, C
|
568
|
+
// eps is the stopping tolerance
|
569
|
+
//
|
570
|
+
// solution will be put in w
|
571
|
+
//
|
572
|
+
// See Appendix of LIBLINEAR paper, Fan et al. (2008)
|
573
|
+
|
574
|
+
#define GETI(i) ((int) prob->y[i])
|
575
|
+
// To support weights for instances, use GETI(i) (i)
|
576
|
+
|
577
|
+
class Solver_MCSVM_CS
|
578
|
+
{
|
579
|
+
public:
|
580
|
+
Solver_MCSVM_CS(const problem *prob, int nr_class, double *C, double eps=0.1, int max_iter=100000);
|
581
|
+
~Solver_MCSVM_CS();
|
582
|
+
void Solve(double *w);
|
583
|
+
private:
|
584
|
+
void solve_sub_problem(double A_i, int yi, double C_yi, int active_i, double *alpha_new);
|
585
|
+
bool be_shrunk(int i, int m, int yi, double alpha_i, double minG);
|
586
|
+
double *B, *C, *G;
|
587
|
+
int w_size, l;
|
588
|
+
int nr_class;
|
589
|
+
int max_iter;
|
590
|
+
double eps;
|
591
|
+
const problem *prob;
|
592
|
+
};
|
593
|
+
|
594
|
+
Solver_MCSVM_CS::Solver_MCSVM_CS(const problem *prob, int nr_class, double *weighted_C, double eps, int max_iter)
|
595
|
+
{
|
596
|
+
this->w_size = prob->n;
|
597
|
+
this->l = prob->l;
|
598
|
+
this->nr_class = nr_class;
|
599
|
+
this->eps = eps;
|
600
|
+
this->max_iter = max_iter;
|
601
|
+
this->prob = prob;
|
602
|
+
this->B = new double[nr_class];
|
603
|
+
this->G = new double[nr_class];
|
604
|
+
this->C = weighted_C;
|
605
|
+
}
|
606
|
+
|
607
|
+
Solver_MCSVM_CS::~Solver_MCSVM_CS()
|
608
|
+
{
|
609
|
+
delete[] B;
|
610
|
+
delete[] G;
|
611
|
+
}
|
612
|
+
|
613
|
+
int compare_double(const void *a, const void *b)
|
614
|
+
{
|
615
|
+
if(*(double *)a > *(double *)b)
|
616
|
+
return -1;
|
617
|
+
if(*(double *)a < *(double *)b)
|
618
|
+
return 1;
|
619
|
+
return 0;
|
620
|
+
}
|
621
|
+
|
622
|
+
void Solver_MCSVM_CS::solve_sub_problem(double A_i, int yi, double C_yi, int active_i, double *alpha_new)
|
623
|
+
{
|
624
|
+
int r;
|
625
|
+
double *D;
|
626
|
+
|
627
|
+
clone(D, B, active_i);
|
628
|
+
if(yi < active_i)
|
629
|
+
D[yi] += A_i*C_yi;
|
630
|
+
qsort(D, active_i, sizeof(double), compare_double);
|
631
|
+
|
632
|
+
double beta = D[0] - A_i*C_yi;
|
633
|
+
for(r=1;r<active_i && beta<r*D[r];r++)
|
634
|
+
beta += D[r];
|
635
|
+
beta /= r;
|
636
|
+
|
637
|
+
for(r=0;r<active_i;r++)
|
638
|
+
{
|
639
|
+
if(r == yi)
|
640
|
+
alpha_new[r] = min(C_yi, (beta-B[r])/A_i);
|
641
|
+
else
|
642
|
+
alpha_new[r] = min((double)0, (beta - B[r])/A_i);
|
643
|
+
}
|
644
|
+
delete[] D;
|
645
|
+
}
|
646
|
+
|
647
|
+
bool Solver_MCSVM_CS::be_shrunk(int i, int m, int yi, double alpha_i, double minG)
|
648
|
+
{
|
649
|
+
double bound = 0;
|
650
|
+
if(m == yi)
|
651
|
+
bound = C[GETI(i)];
|
652
|
+
if(alpha_i == bound && G[m] < minG)
|
653
|
+
return true;
|
654
|
+
return false;
|
655
|
+
}
|
656
|
+
|
657
|
+
void Solver_MCSVM_CS::Solve(double *w)
|
658
|
+
{
|
659
|
+
int i, m, s;
|
660
|
+
int iter = 0;
|
661
|
+
double *alpha = new double[l*nr_class];
|
662
|
+
double *alpha_new = new double[nr_class];
|
663
|
+
int *index = new int[l];
|
664
|
+
double *QD = new double[l];
|
665
|
+
int *d_ind = new int[nr_class];
|
666
|
+
double *d_val = new double[nr_class];
|
667
|
+
int *alpha_index = new int[nr_class*l];
|
668
|
+
int *y_index = new int[l];
|
669
|
+
int active_size = l;
|
670
|
+
int *active_size_i = new int[l];
|
671
|
+
double eps_shrink = max(10.0*eps, 1.0); // stopping tolerance for shrinking
|
672
|
+
bool start_from_all = true;
|
673
|
+
|
674
|
+
// Initial alpha can be set here. Note that
|
675
|
+
// sum_m alpha[i*nr_class+m] = 0, for all i=1,...,l-1
|
676
|
+
// alpha[i*nr_class+m] <= C[GETI(i)] if prob->y[i] == m
|
677
|
+
// alpha[i*nr_class+m] <= 0 if prob->y[i] != m
|
678
|
+
// If initial alpha isn't zero, uncomment the for loop below to initialize w
|
679
|
+
for(i=0;i<l*nr_class;i++)
|
680
|
+
alpha[i] = 0;
|
681
|
+
|
682
|
+
for(i=0;i<w_size*nr_class;i++)
|
683
|
+
w[i] = 0;
|
684
|
+
for(i=0;i<l;i++)
|
685
|
+
{
|
686
|
+
for(m=0;m<nr_class;m++)
|
687
|
+
alpha_index[i*nr_class+m] = m;
|
688
|
+
feature_node *xi = prob->x[i];
|
689
|
+
QD[i] = 0;
|
690
|
+
while(xi->index != -1)
|
691
|
+
{
|
692
|
+
double val = xi->value;
|
693
|
+
QD[i] += val*val;
|
694
|
+
|
695
|
+
// Uncomment the for loop if initial alpha isn't zero
|
696
|
+
// for(m=0; m<nr_class; m++)
|
697
|
+
// w[(xi->index-1)*nr_class+m] += alpha[i*nr_class+m]*val;
|
698
|
+
xi++;
|
699
|
+
}
|
700
|
+
active_size_i[i] = nr_class;
|
701
|
+
y_index[i] = (int)prob->y[i];
|
702
|
+
index[i] = i;
|
703
|
+
}
|
704
|
+
|
705
|
+
while(iter < max_iter)
|
706
|
+
{
|
707
|
+
double stopping = -INF;
|
708
|
+
for(i=0;i<active_size;i++)
|
709
|
+
{
|
710
|
+
int j = i+rand()%(active_size-i);
|
711
|
+
swap(index[i], index[j]);
|
712
|
+
}
|
713
|
+
for(s=0;s<active_size;s++)
|
714
|
+
{
|
715
|
+
i = index[s];
|
716
|
+
double Ai = QD[i];
|
717
|
+
double *alpha_i = &alpha[i*nr_class];
|
718
|
+
int *alpha_index_i = &alpha_index[i*nr_class];
|
719
|
+
|
720
|
+
if(Ai > 0)
|
721
|
+
{
|
722
|
+
for(m=0;m<active_size_i[i];m++)
|
723
|
+
G[m] = 1;
|
724
|
+
if(y_index[i] < active_size_i[i])
|
725
|
+
G[y_index[i]] = 0;
|
726
|
+
|
727
|
+
feature_node *xi = prob->x[i];
|
728
|
+
while(xi->index!= -1)
|
729
|
+
{
|
730
|
+
double *w_i = &w[(xi->index-1)*nr_class];
|
731
|
+
for(m=0;m<active_size_i[i];m++)
|
732
|
+
G[m] += w_i[alpha_index_i[m]]*(xi->value);
|
733
|
+
xi++;
|
734
|
+
}
|
735
|
+
|
736
|
+
double minG = INF;
|
737
|
+
double maxG = -INF;
|
738
|
+
for(m=0;m<active_size_i[i];m++)
|
739
|
+
{
|
740
|
+
if(alpha_i[alpha_index_i[m]] < 0 && G[m] < minG)
|
741
|
+
minG = G[m];
|
742
|
+
if(G[m] > maxG)
|
743
|
+
maxG = G[m];
|
744
|
+
}
|
745
|
+
if(y_index[i] < active_size_i[i])
|
746
|
+
if(alpha_i[(int) prob->y[i]] < C[GETI(i)] && G[y_index[i]] < minG)
|
747
|
+
minG = G[y_index[i]];
|
748
|
+
|
749
|
+
for(m=0;m<active_size_i[i];m++)
|
750
|
+
{
|
751
|
+
if(be_shrunk(i, m, y_index[i], alpha_i[alpha_index_i[m]], minG))
|
752
|
+
{
|
753
|
+
active_size_i[i]--;
|
754
|
+
while(active_size_i[i]>m)
|
755
|
+
{
|
756
|
+
if(!be_shrunk(i, active_size_i[i], y_index[i],
|
757
|
+
alpha_i[alpha_index_i[active_size_i[i]]], minG))
|
758
|
+
{
|
759
|
+
swap(alpha_index_i[m], alpha_index_i[active_size_i[i]]);
|
760
|
+
swap(G[m], G[active_size_i[i]]);
|
761
|
+
if(y_index[i] == active_size_i[i])
|
762
|
+
y_index[i] = m;
|
763
|
+
else if(y_index[i] == m)
|
764
|
+
y_index[i] = active_size_i[i];
|
765
|
+
break;
|
766
|
+
}
|
767
|
+
active_size_i[i]--;
|
768
|
+
}
|
769
|
+
}
|
770
|
+
}
|
771
|
+
|
772
|
+
if(active_size_i[i] <= 1)
|
773
|
+
{
|
774
|
+
active_size--;
|
775
|
+
swap(index[s], index[active_size]);
|
776
|
+
s--;
|
777
|
+
continue;
|
778
|
+
}
|
779
|
+
|
780
|
+
if(maxG-minG <= 1e-12)
|
781
|
+
continue;
|
782
|
+
else
|
783
|
+
stopping = max(maxG - minG, stopping);
|
784
|
+
|
785
|
+
for(m=0;m<active_size_i[i];m++)
|
786
|
+
B[m] = G[m] - Ai*alpha_i[alpha_index_i[m]] ;
|
787
|
+
|
788
|
+
solve_sub_problem(Ai, y_index[i], C[GETI(i)], active_size_i[i], alpha_new);
|
789
|
+
int nz_d = 0;
|
790
|
+
for(m=0;m<active_size_i[i];m++)
|
791
|
+
{
|
792
|
+
double d = alpha_new[m] - alpha_i[alpha_index_i[m]];
|
793
|
+
alpha_i[alpha_index_i[m]] = alpha_new[m];
|
794
|
+
if(fabs(d) >= 1e-12)
|
795
|
+
{
|
796
|
+
d_ind[nz_d] = alpha_index_i[m];
|
797
|
+
d_val[nz_d] = d;
|
798
|
+
nz_d++;
|
799
|
+
}
|
800
|
+
}
|
801
|
+
|
802
|
+
xi = prob->x[i];
|
803
|
+
while(xi->index != -1)
|
804
|
+
{
|
805
|
+
double *w_i = &w[(xi->index-1)*nr_class];
|
806
|
+
for(m=0;m<nz_d;m++)
|
807
|
+
w_i[d_ind[m]] += d_val[m]*xi->value;
|
808
|
+
xi++;
|
809
|
+
}
|
810
|
+
}
|
811
|
+
}
|
812
|
+
|
813
|
+
iter++;
|
814
|
+
if(iter % 10 == 0)
|
815
|
+
{
|
816
|
+
info(".");
|
817
|
+
}
|
818
|
+
|
819
|
+
if(stopping < eps_shrink)
|
820
|
+
{
|
821
|
+
if(stopping < eps && start_from_all == true)
|
822
|
+
break;
|
823
|
+
else
|
824
|
+
{
|
825
|
+
active_size = l;
|
826
|
+
for(i=0;i<l;i++)
|
827
|
+
active_size_i[i] = nr_class;
|
828
|
+
info("*");
|
829
|
+
eps_shrink = max(eps_shrink/2, eps);
|
830
|
+
start_from_all = true;
|
831
|
+
}
|
832
|
+
}
|
833
|
+
else
|
834
|
+
start_from_all = false;
|
835
|
+
}
|
836
|
+
|
837
|
+
info("\noptimization finished, #iter = %d\n",iter);
|
838
|
+
if (iter >= max_iter)
|
839
|
+
info("\nWARNING: reaching max number of iterations\n");
|
840
|
+
|
841
|
+
// calculate objective value
|
842
|
+
double v = 0;
|
843
|
+
int nSV = 0;
|
844
|
+
for(i=0;i<w_size*nr_class;i++)
|
845
|
+
v += w[i]*w[i];
|
846
|
+
v = 0.5*v;
|
847
|
+
for(i=0;i<l*nr_class;i++)
|
848
|
+
{
|
849
|
+
v += alpha[i];
|
850
|
+
if(fabs(alpha[i]) > 0)
|
851
|
+
nSV++;
|
852
|
+
}
|
853
|
+
for(i=0;i<l;i++)
|
854
|
+
v -= alpha[i*nr_class+(int)prob->y[i]];
|
855
|
+
info("Objective value = %lf\n",v);
|
856
|
+
info("nSV = %d\n",nSV);
|
857
|
+
|
858
|
+
delete [] alpha;
|
859
|
+
delete [] alpha_new;
|
860
|
+
delete [] index;
|
861
|
+
delete [] QD;
|
862
|
+
delete [] d_ind;
|
863
|
+
delete [] d_val;
|
864
|
+
delete [] alpha_index;
|
865
|
+
delete [] y_index;
|
866
|
+
delete [] active_size_i;
|
867
|
+
}
|
868
|
+
|
869
|
+
// A coordinate descent algorithm for
|
870
|
+
// L1-loss and L2-loss SVM dual problems
|
871
|
+
//
|
872
|
+
// min_\alpha 0.5(\alpha^T (Q + D)\alpha) - e^T \alpha,
|
873
|
+
// s.t. 0 <= \alpha_i <= upper_bound_i,
|
874
|
+
//
|
875
|
+
// where Qij = yi yj xi^T xj and
|
876
|
+
// D is a diagonal matrix
|
877
|
+
//
|
878
|
+
// In L1-SVM case:
|
879
|
+
// upper_bound_i = Cp if y_i = 1
|
880
|
+
// upper_bound_i = Cn if y_i = -1
|
881
|
+
// D_ii = 0
|
882
|
+
// In L2-SVM case:
|
883
|
+
// upper_bound_i = INF
|
884
|
+
// D_ii = 1/(2*Cp) if y_i = 1
|
885
|
+
// D_ii = 1/(2*Cn) if y_i = -1
|
886
|
+
//
|
887
|
+
// Given:
|
888
|
+
// x, y, Cp, Cn
|
889
|
+
// eps is the stopping tolerance
|
890
|
+
//
|
891
|
+
// solution will be put in w
|
892
|
+
//
|
893
|
+
// See Algorithm 3 of Hsieh et al., ICML 2008
|
894
|
+
|
895
|
+
#undef GETI
|
896
|
+
#define GETI(i) (y[i]+1)
|
897
|
+
// To support weights for instances, use GETI(i) (i)
|
898
|
+
|
899
|
+
static void solve_l2r_l1l2_svc(
|
900
|
+
const problem *prob, double *w, double eps,
|
901
|
+
double Cp, double Cn, int solver_type)
|
902
|
+
{
|
903
|
+
int l = prob->l;
|
904
|
+
int w_size = prob->n;
|
905
|
+
int i, s, iter = 0;
|
906
|
+
double C, d, G;
|
907
|
+
double *QD = new double[l];
|
908
|
+
int max_iter = 1000;
|
909
|
+
int *index = new int[l];
|
910
|
+
double *alpha = new double[l];
|
911
|
+
schar *y = new schar[l];
|
912
|
+
int active_size = l;
|
913
|
+
|
914
|
+
// PG: projected gradient, for shrinking and stopping
|
915
|
+
double PG;
|
916
|
+
double PGmax_old = INF;
|
917
|
+
double PGmin_old = -INF;
|
918
|
+
double PGmax_new, PGmin_new;
|
919
|
+
|
920
|
+
// default solver_type: L2R_L2LOSS_SVC_DUAL
|
921
|
+
double diag[3] = {0.5/Cn, 0, 0.5/Cp};
|
922
|
+
double upper_bound[3] = {INF, 0, INF};
|
923
|
+
if(solver_type == L2R_L1LOSS_SVC_DUAL)
|
924
|
+
{
|
925
|
+
diag[0] = 0;
|
926
|
+
diag[2] = 0;
|
927
|
+
upper_bound[0] = Cn;
|
928
|
+
upper_bound[2] = Cp;
|
929
|
+
}
|
930
|
+
|
931
|
+
for(i=0; i<l; i++)
|
932
|
+
{
|
933
|
+
if(prob->y[i] > 0)
|
934
|
+
{
|
935
|
+
y[i] = +1;
|
936
|
+
}
|
937
|
+
else
|
938
|
+
{
|
939
|
+
y[i] = -1;
|
940
|
+
}
|
941
|
+
}
|
942
|
+
|
943
|
+
// Initial alpha can be set here. Note that
|
944
|
+
// 0 <= alpha[i] <= upper_bound[GETI(i)]
|
945
|
+
for(i=0; i<l; i++)
|
946
|
+
alpha[i] = 0;
|
947
|
+
|
948
|
+
for(i=0; i<w_size; i++)
|
949
|
+
w[i] = 0;
|
950
|
+
for(i=0; i<l; i++)
|
951
|
+
{
|
952
|
+
QD[i] = diag[GETI(i)];
|
953
|
+
|
954
|
+
feature_node * const xi = prob->x[i];
|
955
|
+
QD[i] += sparse_operator::nrm2_sq(xi);
|
956
|
+
sparse_operator::axpy(y[i]*alpha[i], xi, w);
|
957
|
+
|
958
|
+
index[i] = i;
|
959
|
+
}
|
960
|
+
|
961
|
+
while (iter < max_iter)
|
962
|
+
{
|
963
|
+
PGmax_new = -INF;
|
964
|
+
PGmin_new = INF;
|
965
|
+
|
966
|
+
for (i=0; i<active_size; i++)
|
967
|
+
{
|
968
|
+
int j = i+rand()%(active_size-i);
|
969
|
+
swap(index[i], index[j]);
|
970
|
+
}
|
971
|
+
|
972
|
+
for (s=0; s<active_size; s++)
|
973
|
+
{
|
974
|
+
i = index[s];
|
975
|
+
const schar yi = y[i];
|
976
|
+
feature_node * const xi = prob->x[i];
|
977
|
+
|
978
|
+
G = yi*sparse_operator::dot(w, xi)-1;
|
979
|
+
|
980
|
+
C = upper_bound[GETI(i)];
|
981
|
+
G += alpha[i]*diag[GETI(i)];
|
982
|
+
|
983
|
+
PG = 0;
|
984
|
+
if (alpha[i] == 0)
|
985
|
+
{
|
986
|
+
if (G > PGmax_old)
|
987
|
+
{
|
988
|
+
active_size--;
|
989
|
+
swap(index[s], index[active_size]);
|
990
|
+
s--;
|
991
|
+
continue;
|
992
|
+
}
|
993
|
+
else if (G < 0)
|
994
|
+
PG = G;
|
995
|
+
}
|
996
|
+
else if (alpha[i] == C)
|
997
|
+
{
|
998
|
+
if (G < PGmin_old)
|
999
|
+
{
|
1000
|
+
active_size--;
|
1001
|
+
swap(index[s], index[active_size]);
|
1002
|
+
s--;
|
1003
|
+
continue;
|
1004
|
+
}
|
1005
|
+
else if (G > 0)
|
1006
|
+
PG = G;
|
1007
|
+
}
|
1008
|
+
else
|
1009
|
+
PG = G;
|
1010
|
+
|
1011
|
+
PGmax_new = max(PGmax_new, PG);
|
1012
|
+
PGmin_new = min(PGmin_new, PG);
|
1013
|
+
|
1014
|
+
if(fabs(PG) > 1.0e-12)
|
1015
|
+
{
|
1016
|
+
double alpha_old = alpha[i];
|
1017
|
+
alpha[i] = min(max(alpha[i] - G/QD[i], 0.0), C);
|
1018
|
+
d = (alpha[i] - alpha_old)*yi;
|
1019
|
+
sparse_operator::axpy(d, xi, w);
|
1020
|
+
}
|
1021
|
+
}
|
1022
|
+
|
1023
|
+
iter++;
|
1024
|
+
if(iter % 10 == 0)
|
1025
|
+
info(".");
|
1026
|
+
|
1027
|
+
if(PGmax_new - PGmin_new <= eps)
|
1028
|
+
{
|
1029
|
+
if(active_size == l)
|
1030
|
+
break;
|
1031
|
+
else
|
1032
|
+
{
|
1033
|
+
active_size = l;
|
1034
|
+
info("*");
|
1035
|
+
PGmax_old = INF;
|
1036
|
+
PGmin_old = -INF;
|
1037
|
+
continue;
|
1038
|
+
}
|
1039
|
+
}
|
1040
|
+
PGmax_old = PGmax_new;
|
1041
|
+
PGmin_old = PGmin_new;
|
1042
|
+
if (PGmax_old <= 0)
|
1043
|
+
PGmax_old = INF;
|
1044
|
+
if (PGmin_old >= 0)
|
1045
|
+
PGmin_old = -INF;
|
1046
|
+
}
|
1047
|
+
|
1048
|
+
info("\noptimization finished, #iter = %d\n",iter);
|
1049
|
+
if (iter >= max_iter)
|
1050
|
+
info("\nWARNING: reaching max number of iterations\nUsing -s 2 may be faster (also see FAQ)\n\n");
|
1051
|
+
|
1052
|
+
// calculate objective value
|
1053
|
+
|
1054
|
+
double v = 0;
|
1055
|
+
int nSV = 0;
|
1056
|
+
for(i=0; i<w_size; i++)
|
1057
|
+
v += w[i]*w[i];
|
1058
|
+
for(i=0; i<l; i++)
|
1059
|
+
{
|
1060
|
+
v += alpha[i]*(alpha[i]*diag[GETI(i)] - 2);
|
1061
|
+
if(alpha[i] > 0)
|
1062
|
+
++nSV;
|
1063
|
+
}
|
1064
|
+
info("Objective value = %lf\n",v/2);
|
1065
|
+
info("nSV = %d\n",nSV);
|
1066
|
+
|
1067
|
+
delete [] QD;
|
1068
|
+
delete [] alpha;
|
1069
|
+
delete [] y;
|
1070
|
+
delete [] index;
|
1071
|
+
}
|
1072
|
+
|
1073
|
+
|
1074
|
+
// A coordinate descent algorithm for
|
1075
|
+
// L1-loss and L2-loss epsilon-SVR dual problem
|
1076
|
+
//
|
1077
|
+
// min_\beta 0.5\beta^T (Q + diag(lambda)) \beta - p \sum_{i=1}^l|\beta_i| + \sum_{i=1}^l yi\beta_i,
|
1078
|
+
// s.t. -upper_bound_i <= \beta_i <= upper_bound_i,
|
1079
|
+
//
|
1080
|
+
// where Qij = xi^T xj and
|
1081
|
+
// D is a diagonal matrix
|
1082
|
+
//
|
1083
|
+
// In L1-SVM case:
|
1084
|
+
// upper_bound_i = C
|
1085
|
+
// lambda_i = 0
|
1086
|
+
// In L2-SVM case:
|
1087
|
+
// upper_bound_i = INF
|
1088
|
+
// lambda_i = 1/(2*C)
|
1089
|
+
//
|
1090
|
+
// Given:
|
1091
|
+
// x, y, p, C
|
1092
|
+
// eps is the stopping tolerance
|
1093
|
+
//
|
1094
|
+
// solution will be put in w
|
1095
|
+
//
|
1096
|
+
// See Algorithm 4 of Ho and Lin, 2012
|
1097
|
+
|
1098
|
+
#undef GETI
|
1099
|
+
#define GETI(i) (0)
|
1100
|
+
// To support weights for instances, use GETI(i) (i)
|
1101
|
+
|
1102
|
+
static void solve_l2r_l1l2_svr(
|
1103
|
+
const problem *prob, double *w, const parameter *param,
|
1104
|
+
int solver_type)
|
1105
|
+
{
|
1106
|
+
int l = prob->l;
|
1107
|
+
double C = param->C;
|
1108
|
+
double p = param->p;
|
1109
|
+
int w_size = prob->n;
|
1110
|
+
double eps = param->eps;
|
1111
|
+
int i, s, iter = 0;
|
1112
|
+
int max_iter = 1000;
|
1113
|
+
int active_size = l;
|
1114
|
+
int *index = new int[l];
|
1115
|
+
|
1116
|
+
double d, G, H;
|
1117
|
+
double Gmax_old = INF;
|
1118
|
+
double Gmax_new, Gnorm1_new;
|
1119
|
+
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
|
1120
|
+
double *beta = new double[l];
|
1121
|
+
double *QD = new double[l];
|
1122
|
+
double *y = prob->y;
|
1123
|
+
|
1124
|
+
// L2R_L2LOSS_SVR_DUAL
|
1125
|
+
double lambda[1], upper_bound[1];
|
1126
|
+
lambda[0] = 0.5/C;
|
1127
|
+
upper_bound[0] = INF;
|
1128
|
+
|
1129
|
+
if(solver_type == L2R_L1LOSS_SVR_DUAL)
|
1130
|
+
{
|
1131
|
+
lambda[0] = 0;
|
1132
|
+
upper_bound[0] = C;
|
1133
|
+
}
|
1134
|
+
|
1135
|
+
// Initial beta can be set here. Note that
|
1136
|
+
// -upper_bound <= beta[i] <= upper_bound
|
1137
|
+
for(i=0; i<l; i++)
|
1138
|
+
beta[i] = 0;
|
1139
|
+
|
1140
|
+
for(i=0; i<w_size; i++)
|
1141
|
+
w[i] = 0;
|
1142
|
+
for(i=0; i<l; i++)
|
1143
|
+
{
|
1144
|
+
feature_node * const xi = prob->x[i];
|
1145
|
+
QD[i] = sparse_operator::nrm2_sq(xi);
|
1146
|
+
sparse_operator::axpy(beta[i], xi, w);
|
1147
|
+
|
1148
|
+
index[i] = i;
|
1149
|
+
}
|
1150
|
+
|
1151
|
+
|
1152
|
+
while(iter < max_iter)
|
1153
|
+
{
|
1154
|
+
Gmax_new = 0;
|
1155
|
+
Gnorm1_new = 0;
|
1156
|
+
|
1157
|
+
for(i=0; i<active_size; i++)
|
1158
|
+
{
|
1159
|
+
int j = i+rand()%(active_size-i);
|
1160
|
+
swap(index[i], index[j]);
|
1161
|
+
}
|
1162
|
+
|
1163
|
+
for(s=0; s<active_size; s++)
|
1164
|
+
{
|
1165
|
+
i = index[s];
|
1166
|
+
G = -y[i] + lambda[GETI(i)]*beta[i];
|
1167
|
+
H = QD[i] + lambda[GETI(i)];
|
1168
|
+
|
1169
|
+
feature_node * const xi = prob->x[i];
|
1170
|
+
G += sparse_operator::dot(w, xi);
|
1171
|
+
|
1172
|
+
double Gp = G+p;
|
1173
|
+
double Gn = G-p;
|
1174
|
+
double violation = 0;
|
1175
|
+
if(beta[i] == 0)
|
1176
|
+
{
|
1177
|
+
if(Gp < 0)
|
1178
|
+
violation = -Gp;
|
1179
|
+
else if(Gn > 0)
|
1180
|
+
violation = Gn;
|
1181
|
+
else if(Gp>Gmax_old && Gn<-Gmax_old)
|
1182
|
+
{
|
1183
|
+
active_size--;
|
1184
|
+
swap(index[s], index[active_size]);
|
1185
|
+
s--;
|
1186
|
+
continue;
|
1187
|
+
}
|
1188
|
+
}
|
1189
|
+
else if(beta[i] >= upper_bound[GETI(i)])
|
1190
|
+
{
|
1191
|
+
if(Gp > 0)
|
1192
|
+
violation = Gp;
|
1193
|
+
else if(Gp < -Gmax_old)
|
1194
|
+
{
|
1195
|
+
active_size--;
|
1196
|
+
swap(index[s], index[active_size]);
|
1197
|
+
s--;
|
1198
|
+
continue;
|
1199
|
+
}
|
1200
|
+
}
|
1201
|
+
else if(beta[i] <= -upper_bound[GETI(i)])
|
1202
|
+
{
|
1203
|
+
if(Gn < 0)
|
1204
|
+
violation = -Gn;
|
1205
|
+
else if(Gn > Gmax_old)
|
1206
|
+
{
|
1207
|
+
active_size--;
|
1208
|
+
swap(index[s], index[active_size]);
|
1209
|
+
s--;
|
1210
|
+
continue;
|
1211
|
+
}
|
1212
|
+
}
|
1213
|
+
else if(beta[i] > 0)
|
1214
|
+
violation = fabs(Gp);
|
1215
|
+
else
|
1216
|
+
violation = fabs(Gn);
|
1217
|
+
|
1218
|
+
Gmax_new = max(Gmax_new, violation);
|
1219
|
+
Gnorm1_new += violation;
|
1220
|
+
|
1221
|
+
// obtain Newton direction d
|
1222
|
+
if(Gp < H*beta[i])
|
1223
|
+
d = -Gp/H;
|
1224
|
+
else if(Gn > H*beta[i])
|
1225
|
+
d = -Gn/H;
|
1226
|
+
else
|
1227
|
+
d = -beta[i];
|
1228
|
+
|
1229
|
+
if(fabs(d) < 1.0e-12)
|
1230
|
+
continue;
|
1231
|
+
|
1232
|
+
double beta_old = beta[i];
|
1233
|
+
beta[i] = min(max(beta[i]+d, -upper_bound[GETI(i)]), upper_bound[GETI(i)]);
|
1234
|
+
d = beta[i]-beta_old;
|
1235
|
+
|
1236
|
+
if(d != 0)
|
1237
|
+
sparse_operator::axpy(d, xi, w);
|
1238
|
+
}
|
1239
|
+
|
1240
|
+
if(iter == 0)
|
1241
|
+
Gnorm1_init = Gnorm1_new;
|
1242
|
+
iter++;
|
1243
|
+
if(iter % 10 == 0)
|
1244
|
+
info(".");
|
1245
|
+
|
1246
|
+
if(Gnorm1_new <= eps*Gnorm1_init)
|
1247
|
+
{
|
1248
|
+
if(active_size == l)
|
1249
|
+
break;
|
1250
|
+
else
|
1251
|
+
{
|
1252
|
+
active_size = l;
|
1253
|
+
info("*");
|
1254
|
+
Gmax_old = INF;
|
1255
|
+
continue;
|
1256
|
+
}
|
1257
|
+
}
|
1258
|
+
|
1259
|
+
Gmax_old = Gmax_new;
|
1260
|
+
}
|
1261
|
+
|
1262
|
+
info("\noptimization finished, #iter = %d\n", iter);
|
1263
|
+
if(iter >= max_iter)
|
1264
|
+
info("\nWARNING: reaching max number of iterations\nUsing -s 11 may be faster\n\n");
|
1265
|
+
|
1266
|
+
// calculate objective value
|
1267
|
+
double v = 0;
|
1268
|
+
int nSV = 0;
|
1269
|
+
for(i=0; i<w_size; i++)
|
1270
|
+
v += w[i]*w[i];
|
1271
|
+
v = 0.5*v;
|
1272
|
+
for(i=0; i<l; i++)
|
1273
|
+
{
|
1274
|
+
v += p*fabs(beta[i]) - y[i]*beta[i] + 0.5*lambda[GETI(i)]*beta[i]*beta[i];
|
1275
|
+
if(beta[i] != 0)
|
1276
|
+
nSV++;
|
1277
|
+
}
|
1278
|
+
|
1279
|
+
info("Objective value = %lf\n", v);
|
1280
|
+
info("nSV = %d\n",nSV);
|
1281
|
+
|
1282
|
+
delete [] beta;
|
1283
|
+
delete [] QD;
|
1284
|
+
delete [] index;
|
1285
|
+
}
|
1286
|
+
|
1287
|
+
|
1288
|
+
// A coordinate descent algorithm for
|
1289
|
+
// the dual of L2-regularized logistic regression problems
|
1290
|
+
//
|
1291
|
+
// min_\alpha 0.5(\alpha^T Q \alpha) + \sum \alpha_i log (\alpha_i) + (upper_bound_i - \alpha_i) log (upper_bound_i - \alpha_i),
|
1292
|
+
// s.t. 0 <= \alpha_i <= upper_bound_i,
|
1293
|
+
//
|
1294
|
+
// where Qij = yi yj xi^T xj and
|
1295
|
+
// upper_bound_i = Cp if y_i = 1
|
1296
|
+
// upper_bound_i = Cn if y_i = -1
|
1297
|
+
//
|
1298
|
+
// Given:
|
1299
|
+
// x, y, Cp, Cn
|
1300
|
+
// eps is the stopping tolerance
|
1301
|
+
//
|
1302
|
+
// solution will be put in w
|
1303
|
+
//
|
1304
|
+
// See Algorithm 5 of Yu et al., MLJ 2010
|
1305
|
+
|
1306
|
+
#undef GETI
|
1307
|
+
#define GETI(i) (y[i]+1)
|
1308
|
+
// To support weights for instances, use GETI(i) (i)
|
1309
|
+
|
1310
|
+
void solve_l2r_lr_dual(const problem *prob, double *w, double eps, double Cp, double Cn)
|
1311
|
+
{
|
1312
|
+
int l = prob->l;
|
1313
|
+
int w_size = prob->n;
|
1314
|
+
int i, s, iter = 0;
|
1315
|
+
double *xTx = new double[l];
|
1316
|
+
int max_iter = 1000;
|
1317
|
+
int *index = new int[l];
|
1318
|
+
double *alpha = new double[2*l]; // store alpha and C - alpha
|
1319
|
+
schar *y = new schar[l];
|
1320
|
+
int max_inner_iter = 100; // for inner Newton
|
1321
|
+
double innereps = 1e-2;
|
1322
|
+
double innereps_min = min(1e-8, eps);
|
1323
|
+
double upper_bound[3] = {Cn, 0, Cp};
|
1324
|
+
|
1325
|
+
for(i=0; i<l; i++)
|
1326
|
+
{
|
1327
|
+
if(prob->y[i] > 0)
|
1328
|
+
{
|
1329
|
+
y[i] = +1;
|
1330
|
+
}
|
1331
|
+
else
|
1332
|
+
{
|
1333
|
+
y[i] = -1;
|
1334
|
+
}
|
1335
|
+
}
|
1336
|
+
|
1337
|
+
// Initial alpha can be set here. Note that
|
1338
|
+
// 0 < alpha[i] < upper_bound[GETI(i)]
|
1339
|
+
// alpha[2*i] + alpha[2*i+1] = upper_bound[GETI(i)]
|
1340
|
+
for(i=0; i<l; i++)
|
1341
|
+
{
|
1342
|
+
alpha[2*i] = min(0.001*upper_bound[GETI(i)], 1e-8);
|
1343
|
+
alpha[2*i+1] = upper_bound[GETI(i)] - alpha[2*i];
|
1344
|
+
}
|
1345
|
+
|
1346
|
+
for(i=0; i<w_size; i++)
|
1347
|
+
w[i] = 0;
|
1348
|
+
for(i=0; i<l; i++)
|
1349
|
+
{
|
1350
|
+
feature_node * const xi = prob->x[i];
|
1351
|
+
xTx[i] = sparse_operator::nrm2_sq(xi);
|
1352
|
+
sparse_operator::axpy(y[i]*alpha[2*i], xi, w);
|
1353
|
+
index[i] = i;
|
1354
|
+
}
|
1355
|
+
|
1356
|
+
while (iter < max_iter)
|
1357
|
+
{
|
1358
|
+
for (i=0; i<l; i++)
|
1359
|
+
{
|
1360
|
+
int j = i+rand()%(l-i);
|
1361
|
+
swap(index[i], index[j]);
|
1362
|
+
}
|
1363
|
+
int newton_iter = 0;
|
1364
|
+
double Gmax = 0;
|
1365
|
+
for (s=0; s<l; s++)
|
1366
|
+
{
|
1367
|
+
i = index[s];
|
1368
|
+
const schar yi = y[i];
|
1369
|
+
double C = upper_bound[GETI(i)];
|
1370
|
+
double ywTx = 0, xisq = xTx[i];
|
1371
|
+
feature_node * const xi = prob->x[i];
|
1372
|
+
ywTx = yi*sparse_operator::dot(w, xi);
|
1373
|
+
double a = xisq, b = ywTx;
|
1374
|
+
|
1375
|
+
// Decide to minimize g_1(z) or g_2(z)
|
1376
|
+
int ind1 = 2*i, ind2 = 2*i+1, sign = 1;
|
1377
|
+
if(0.5*a*(alpha[ind2]-alpha[ind1])+b < 0)
|
1378
|
+
{
|
1379
|
+
ind1 = 2*i+1;
|
1380
|
+
ind2 = 2*i;
|
1381
|
+
sign = -1;
|
1382
|
+
}
|
1383
|
+
|
1384
|
+
// g_t(z) = z*log(z) + (C-z)*log(C-z) + 0.5a(z-alpha_old)^2 + sign*b(z-alpha_old)
|
1385
|
+
double alpha_old = alpha[ind1];
|
1386
|
+
double z = alpha_old;
|
1387
|
+
if(C - z < 0.5 * C)
|
1388
|
+
z = 0.1*z;
|
1389
|
+
double gp = a*(z-alpha_old)+sign*b+log(z/(C-z));
|
1390
|
+
Gmax = max(Gmax, fabs(gp));
|
1391
|
+
|
1392
|
+
// Newton method on the sub-problem
|
1393
|
+
const double eta = 0.1; // xi in the paper
|
1394
|
+
int inner_iter = 0;
|
1395
|
+
while (inner_iter <= max_inner_iter)
|
1396
|
+
{
|
1397
|
+
if(fabs(gp) < innereps)
|
1398
|
+
break;
|
1399
|
+
double gpp = a + C/(C-z)/z;
|
1400
|
+
double tmpz = z - gp/gpp;
|
1401
|
+
if(tmpz <= 0)
|
1402
|
+
z *= eta;
|
1403
|
+
else // tmpz in (0, C)
|
1404
|
+
z = tmpz;
|
1405
|
+
gp = a*(z-alpha_old)+sign*b+log(z/(C-z));
|
1406
|
+
newton_iter++;
|
1407
|
+
inner_iter++;
|
1408
|
+
}
|
1409
|
+
|
1410
|
+
if(inner_iter > 0) // update w
|
1411
|
+
{
|
1412
|
+
alpha[ind1] = z;
|
1413
|
+
alpha[ind2] = C-z;
|
1414
|
+
sparse_operator::axpy(sign*(z-alpha_old)*yi, xi, w);
|
1415
|
+
}
|
1416
|
+
}
|
1417
|
+
|
1418
|
+
iter++;
|
1419
|
+
if(iter % 10 == 0)
|
1420
|
+
info(".");
|
1421
|
+
|
1422
|
+
if(Gmax < eps)
|
1423
|
+
break;
|
1424
|
+
|
1425
|
+
if(newton_iter <= l/10)
|
1426
|
+
innereps = max(innereps_min, 0.1*innereps);
|
1427
|
+
|
1428
|
+
}
|
1429
|
+
|
1430
|
+
info("\noptimization finished, #iter = %d\n",iter);
|
1431
|
+
if (iter >= max_iter)
|
1432
|
+
info("\nWARNING: reaching max number of iterations\nUsing -s 0 may be faster (also see FAQ)\n\n");
|
1433
|
+
|
1434
|
+
// calculate objective value
|
1435
|
+
|
1436
|
+
double v = 0;
|
1437
|
+
for(i=0; i<w_size; i++)
|
1438
|
+
v += w[i] * w[i];
|
1439
|
+
v *= 0.5;
|
1440
|
+
for(i=0; i<l; i++)
|
1441
|
+
v += alpha[2*i] * log(alpha[2*i]) + alpha[2*i+1] * log(alpha[2*i+1])
|
1442
|
+
- upper_bound[GETI(i)] * log(upper_bound[GETI(i)]);
|
1443
|
+
info("Objective value = %lf\n", v);
|
1444
|
+
|
1445
|
+
delete [] xTx;
|
1446
|
+
delete [] alpha;
|
1447
|
+
delete [] y;
|
1448
|
+
delete [] index;
|
1449
|
+
}
|
1450
|
+
|
1451
|
+
// A coordinate descent algorithm for
|
1452
|
+
// L1-regularized L2-loss support vector classification
|
1453
|
+
//
|
1454
|
+
// min_w \sum |wj| + C \sum max(0, 1-yi w^T xi)^2,
|
1455
|
+
//
|
1456
|
+
// Given:
|
1457
|
+
// x, y, Cp, Cn
|
1458
|
+
// eps is the stopping tolerance
|
1459
|
+
//
|
1460
|
+
// solution will be put in w
|
1461
|
+
//
|
1462
|
+
// See Yuan et al. (2010) and appendix of LIBLINEAR paper, Fan et al. (2008)
|
1463
|
+
//
|
1464
|
+
// To not regularize the bias (i.e., regularize_bias = 0), a constant feature = 1
|
1465
|
+
// must have been added to the original data. (see -B and -R option)
|
1466
|
+
|
1467
|
+
#undef GETI
|
1468
|
+
#define GETI(i) (y[i]+1)
|
1469
|
+
// To support weights for instances, use GETI(i) (i)
|
1470
|
+
|
1471
|
+
static void solve_l1r_l2_svc(
|
1472
|
+
problem *prob_col, double *w, double eps,
|
1473
|
+
double Cp, double Cn, int regularize_bias)
|
1474
|
+
{
|
1475
|
+
int l = prob_col->l;
|
1476
|
+
int w_size = prob_col->n;
|
1477
|
+
int j, s, iter = 0;
|
1478
|
+
int max_iter = 1000;
|
1479
|
+
int active_size = w_size;
|
1480
|
+
int max_num_linesearch = 20;
|
1481
|
+
|
1482
|
+
double sigma = 0.01;
|
1483
|
+
double d, G_loss, G, H;
|
1484
|
+
double Gmax_old = INF;
|
1485
|
+
double Gmax_new, Gnorm1_new;
|
1486
|
+
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
|
1487
|
+
double d_old, d_diff;
|
1488
|
+
double loss_old = 0, loss_new;
|
1489
|
+
double appxcond, cond;
|
1490
|
+
|
1491
|
+
int *index = new int[w_size];
|
1492
|
+
schar *y = new schar[l];
|
1493
|
+
double *b = new double[l]; // b = 1-ywTx
|
1494
|
+
double *xj_sq = new double[w_size];
|
1495
|
+
feature_node *x;
|
1496
|
+
|
1497
|
+
double C[3] = {Cn,0,Cp};
|
1498
|
+
|
1499
|
+
// Initial w can be set here.
|
1500
|
+
for(j=0; j<w_size; j++)
|
1501
|
+
w[j] = 0;
|
1502
|
+
|
1503
|
+
for(j=0; j<l; j++)
|
1504
|
+
{
|
1505
|
+
b[j] = 1;
|
1506
|
+
if(prob_col->y[j] > 0)
|
1507
|
+
y[j] = 1;
|
1508
|
+
else
|
1509
|
+
y[j] = -1;
|
1510
|
+
}
|
1511
|
+
for(j=0; j<w_size; j++)
|
1512
|
+
{
|
1513
|
+
index[j] = j;
|
1514
|
+
xj_sq[j] = 0;
|
1515
|
+
x = prob_col->x[j];
|
1516
|
+
while(x->index != -1)
|
1517
|
+
{
|
1518
|
+
int ind = x->index-1;
|
1519
|
+
x->value *= y[ind]; // x->value stores yi*xij
|
1520
|
+
double val = x->value;
|
1521
|
+
b[ind] -= w[j]*val;
|
1522
|
+
xj_sq[j] += C[GETI(ind)]*val*val;
|
1523
|
+
x++;
|
1524
|
+
}
|
1525
|
+
}
|
1526
|
+
|
1527
|
+
while(iter < max_iter)
|
1528
|
+
{
|
1529
|
+
Gmax_new = 0;
|
1530
|
+
Gnorm1_new = 0;
|
1531
|
+
|
1532
|
+
for(j=0; j<active_size; j++)
|
1533
|
+
{
|
1534
|
+
int i = j+rand()%(active_size-j);
|
1535
|
+
swap(index[i], index[j]);
|
1536
|
+
}
|
1537
|
+
|
1538
|
+
for(s=0; s<active_size; s++)
|
1539
|
+
{
|
1540
|
+
j = index[s];
|
1541
|
+
G_loss = 0;
|
1542
|
+
H = 0;
|
1543
|
+
|
1544
|
+
x = prob_col->x[j];
|
1545
|
+
while(x->index != -1)
|
1546
|
+
{
|
1547
|
+
int ind = x->index-1;
|
1548
|
+
if(b[ind] > 0)
|
1549
|
+
{
|
1550
|
+
double val = x->value;
|
1551
|
+
double tmp = C[GETI(ind)]*val;
|
1552
|
+
G_loss -= tmp*b[ind];
|
1553
|
+
H += tmp*val;
|
1554
|
+
}
|
1555
|
+
x++;
|
1556
|
+
}
|
1557
|
+
G_loss *= 2;
|
1558
|
+
|
1559
|
+
G = G_loss;
|
1560
|
+
H *= 2;
|
1561
|
+
H = max(H, 1e-12);
|
1562
|
+
|
1563
|
+
double violation = 0;
|
1564
|
+
double Gp = 0, Gn = 0;
|
1565
|
+
if(j == w_size-1 && regularize_bias == 0)
|
1566
|
+
violation = fabs(G);
|
1567
|
+
else
|
1568
|
+
{
|
1569
|
+
Gp = G+1;
|
1570
|
+
Gn = G-1;
|
1571
|
+
if(w[j] == 0)
|
1572
|
+
{
|
1573
|
+
if(Gp < 0)
|
1574
|
+
violation = -Gp;
|
1575
|
+
else if(Gn > 0)
|
1576
|
+
violation = Gn;
|
1577
|
+
else if(Gp>Gmax_old/l && Gn<-Gmax_old/l)
|
1578
|
+
{
|
1579
|
+
active_size--;
|
1580
|
+
swap(index[s], index[active_size]);
|
1581
|
+
s--;
|
1582
|
+
continue;
|
1583
|
+
}
|
1584
|
+
}
|
1585
|
+
else if(w[j] > 0)
|
1586
|
+
violation = fabs(Gp);
|
1587
|
+
else
|
1588
|
+
violation = fabs(Gn);
|
1589
|
+
}
|
1590
|
+
Gmax_new = max(Gmax_new, violation);
|
1591
|
+
Gnorm1_new += violation;
|
1592
|
+
|
1593
|
+
// obtain Newton direction d
|
1594
|
+
if(j == w_size-1 && regularize_bias == 0)
|
1595
|
+
d = -G/H;
|
1596
|
+
else
|
1597
|
+
{
|
1598
|
+
if(Gp < H*w[j])
|
1599
|
+
d = -Gp/H;
|
1600
|
+
else if(Gn > H*w[j])
|
1601
|
+
d = -Gn/H;
|
1602
|
+
else
|
1603
|
+
d = -w[j];
|
1604
|
+
}
|
1605
|
+
|
1606
|
+
if(fabs(d) < 1.0e-12)
|
1607
|
+
continue;
|
1608
|
+
|
1609
|
+
double delta;
|
1610
|
+
if(j == w_size-1 && regularize_bias == 0)
|
1611
|
+
delta = G*d;
|
1612
|
+
else
|
1613
|
+
delta = fabs(w[j]+d)-fabs(w[j]) + G*d;
|
1614
|
+
d_old = 0;
|
1615
|
+
int num_linesearch;
|
1616
|
+
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
|
1617
|
+
{
|
1618
|
+
d_diff = d_old - d;
|
1619
|
+
if(j == w_size-1 && regularize_bias == 0)
|
1620
|
+
cond = -sigma*delta;
|
1621
|
+
else
|
1622
|
+
cond = fabs(w[j]+d)-fabs(w[j]) - sigma*delta;
|
1623
|
+
|
1624
|
+
appxcond = xj_sq[j]*d*d + G_loss*d + cond;
|
1625
|
+
if(appxcond <= 0)
|
1626
|
+
{
|
1627
|
+
x = prob_col->x[j];
|
1628
|
+
sparse_operator::axpy(d_diff, x, b);
|
1629
|
+
break;
|
1630
|
+
}
|
1631
|
+
|
1632
|
+
if(num_linesearch == 0)
|
1633
|
+
{
|
1634
|
+
loss_old = 0;
|
1635
|
+
loss_new = 0;
|
1636
|
+
x = prob_col->x[j];
|
1637
|
+
while(x->index != -1)
|
1638
|
+
{
|
1639
|
+
int ind = x->index-1;
|
1640
|
+
if(b[ind] > 0)
|
1641
|
+
loss_old += C[GETI(ind)]*b[ind]*b[ind];
|
1642
|
+
double b_new = b[ind] + d_diff*x->value;
|
1643
|
+
b[ind] = b_new;
|
1644
|
+
if(b_new > 0)
|
1645
|
+
loss_new += C[GETI(ind)]*b_new*b_new;
|
1646
|
+
x++;
|
1647
|
+
}
|
1648
|
+
}
|
1649
|
+
else
|
1650
|
+
{
|
1651
|
+
loss_new = 0;
|
1652
|
+
x = prob_col->x[j];
|
1653
|
+
while(x->index != -1)
|
1654
|
+
{
|
1655
|
+
int ind = x->index-1;
|
1656
|
+
double b_new = b[ind] + d_diff*x->value;
|
1657
|
+
b[ind] = b_new;
|
1658
|
+
if(b_new > 0)
|
1659
|
+
loss_new += C[GETI(ind)]*b_new*b_new;
|
1660
|
+
x++;
|
1661
|
+
}
|
1662
|
+
}
|
1663
|
+
|
1664
|
+
cond = cond + loss_new - loss_old;
|
1665
|
+
if(cond <= 0)
|
1666
|
+
break;
|
1667
|
+
else
|
1668
|
+
{
|
1669
|
+
d_old = d;
|
1670
|
+
d *= 0.5;
|
1671
|
+
delta *= 0.5;
|
1672
|
+
}
|
1673
|
+
}
|
1674
|
+
|
1675
|
+
w[j] += d;
|
1676
|
+
|
1677
|
+
// recompute b[] if line search takes too many steps
|
1678
|
+
if(num_linesearch >= max_num_linesearch)
|
1679
|
+
{
|
1680
|
+
info("#");
|
1681
|
+
for(int i=0; i<l; i++)
|
1682
|
+
b[i] = 1;
|
1683
|
+
|
1684
|
+
for(int i=0; i<w_size; i++)
|
1685
|
+
{
|
1686
|
+
if(w[i]==0) continue;
|
1687
|
+
x = prob_col->x[i];
|
1688
|
+
sparse_operator::axpy(-w[i], x, b);
|
1689
|
+
}
|
1690
|
+
}
|
1691
|
+
}
|
1692
|
+
|
1693
|
+
if(iter == 0)
|
1694
|
+
Gnorm1_init = Gnorm1_new;
|
1695
|
+
iter++;
|
1696
|
+
if(iter % 10 == 0)
|
1697
|
+
info(".");
|
1698
|
+
|
1699
|
+
if(Gnorm1_new <= eps*Gnorm1_init)
|
1700
|
+
{
|
1701
|
+
if(active_size == w_size)
|
1702
|
+
break;
|
1703
|
+
else
|
1704
|
+
{
|
1705
|
+
active_size = w_size;
|
1706
|
+
info("*");
|
1707
|
+
Gmax_old = INF;
|
1708
|
+
continue;
|
1709
|
+
}
|
1710
|
+
}
|
1711
|
+
|
1712
|
+
Gmax_old = Gmax_new;
|
1713
|
+
}
|
1714
|
+
|
1715
|
+
info("\noptimization finished, #iter = %d\n", iter);
|
1716
|
+
if(iter >= max_iter)
|
1717
|
+
info("\nWARNING: reaching max number of iterations\n");
|
1718
|
+
|
1719
|
+
// calculate objective value
|
1720
|
+
|
1721
|
+
double v = 0;
|
1722
|
+
int nnz = 0;
|
1723
|
+
for(j=0; j<w_size; j++)
|
1724
|
+
{
|
1725
|
+
x = prob_col->x[j];
|
1726
|
+
while(x->index != -1)
|
1727
|
+
{
|
1728
|
+
x->value *= prob_col->y[x->index-1]; // restore x->value
|
1729
|
+
x++;
|
1730
|
+
}
|
1731
|
+
if(w[j] != 0)
|
1732
|
+
{
|
1733
|
+
v += fabs(w[j]);
|
1734
|
+
nnz++;
|
1735
|
+
}
|
1736
|
+
}
|
1737
|
+
if (regularize_bias == 0)
|
1738
|
+
v -= fabs(w[w_size-1]);
|
1739
|
+
for(j=0; j<l; j++)
|
1740
|
+
if(b[j] > 0)
|
1741
|
+
v += C[GETI(j)]*b[j]*b[j];
|
1742
|
+
|
1743
|
+
info("Objective value = %lf\n", v);
|
1744
|
+
info("#nonzeros/#features = %d/%d\n", nnz, w_size);
|
1745
|
+
|
1746
|
+
delete [] index;
|
1747
|
+
delete [] y;
|
1748
|
+
delete [] b;
|
1749
|
+
delete [] xj_sq;
|
1750
|
+
}
|
1751
|
+
|
1752
|
+
// A coordinate descent algorithm for
|
1753
|
+
// L1-regularized logistic regression problems
|
1754
|
+
//
|
1755
|
+
// min_w \sum |wj| + C \sum log(1+exp(-yi w^T xi)),
|
1756
|
+
//
|
1757
|
+
// Given:
|
1758
|
+
// x, y, Cp, Cn
|
1759
|
+
// eps is the stopping tolerance
|
1760
|
+
//
|
1761
|
+
// solution will be put in w
|
1762
|
+
//
|
1763
|
+
// See Yuan et al. (2011) and appendix of LIBLINEAR paper, Fan et al. (2008)
|
1764
|
+
//
|
1765
|
+
// To not regularize the bias (i.e., regularize_bias = 0), a constant feature = 1
|
1766
|
+
// must have been added to the original data. (see -B and -R option)
|
1767
|
+
|
1768
|
+
#undef GETI
|
1769
|
+
#define GETI(i) (y[i]+1)
|
1770
|
+
// To support weights for instances, use GETI(i) (i)
|
1771
|
+
|
1772
|
+
static void solve_l1r_lr(
|
1773
|
+
const problem *prob_col, double *w, double eps,
|
1774
|
+
double Cp, double Cn, int regularize_bias)
|
1775
|
+
{
|
1776
|
+
int l = prob_col->l;
|
1777
|
+
int w_size = prob_col->n;
|
1778
|
+
int j, s, newton_iter=0, iter=0;
|
1779
|
+
int max_newton_iter = 100;
|
1780
|
+
int max_iter = 1000;
|
1781
|
+
int max_num_linesearch = 20;
|
1782
|
+
int active_size;
|
1783
|
+
int QP_active_size;
|
1784
|
+
|
1785
|
+
double nu = 1e-12;
|
1786
|
+
double inner_eps = 1;
|
1787
|
+
double sigma = 0.01;
|
1788
|
+
double w_norm, w_norm_new;
|
1789
|
+
double z, G, H;
|
1790
|
+
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
|
1791
|
+
double Gmax_old = INF;
|
1792
|
+
double Gmax_new, Gnorm1_new;
|
1793
|
+
double QP_Gmax_old = INF;
|
1794
|
+
double QP_Gmax_new, QP_Gnorm1_new;
|
1795
|
+
double delta, negsum_xTd, cond;
|
1796
|
+
|
1797
|
+
int *index = new int[w_size];
|
1798
|
+
schar *y = new schar[l];
|
1799
|
+
double *Hdiag = new double[w_size];
|
1800
|
+
double *Grad = new double[w_size];
|
1801
|
+
double *wpd = new double[w_size];
|
1802
|
+
double *xjneg_sum = new double[w_size];
|
1803
|
+
double *xTd = new double[l];
|
1804
|
+
double *exp_wTx = new double[l];
|
1805
|
+
double *exp_wTx_new = new double[l];
|
1806
|
+
double *tau = new double[l];
|
1807
|
+
double *D = new double[l];
|
1808
|
+
feature_node *x;
|
1809
|
+
|
1810
|
+
double C[3] = {Cn,0,Cp};
|
1811
|
+
|
1812
|
+
// Initial w can be set here.
|
1813
|
+
for(j=0; j<w_size; j++)
|
1814
|
+
w[j] = 0;
|
1815
|
+
|
1816
|
+
for(j=0; j<l; j++)
|
1817
|
+
{
|
1818
|
+
if(prob_col->y[j] > 0)
|
1819
|
+
y[j] = 1;
|
1820
|
+
else
|
1821
|
+
y[j] = -1;
|
1822
|
+
|
1823
|
+
exp_wTx[j] = 0;
|
1824
|
+
}
|
1825
|
+
|
1826
|
+
w_norm = 0;
|
1827
|
+
for(j=0; j<w_size; j++)
|
1828
|
+
{
|
1829
|
+
w_norm += fabs(w[j]);
|
1830
|
+
wpd[j] = w[j];
|
1831
|
+
index[j] = j;
|
1832
|
+
xjneg_sum[j] = 0;
|
1833
|
+
x = prob_col->x[j];
|
1834
|
+
while(x->index != -1)
|
1835
|
+
{
|
1836
|
+
int ind = x->index-1;
|
1837
|
+
double val = x->value;
|
1838
|
+
exp_wTx[ind] += w[j]*val;
|
1839
|
+
if(y[ind] == -1)
|
1840
|
+
xjneg_sum[j] += C[GETI(ind)]*val;
|
1841
|
+
x++;
|
1842
|
+
}
|
1843
|
+
}
|
1844
|
+
if (regularize_bias == 0)
|
1845
|
+
w_norm -= fabs(w[w_size-1]);
|
1846
|
+
|
1847
|
+
for(j=0; j<l; j++)
|
1848
|
+
{
|
1849
|
+
exp_wTx[j] = exp(exp_wTx[j]);
|
1850
|
+
double tau_tmp = 1/(1+exp_wTx[j]);
|
1851
|
+
tau[j] = C[GETI(j)]*tau_tmp;
|
1852
|
+
D[j] = C[GETI(j)]*exp_wTx[j]*tau_tmp*tau_tmp;
|
1853
|
+
}
|
1854
|
+
|
1855
|
+
while(newton_iter < max_newton_iter)
|
1856
|
+
{
|
1857
|
+
Gmax_new = 0;
|
1858
|
+
Gnorm1_new = 0;
|
1859
|
+
active_size = w_size;
|
1860
|
+
|
1861
|
+
for(s=0; s<active_size; s++)
|
1862
|
+
{
|
1863
|
+
j = index[s];
|
1864
|
+
Hdiag[j] = nu;
|
1865
|
+
Grad[j] = 0;
|
1866
|
+
|
1867
|
+
double tmp = 0;
|
1868
|
+
x = prob_col->x[j];
|
1869
|
+
while(x->index != -1)
|
1870
|
+
{
|
1871
|
+
int ind = x->index-1;
|
1872
|
+
Hdiag[j] += x->value*x->value*D[ind];
|
1873
|
+
tmp += x->value*tau[ind];
|
1874
|
+
x++;
|
1875
|
+
}
|
1876
|
+
Grad[j] = -tmp + xjneg_sum[j];
|
1877
|
+
|
1878
|
+
double violation = 0;
|
1879
|
+
if (j == w_size-1 && regularize_bias == 0)
|
1880
|
+
violation = fabs(Grad[j]);
|
1881
|
+
else
|
1882
|
+
{
|
1883
|
+
double Gp = Grad[j]+1;
|
1884
|
+
double Gn = Grad[j]-1;
|
1885
|
+
if(w[j] == 0)
|
1886
|
+
{
|
1887
|
+
if(Gp < 0)
|
1888
|
+
violation = -Gp;
|
1889
|
+
else if(Gn > 0)
|
1890
|
+
violation = Gn;
|
1891
|
+
//outer-level shrinking
|
1892
|
+
else if(Gp>Gmax_old/l && Gn<-Gmax_old/l)
|
1893
|
+
{
|
1894
|
+
active_size--;
|
1895
|
+
swap(index[s], index[active_size]);
|
1896
|
+
s--;
|
1897
|
+
continue;
|
1898
|
+
}
|
1899
|
+
}
|
1900
|
+
else if(w[j] > 0)
|
1901
|
+
violation = fabs(Gp);
|
1902
|
+
else
|
1903
|
+
violation = fabs(Gn);
|
1904
|
+
}
|
1905
|
+
Gmax_new = max(Gmax_new, violation);
|
1906
|
+
Gnorm1_new += violation;
|
1907
|
+
}
|
1908
|
+
|
1909
|
+
if(newton_iter == 0)
|
1910
|
+
Gnorm1_init = Gnorm1_new;
|
1911
|
+
|
1912
|
+
if(Gnorm1_new <= eps*Gnorm1_init)
|
1913
|
+
break;
|
1914
|
+
|
1915
|
+
iter = 0;
|
1916
|
+
QP_Gmax_old = INF;
|
1917
|
+
QP_active_size = active_size;
|
1918
|
+
|
1919
|
+
for(int i=0; i<l; i++)
|
1920
|
+
xTd[i] = 0;
|
1921
|
+
|
1922
|
+
// optimize QP over wpd
|
1923
|
+
while(iter < max_iter)
|
1924
|
+
{
|
1925
|
+
QP_Gmax_new = 0;
|
1926
|
+
QP_Gnorm1_new = 0;
|
1927
|
+
|
1928
|
+
for(j=0; j<QP_active_size; j++)
|
1929
|
+
{
|
1930
|
+
int i = j+rand()%(QP_active_size-j);
|
1931
|
+
swap(index[i], index[j]);
|
1932
|
+
}
|
1933
|
+
|
1934
|
+
for(s=0; s<QP_active_size; s++)
|
1935
|
+
{
|
1936
|
+
j = index[s];
|
1937
|
+
H = Hdiag[j];
|
1938
|
+
|
1939
|
+
x = prob_col->x[j];
|
1940
|
+
G = Grad[j] + (wpd[j]-w[j])*nu;
|
1941
|
+
while(x->index != -1)
|
1942
|
+
{
|
1943
|
+
int ind = x->index-1;
|
1944
|
+
G += x->value*D[ind]*xTd[ind];
|
1945
|
+
x++;
|
1946
|
+
}
|
1947
|
+
|
1948
|
+
double violation = 0;
|
1949
|
+
if (j == w_size-1 && regularize_bias == 0)
|
1950
|
+
{
|
1951
|
+
// bias term not shrunken
|
1952
|
+
violation = fabs(G);
|
1953
|
+
z = -G/H;
|
1954
|
+
}
|
1955
|
+
else
|
1956
|
+
{
|
1957
|
+
double Gp = G+1;
|
1958
|
+
double Gn = G-1;
|
1959
|
+
if(wpd[j] == 0)
|
1960
|
+
{
|
1961
|
+
if(Gp < 0)
|
1962
|
+
violation = -Gp;
|
1963
|
+
else if(Gn > 0)
|
1964
|
+
violation = Gn;
|
1965
|
+
//inner-level shrinking
|
1966
|
+
else if(Gp>QP_Gmax_old/l && Gn<-QP_Gmax_old/l)
|
1967
|
+
{
|
1968
|
+
QP_active_size--;
|
1969
|
+
swap(index[s], index[QP_active_size]);
|
1970
|
+
s--;
|
1971
|
+
continue;
|
1972
|
+
}
|
1973
|
+
}
|
1974
|
+
else if(wpd[j] > 0)
|
1975
|
+
violation = fabs(Gp);
|
1976
|
+
else
|
1977
|
+
violation = fabs(Gn);
|
1978
|
+
|
1979
|
+
// obtain solution of one-variable problem
|
1980
|
+
if(Gp < H*wpd[j])
|
1981
|
+
z = -Gp/H;
|
1982
|
+
else if(Gn > H*wpd[j])
|
1983
|
+
z = -Gn/H;
|
1984
|
+
else
|
1985
|
+
z = -wpd[j];
|
1986
|
+
}
|
1987
|
+
QP_Gmax_new = max(QP_Gmax_new, violation);
|
1988
|
+
QP_Gnorm1_new += violation;
|
1989
|
+
|
1990
|
+
if(fabs(z) < 1.0e-12)
|
1991
|
+
continue;
|
1992
|
+
z = min(max(z,-10.0),10.0);
|
1993
|
+
|
1994
|
+
wpd[j] += z;
|
1995
|
+
|
1996
|
+
x = prob_col->x[j];
|
1997
|
+
sparse_operator::axpy(z, x, xTd);
|
1998
|
+
}
|
1999
|
+
|
2000
|
+
iter++;
|
2001
|
+
|
2002
|
+
if(QP_Gnorm1_new <= inner_eps*Gnorm1_init)
|
2003
|
+
{
|
2004
|
+
//inner stopping
|
2005
|
+
if(QP_active_size == active_size)
|
2006
|
+
break;
|
2007
|
+
//active set reactivation
|
2008
|
+
else
|
2009
|
+
{
|
2010
|
+
QP_active_size = active_size;
|
2011
|
+
QP_Gmax_old = INF;
|
2012
|
+
continue;
|
2013
|
+
}
|
2014
|
+
}
|
2015
|
+
|
2016
|
+
QP_Gmax_old = QP_Gmax_new;
|
2017
|
+
}
|
2018
|
+
|
2019
|
+
if(iter >= max_iter)
|
2020
|
+
info("WARNING: reaching max number of inner iterations\n");
|
2021
|
+
|
2022
|
+
delta = 0;
|
2023
|
+
w_norm_new = 0;
|
2024
|
+
for(j=0; j<w_size; j++)
|
2025
|
+
{
|
2026
|
+
delta += Grad[j]*(wpd[j]-w[j]);
|
2027
|
+
if(wpd[j] != 0)
|
2028
|
+
w_norm_new += fabs(wpd[j]);
|
2029
|
+
}
|
2030
|
+
if (regularize_bias == 0)
|
2031
|
+
w_norm_new -= fabs(wpd[w_size-1]);
|
2032
|
+
delta += (w_norm_new-w_norm);
|
2033
|
+
|
2034
|
+
negsum_xTd = 0;
|
2035
|
+
for(int i=0; i<l; i++)
|
2036
|
+
if(y[i] == -1)
|
2037
|
+
negsum_xTd += C[GETI(i)]*xTd[i];
|
2038
|
+
|
2039
|
+
int num_linesearch;
|
2040
|
+
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
|
2041
|
+
{
|
2042
|
+
cond = w_norm_new - w_norm + negsum_xTd - sigma*delta;
|
2043
|
+
|
2044
|
+
for(int i=0; i<l; i++)
|
2045
|
+
{
|
2046
|
+
double exp_xTd = exp(xTd[i]);
|
2047
|
+
exp_wTx_new[i] = exp_wTx[i]*exp_xTd;
|
2048
|
+
cond += C[GETI(i)]*log((1+exp_wTx_new[i])/(exp_xTd+exp_wTx_new[i]));
|
2049
|
+
}
|
2050
|
+
|
2051
|
+
if(cond <= 0)
|
2052
|
+
{
|
2053
|
+
w_norm = w_norm_new;
|
2054
|
+
for(j=0; j<w_size; j++)
|
2055
|
+
w[j] = wpd[j];
|
2056
|
+
for(int i=0; i<l; i++)
|
2057
|
+
{
|
2058
|
+
exp_wTx[i] = exp_wTx_new[i];
|
2059
|
+
double tau_tmp = 1/(1+exp_wTx[i]);
|
2060
|
+
tau[i] = C[GETI(i)]*tau_tmp;
|
2061
|
+
D[i] = C[GETI(i)]*exp_wTx[i]*tau_tmp*tau_tmp;
|
2062
|
+
}
|
2063
|
+
break;
|
2064
|
+
}
|
2065
|
+
else
|
2066
|
+
{
|
2067
|
+
w_norm_new = 0;
|
2068
|
+
for(j=0; j<w_size; j++)
|
2069
|
+
{
|
2070
|
+
wpd[j] = (w[j]+wpd[j])*0.5;
|
2071
|
+
if(wpd[j] != 0)
|
2072
|
+
w_norm_new += fabs(wpd[j]);
|
2073
|
+
}
|
2074
|
+
if (regularize_bias == 0)
|
2075
|
+
w_norm_new -= fabs(wpd[w_size-1]);
|
2076
|
+
delta *= 0.5;
|
2077
|
+
negsum_xTd *= 0.5;
|
2078
|
+
for(int i=0; i<l; i++)
|
2079
|
+
xTd[i] *= 0.5;
|
2080
|
+
}
|
2081
|
+
}
|
2082
|
+
|
2083
|
+
// Recompute some info due to too many line search steps
|
2084
|
+
if(num_linesearch >= max_num_linesearch)
|
2085
|
+
{
|
2086
|
+
for(int i=0; i<l; i++)
|
2087
|
+
exp_wTx[i] = 0;
|
2088
|
+
|
2089
|
+
for(int i=0; i<w_size; i++)
|
2090
|
+
{
|
2091
|
+
if(w[i]==0) continue;
|
2092
|
+
x = prob_col->x[i];
|
2093
|
+
sparse_operator::axpy(w[i], x, exp_wTx);
|
2094
|
+
}
|
2095
|
+
|
2096
|
+
for(int i=0; i<l; i++)
|
2097
|
+
exp_wTx[i] = exp(exp_wTx[i]);
|
2098
|
+
}
|
2099
|
+
|
2100
|
+
if(iter == 1)
|
2101
|
+
inner_eps *= 0.25;
|
2102
|
+
|
2103
|
+
newton_iter++;
|
2104
|
+
Gmax_old = Gmax_new;
|
2105
|
+
|
2106
|
+
info("iter %3d #CD cycles %d\n", newton_iter, iter);
|
2107
|
+
}
|
2108
|
+
|
2109
|
+
info("=========================\n");
|
2110
|
+
info("optimization finished, #iter = %d\n", newton_iter);
|
2111
|
+
if(newton_iter >= max_newton_iter)
|
2112
|
+
info("WARNING: reaching max number of iterations\n");
|
2113
|
+
|
2114
|
+
// calculate objective value
|
2115
|
+
|
2116
|
+
double v = 0;
|
2117
|
+
int nnz = 0;
|
2118
|
+
for(j=0; j<w_size; j++)
|
2119
|
+
if(w[j] != 0)
|
2120
|
+
{
|
2121
|
+
v += fabs(w[j]);
|
2122
|
+
nnz++;
|
2123
|
+
}
|
2124
|
+
if (regularize_bias == 0)
|
2125
|
+
v -= fabs(w[w_size-1]);
|
2126
|
+
for(j=0; j<l; j++)
|
2127
|
+
if(y[j] == 1)
|
2128
|
+
v += C[GETI(j)]*log(1+1/exp_wTx[j]);
|
2129
|
+
else
|
2130
|
+
v += C[GETI(j)]*log(1+exp_wTx[j]);
|
2131
|
+
|
2132
|
+
info("Objective value = %lf\n", v);
|
2133
|
+
info("#nonzeros/#features = %d/%d\n", nnz, w_size);
|
2134
|
+
|
2135
|
+
delete [] index;
|
2136
|
+
delete [] y;
|
2137
|
+
delete [] Hdiag;
|
2138
|
+
delete [] Grad;
|
2139
|
+
delete [] wpd;
|
2140
|
+
delete [] xjneg_sum;
|
2141
|
+
delete [] xTd;
|
2142
|
+
delete [] exp_wTx;
|
2143
|
+
delete [] exp_wTx_new;
|
2144
|
+
delete [] tau;
|
2145
|
+
delete [] D;
|
2146
|
+
}
|
2147
|
+
|
2148
|
+
struct heap {
|
2149
|
+
enum HEAP_TYPE { MIN, MAX };
|
2150
|
+
int _size;
|
2151
|
+
HEAP_TYPE _type;
|
2152
|
+
feature_node* a;
|
2153
|
+
|
2154
|
+
heap(int max_size, HEAP_TYPE type)
|
2155
|
+
{
|
2156
|
+
_size = 0;
|
2157
|
+
a = new feature_node[max_size];
|
2158
|
+
_type = type;
|
2159
|
+
}
|
2160
|
+
~heap()
|
2161
|
+
{
|
2162
|
+
delete [] a;
|
2163
|
+
}
|
2164
|
+
bool cmp(const feature_node& left, const feature_node& right)
|
2165
|
+
{
|
2166
|
+
if(_type == MIN)
|
2167
|
+
return left.value > right.value;
|
2168
|
+
else
|
2169
|
+
return left.value < right.value;
|
2170
|
+
}
|
2171
|
+
int size()
|
2172
|
+
{
|
2173
|
+
return _size;
|
2174
|
+
}
|
2175
|
+
void push(feature_node node)
|
2176
|
+
{
|
2177
|
+
a[_size] = node;
|
2178
|
+
_size++;
|
2179
|
+
int i = _size-1;
|
2180
|
+
while(i)
|
2181
|
+
{
|
2182
|
+
int p = (i-1)/2;
|
2183
|
+
if(cmp(a[p], a[i]))
|
2184
|
+
{
|
2185
|
+
swap(a[i], a[p]);
|
2186
|
+
i = p;
|
2187
|
+
}
|
2188
|
+
else
|
2189
|
+
break;
|
2190
|
+
}
|
2191
|
+
}
|
2192
|
+
void pop()
|
2193
|
+
{
|
2194
|
+
_size--;
|
2195
|
+
a[0] = a[_size];
|
2196
|
+
int i = 0;
|
2197
|
+
while(i*2+1 < _size)
|
2198
|
+
{
|
2199
|
+
int l = i*2+1;
|
2200
|
+
int r = i*2+2;
|
2201
|
+
if(r < _size && cmp(a[l], a[r]))
|
2202
|
+
l = r;
|
2203
|
+
if(cmp(a[i], a[l]))
|
2204
|
+
{
|
2205
|
+
swap(a[i], a[l]);
|
2206
|
+
i = l;
|
2207
|
+
}
|
2208
|
+
else
|
2209
|
+
break;
|
2210
|
+
}
|
2211
|
+
}
|
2212
|
+
feature_node top()
|
2213
|
+
{
|
2214
|
+
return a[0];
|
2215
|
+
}
|
2216
|
+
};
|
2217
|
+
|
2218
|
+
// A two-level coordinate descent algorithm for
|
2219
|
+
// a scaled one-class SVM dual problem
|
2220
|
+
//
|
2221
|
+
// min_\alpha 0.5(\alpha^T Q \alpha),
|
2222
|
+
// s.t. 0 <= \alpha_i <= 1 and
|
2223
|
+
// e^T \alpha = \nu l
|
2224
|
+
//
|
2225
|
+
// where Qij = xi^T xj
|
2226
|
+
//
|
2227
|
+
// Given:
|
2228
|
+
// x, nu
|
2229
|
+
// eps is the stopping tolerance
|
2230
|
+
//
|
2231
|
+
// solution will be put in w and rho
|
2232
|
+
//
|
2233
|
+
// See Algorithm 7 in supplementary materials of Chou et al., SDM 2020.
|
2234
|
+
|
2235
|
+
static void solve_oneclass_svm(const problem *prob, double *w, double *rho, double eps, double nu)
|
2236
|
+
{
|
2237
|
+
int l = prob->l;
|
2238
|
+
int w_size = prob->n;
|
2239
|
+
int i, j, s, iter = 0;
|
2240
|
+
double Gi, Gj;
|
2241
|
+
double Qij, quad_coef, delta, sum;
|
2242
|
+
double old_alpha_i;
|
2243
|
+
double *QD = new double[l];
|
2244
|
+
double *G = new double[l];
|
2245
|
+
int *index = new int[l];
|
2246
|
+
double *alpha = new double[l];
|
2247
|
+
int max_inner_iter;
|
2248
|
+
int max_iter = 1000;
|
2249
|
+
int active_size = l;
|
2250
|
+
|
2251
|
+
double negGmax; // max { -grad(f)_i | alpha_i < 1 }
|
2252
|
+
double negGmin; // min { -grad(f)_i | alpha_i > 0 }
|
2253
|
+
|
2254
|
+
int *most_violating_i = new int[l];
|
2255
|
+
int *most_violating_j = new int[l];
|
2256
|
+
|
2257
|
+
int n = (int)(nu*l); // # of alpha's at upper bound
|
2258
|
+
for(i=0; i<n; i++)
|
2259
|
+
alpha[i] = 1;
|
2260
|
+
if (n<l)
|
2261
|
+
alpha[i] = nu*l-n;
|
2262
|
+
for(i=n+1; i<l; i++)
|
2263
|
+
alpha[i] = 0;
|
2264
|
+
|
2265
|
+
for(i=0; i<w_size; i++)
|
2266
|
+
w[i] = 0;
|
2267
|
+
for(i=0; i<l; i++)
|
2268
|
+
{
|
2269
|
+
feature_node * const xi = prob->x[i];
|
2270
|
+
QD[i] = sparse_operator::nrm2_sq(xi);
|
2271
|
+
sparse_operator::axpy(alpha[i], xi, w);
|
2272
|
+
|
2273
|
+
index[i] = i;
|
2274
|
+
}
|
2275
|
+
|
2276
|
+
while (iter < max_iter)
|
2277
|
+
{
|
2278
|
+
negGmax = -INF;
|
2279
|
+
negGmin = INF;
|
2280
|
+
|
2281
|
+
for (s=0; s<active_size; s++)
|
2282
|
+
{
|
2283
|
+
i = index[s];
|
2284
|
+
feature_node * const xi = prob->x[i];
|
2285
|
+
G[i] = sparse_operator::dot(w, xi);
|
2286
|
+
if (alpha[i] < 1)
|
2287
|
+
negGmax = max(negGmax, -G[i]);
|
2288
|
+
if (alpha[i] > 0)
|
2289
|
+
negGmin = min(negGmin, -G[i]);
|
2290
|
+
}
|
2291
|
+
|
2292
|
+
if (negGmax - negGmin < eps)
|
2293
|
+
{
|
2294
|
+
if (active_size == l)
|
2295
|
+
break;
|
2296
|
+
else
|
2297
|
+
{
|
2298
|
+
active_size = l;
|
2299
|
+
info("*");
|
2300
|
+
continue;
|
2301
|
+
}
|
2302
|
+
}
|
2303
|
+
|
2304
|
+
for(s=0; s<active_size; s++)
|
2305
|
+
{
|
2306
|
+
i = index[s];
|
2307
|
+
if ((alpha[i] == 1 && -G[i] > negGmax) ||
|
2308
|
+
(alpha[i] == 0 && -G[i] < negGmin))
|
2309
|
+
{
|
2310
|
+
active_size--;
|
2311
|
+
swap(index[s], index[active_size]);
|
2312
|
+
s--;
|
2313
|
+
}
|
2314
|
+
}
|
2315
|
+
|
2316
|
+
max_inner_iter = max(active_size/10, 1);
|
2317
|
+
struct heap min_heap = heap(max_inner_iter, heap::MIN);
|
2318
|
+
struct heap max_heap = heap(max_inner_iter, heap::MAX);
|
2319
|
+
struct feature_node node;
|
2320
|
+
for(s=0; s<active_size; s++)
|
2321
|
+
{
|
2322
|
+
i = index[s];
|
2323
|
+
node.index = i;
|
2324
|
+
node.value = -G[i];
|
2325
|
+
|
2326
|
+
if (alpha[i] < 1)
|
2327
|
+
{
|
2328
|
+
if (min_heap.size() < max_inner_iter)
|
2329
|
+
min_heap.push(node);
|
2330
|
+
else if (min_heap.top().value < node.value)
|
2331
|
+
{
|
2332
|
+
min_heap.pop();
|
2333
|
+
min_heap.push(node);
|
2334
|
+
}
|
2335
|
+
}
|
2336
|
+
|
2337
|
+
if (alpha[i] > 0)
|
2338
|
+
{
|
2339
|
+
if (max_heap.size() < max_inner_iter)
|
2340
|
+
max_heap.push(node);
|
2341
|
+
else if (max_heap.top().value > node.value)
|
2342
|
+
{
|
2343
|
+
max_heap.pop();
|
2344
|
+
max_heap.push(node);
|
2345
|
+
}
|
2346
|
+
}
|
2347
|
+
}
|
2348
|
+
max_inner_iter = min(min_heap.size(), max_heap.size());
|
2349
|
+
while (max_heap.size() > max_inner_iter)
|
2350
|
+
max_heap.pop();
|
2351
|
+
while (min_heap.size() > max_inner_iter)
|
2352
|
+
min_heap.pop();
|
2353
|
+
|
2354
|
+
for (s=max_inner_iter-1; s>=0; s--)
|
2355
|
+
{
|
2356
|
+
most_violating_i[s] = min_heap.top().index;
|
2357
|
+
most_violating_j[s] = max_heap.top().index;
|
2358
|
+
min_heap.pop();
|
2359
|
+
max_heap.pop();
|
2360
|
+
}
|
2361
|
+
|
2362
|
+
for (s=0; s<max_inner_iter; s++)
|
2363
|
+
{
|
2364
|
+
i = most_violating_i[s];
|
2365
|
+
j = most_violating_j[s];
|
2366
|
+
|
2367
|
+
if ((alpha[i] == 0 && alpha[j] == 0) ||
|
2368
|
+
(alpha[i] == 1 && alpha[j] == 1))
|
2369
|
+
continue;
|
2370
|
+
|
2371
|
+
feature_node const * xi = prob->x[i];
|
2372
|
+
feature_node const * xj = prob->x[j];
|
2373
|
+
|
2374
|
+
Gi = sparse_operator::dot(w, xi);
|
2375
|
+
Gj = sparse_operator::dot(w, xj);
|
2376
|
+
|
2377
|
+
int violating_pair = 0;
|
2378
|
+
if (alpha[i] < 1 && alpha[j] > 0 && -Gj + 1e-12 < -Gi)
|
2379
|
+
violating_pair = 1;
|
2380
|
+
else
|
2381
|
+
if (alpha[i] > 0 && alpha[j] < 1 && -Gi + 1e-12 < -Gj)
|
2382
|
+
violating_pair = 1;
|
2383
|
+
if (violating_pair == 0)
|
2384
|
+
continue;
|
2385
|
+
|
2386
|
+
Qij = sparse_operator::sparse_dot(xi, xj);
|
2387
|
+
quad_coef = QD[i] + QD[j] - 2*Qij;
|
2388
|
+
if(quad_coef <= 0)
|
2389
|
+
quad_coef = 1e-12;
|
2390
|
+
delta = (Gi - Gj) / quad_coef;
|
2391
|
+
old_alpha_i = alpha[i];
|
2392
|
+
sum = alpha[i] + alpha[j];
|
2393
|
+
alpha[i] = alpha[i] - delta;
|
2394
|
+
alpha[j] = alpha[j] + delta;
|
2395
|
+
if (sum > 1)
|
2396
|
+
{
|
2397
|
+
if (alpha[i] > 1)
|
2398
|
+
{
|
2399
|
+
alpha[i] = 1;
|
2400
|
+
alpha[j] = sum - 1;
|
2401
|
+
}
|
2402
|
+
}
|
2403
|
+
else
|
2404
|
+
{
|
2405
|
+
if (alpha[j] < 0)
|
2406
|
+
{
|
2407
|
+
alpha[j] = 0;
|
2408
|
+
alpha[i] = sum;
|
2409
|
+
}
|
2410
|
+
}
|
2411
|
+
if (sum > 1)
|
2412
|
+
{
|
2413
|
+
if (alpha[j] > 1)
|
2414
|
+
{
|
2415
|
+
alpha[j] = 1;
|
2416
|
+
alpha[i] = sum - 1;
|
2417
|
+
}
|
2418
|
+
}
|
2419
|
+
else
|
2420
|
+
{
|
2421
|
+
if (alpha[i] < 0)
|
2422
|
+
{
|
2423
|
+
alpha[i] = 0;
|
2424
|
+
alpha[j] = sum;
|
2425
|
+
}
|
2426
|
+
}
|
2427
|
+
delta = alpha[i] - old_alpha_i;
|
2428
|
+
sparse_operator::axpy(delta, xi, w);
|
2429
|
+
sparse_operator::axpy(-delta, xj, w);
|
2430
|
+
}
|
2431
|
+
iter++;
|
2432
|
+
if (iter % 10 == 0)
|
2433
|
+
info(".");
|
2434
|
+
}
|
2435
|
+
info("\noptimization finished, #iter = %d\n",iter);
|
2436
|
+
if (iter >= max_iter)
|
2437
|
+
info("\nWARNING: reaching max number of iterations\n\n");
|
2438
|
+
|
2439
|
+
// calculate object value
|
2440
|
+
double v = 0;
|
2441
|
+
for(i=0; i<w_size; i++)
|
2442
|
+
v += w[i]*w[i];
|
2443
|
+
int nSV = 0;
|
2444
|
+
for(i=0; i<l; i++)
|
2445
|
+
{
|
2446
|
+
if (alpha[i] > 0)
|
2447
|
+
++nSV;
|
2448
|
+
}
|
2449
|
+
info("Objective value = %lf\n", v/2);
|
2450
|
+
info("nSV = %d\n", nSV);
|
2451
|
+
|
2452
|
+
// calculate rho
|
2453
|
+
double nr_free = 0;
|
2454
|
+
double ub = INF, lb = -INF, sum_free = 0;
|
2455
|
+
for(i=0; i<l; i++)
|
2456
|
+
{
|
2457
|
+
double G = sparse_operator::dot(w, prob->x[i]);
|
2458
|
+
if (alpha[i] == 1)
|
2459
|
+
lb = max(lb, G);
|
2460
|
+
else if (alpha[i] == 0)
|
2461
|
+
ub = min(ub, G);
|
2462
|
+
else
|
2463
|
+
{
|
2464
|
+
++nr_free;
|
2465
|
+
sum_free += G;
|
2466
|
+
}
|
2467
|
+
}
|
2468
|
+
|
2469
|
+
if (nr_free > 0)
|
2470
|
+
*rho = sum_free/nr_free;
|
2471
|
+
else
|
2472
|
+
*rho = (ub + lb)/2;
|
2473
|
+
|
2474
|
+
info("rho = %lf\n", *rho);
|
2475
|
+
|
2476
|
+
delete [] QD;
|
2477
|
+
delete [] G;
|
2478
|
+
delete [] index;
|
2479
|
+
delete [] alpha;
|
2480
|
+
delete [] most_violating_i;
|
2481
|
+
delete [] most_violating_j;
|
2482
|
+
}
|
2483
|
+
|
2484
|
+
// transpose matrix X from row format to column format
|
2485
|
+
static void transpose(const problem *prob, feature_node **x_space_ret, problem *prob_col)
|
2486
|
+
{
|
2487
|
+
int i;
|
2488
|
+
int l = prob->l;
|
2489
|
+
int n = prob->n;
|
2490
|
+
size_t nnz = 0;
|
2491
|
+
size_t *col_ptr = new size_t [n+1];
|
2492
|
+
feature_node *x_space;
|
2493
|
+
prob_col->l = l;
|
2494
|
+
prob_col->n = n;
|
2495
|
+
prob_col->y = new double[l];
|
2496
|
+
prob_col->x = new feature_node*[n];
|
2497
|
+
|
2498
|
+
for(i=0; i<l; i++)
|
2499
|
+
prob_col->y[i] = prob->y[i];
|
2500
|
+
|
2501
|
+
for(i=0; i<n+1; i++)
|
2502
|
+
col_ptr[i] = 0;
|
2503
|
+
for(i=0; i<l; i++)
|
2504
|
+
{
|
2505
|
+
feature_node *x = prob->x[i];
|
2506
|
+
while(x->index != -1)
|
2507
|
+
{
|
2508
|
+
nnz++;
|
2509
|
+
col_ptr[x->index]++;
|
2510
|
+
x++;
|
2511
|
+
}
|
2512
|
+
}
|
2513
|
+
for(i=1; i<n+1; i++)
|
2514
|
+
col_ptr[i] += col_ptr[i-1] + 1;
|
2515
|
+
|
2516
|
+
x_space = new feature_node[nnz+n];
|
2517
|
+
for(i=0; i<n; i++)
|
2518
|
+
prob_col->x[i] = &x_space[col_ptr[i]];
|
2519
|
+
|
2520
|
+
for(i=0; i<l; i++)
|
2521
|
+
{
|
2522
|
+
feature_node *x = prob->x[i];
|
2523
|
+
while(x->index != -1)
|
2524
|
+
{
|
2525
|
+
int ind = x->index-1;
|
2526
|
+
x_space[col_ptr[ind]].index = i+1; // starts from 1
|
2527
|
+
x_space[col_ptr[ind]].value = x->value;
|
2528
|
+
col_ptr[ind]++;
|
2529
|
+
x++;
|
2530
|
+
}
|
2531
|
+
}
|
2532
|
+
for(i=0; i<n; i++)
|
2533
|
+
x_space[col_ptr[i]].index = -1;
|
2534
|
+
|
2535
|
+
*x_space_ret = x_space;
|
2536
|
+
|
2537
|
+
delete [] col_ptr;
|
2538
|
+
}
|
2539
|
+
|
2540
|
+
// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
|
2541
|
+
// perm, length l, must be allocated before calling this subroutine
|
2542
|
+
static void group_classes(const problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
|
2543
|
+
{
|
2544
|
+
int l = prob->l;
|
2545
|
+
int max_nr_class = 16;
|
2546
|
+
int nr_class = 0;
|
2547
|
+
int *label = Malloc(int,max_nr_class);
|
2548
|
+
int *count = Malloc(int,max_nr_class);
|
2549
|
+
int *data_label = Malloc(int,l);
|
2550
|
+
int i;
|
2551
|
+
|
2552
|
+
for(i=0;i<l;i++)
|
2553
|
+
{
|
2554
|
+
int this_label = (int)prob->y[i];
|
2555
|
+
int j;
|
2556
|
+
for(j=0;j<nr_class;j++)
|
2557
|
+
{
|
2558
|
+
if(this_label == label[j])
|
2559
|
+
{
|
2560
|
+
++count[j];
|
2561
|
+
break;
|
2562
|
+
}
|
2563
|
+
}
|
2564
|
+
data_label[i] = j;
|
2565
|
+
if(j == nr_class)
|
2566
|
+
{
|
2567
|
+
if(nr_class == max_nr_class)
|
2568
|
+
{
|
2569
|
+
max_nr_class *= 2;
|
2570
|
+
label = (int *)realloc(label,max_nr_class*sizeof(int));
|
2571
|
+
count = (int *)realloc(count,max_nr_class*sizeof(int));
|
2572
|
+
}
|
2573
|
+
label[nr_class] = this_label;
|
2574
|
+
count[nr_class] = 1;
|
2575
|
+
++nr_class;
|
2576
|
+
}
|
2577
|
+
}
|
2578
|
+
|
2579
|
+
//
|
2580
|
+
// Labels are ordered by their first occurrence in the training set.
|
2581
|
+
// However, for two-class sets with -1/+1 labels and -1 appears first,
|
2582
|
+
// we swap labels to ensure that internally the binary SVM has positive data corresponding to the +1 instances.
|
2583
|
+
//
|
2584
|
+
if (nr_class == 2 && label[0] == -1 && label[1] == 1)
|
2585
|
+
{
|
2586
|
+
swap(label[0],label[1]);
|
2587
|
+
swap(count[0],count[1]);
|
2588
|
+
for(i=0;i<l;i++)
|
2589
|
+
{
|
2590
|
+
if(data_label[i] == 0)
|
2591
|
+
data_label[i] = 1;
|
2592
|
+
else
|
2593
|
+
data_label[i] = 0;
|
2594
|
+
}
|
2595
|
+
}
|
2596
|
+
|
2597
|
+
int *start = Malloc(int,nr_class);
|
2598
|
+
start[0] = 0;
|
2599
|
+
for(i=1;i<nr_class;i++)
|
2600
|
+
start[i] = start[i-1]+count[i-1];
|
2601
|
+
for(i=0;i<l;i++)
|
2602
|
+
{
|
2603
|
+
perm[start[data_label[i]]] = i;
|
2604
|
+
++start[data_label[i]];
|
2605
|
+
}
|
2606
|
+
start[0] = 0;
|
2607
|
+
for(i=1;i<nr_class;i++)
|
2608
|
+
start[i] = start[i-1]+count[i-1];
|
2609
|
+
|
2610
|
+
*nr_class_ret = nr_class;
|
2611
|
+
*label_ret = label;
|
2612
|
+
*start_ret = start;
|
2613
|
+
*count_ret = count;
|
2614
|
+
free(data_label);
|
2615
|
+
}
|
2616
|
+
|
2617
|
+
static void train_one(const problem *prob, const parameter *param, double *w, double Cp, double Cn)
|
2618
|
+
{
|
2619
|
+
double eps = param->eps;
|
2620
|
+
|
2621
|
+
int pos = 0;
|
2622
|
+
int neg = 0;
|
2623
|
+
for(int i=0;i<prob->l;i++)
|
2624
|
+
if(prob->y[i] > 0)
|
2625
|
+
pos++;
|
2626
|
+
neg = prob->l - pos;
|
2627
|
+
double primal_solver_tol = eps*max(min(pos,neg), 1)/prob->l;
|
2628
|
+
|
2629
|
+
function *fun_obj=NULL;
|
2630
|
+
switch(param->solver_type)
|
2631
|
+
{
|
2632
|
+
case L2R_LR:
|
2633
|
+
{
|
2634
|
+
double *C = new double[prob->l];
|
2635
|
+
for(int i = 0; i < prob->l; i++)
|
2636
|
+
{
|
2637
|
+
if(prob->y[i] > 0)
|
2638
|
+
C[i] = Cp;
|
2639
|
+
else
|
2640
|
+
C[i] = Cn;
|
2641
|
+
}
|
2642
|
+
fun_obj=new l2r_lr_fun(prob, param, C);
|
2643
|
+
NEWTON newton_obj(fun_obj, primal_solver_tol);
|
2644
|
+
newton_obj.set_print_string(liblinear_print_string);
|
2645
|
+
newton_obj.newton(w);
|
2646
|
+
delete fun_obj;
|
2647
|
+
delete[] C;
|
2648
|
+
break;
|
2649
|
+
}
|
2650
|
+
case L2R_L2LOSS_SVC:
|
2651
|
+
{
|
2652
|
+
double *C = new double[prob->l];
|
2653
|
+
for(int i = 0; i < prob->l; i++)
|
2654
|
+
{
|
2655
|
+
if(prob->y[i] > 0)
|
2656
|
+
C[i] = Cp;
|
2657
|
+
else
|
2658
|
+
C[i] = Cn;
|
2659
|
+
}
|
2660
|
+
fun_obj=new l2r_l2_svc_fun(prob, param, C);
|
2661
|
+
NEWTON newton_obj(fun_obj, primal_solver_tol);
|
2662
|
+
newton_obj.set_print_string(liblinear_print_string);
|
2663
|
+
newton_obj.newton(w);
|
2664
|
+
delete fun_obj;
|
2665
|
+
delete[] C;
|
2666
|
+
break;
|
2667
|
+
}
|
2668
|
+
case L2R_L2LOSS_SVC_DUAL:
|
2669
|
+
solve_l2r_l1l2_svc(prob, w, eps, Cp, Cn, L2R_L2LOSS_SVC_DUAL);
|
2670
|
+
break;
|
2671
|
+
case L2R_L1LOSS_SVC_DUAL:
|
2672
|
+
solve_l2r_l1l2_svc(prob, w, eps, Cp, Cn, L2R_L1LOSS_SVC_DUAL);
|
2673
|
+
break;
|
2674
|
+
case L1R_L2LOSS_SVC:
|
2675
|
+
{
|
2676
|
+
problem prob_col;
|
2677
|
+
feature_node *x_space = NULL;
|
2678
|
+
transpose(prob, &x_space ,&prob_col);
|
2679
|
+
solve_l1r_l2_svc(&prob_col, w, primal_solver_tol, Cp, Cn, param->regularize_bias);
|
2680
|
+
delete [] prob_col.y;
|
2681
|
+
delete [] prob_col.x;
|
2682
|
+
delete [] x_space;
|
2683
|
+
break;
|
2684
|
+
}
|
2685
|
+
case L1R_LR:
|
2686
|
+
{
|
2687
|
+
problem prob_col;
|
2688
|
+
feature_node *x_space = NULL;
|
2689
|
+
transpose(prob, &x_space ,&prob_col);
|
2690
|
+
solve_l1r_lr(&prob_col, w, primal_solver_tol, Cp, Cn, param->regularize_bias);
|
2691
|
+
delete [] prob_col.y;
|
2692
|
+
delete [] prob_col.x;
|
2693
|
+
delete [] x_space;
|
2694
|
+
break;
|
2695
|
+
}
|
2696
|
+
case L2R_LR_DUAL:
|
2697
|
+
solve_l2r_lr_dual(prob, w, eps, Cp, Cn);
|
2698
|
+
break;
|
2699
|
+
case L2R_L2LOSS_SVR:
|
2700
|
+
{
|
2701
|
+
double *C = new double[prob->l];
|
2702
|
+
for(int i = 0; i < prob->l; i++)
|
2703
|
+
C[i] = param->C;
|
2704
|
+
|
2705
|
+
fun_obj=new l2r_l2_svr_fun(prob, param, C);
|
2706
|
+
NEWTON newton_obj(fun_obj, param->eps);
|
2707
|
+
newton_obj.set_print_string(liblinear_print_string);
|
2708
|
+
newton_obj.newton(w);
|
2709
|
+
delete fun_obj;
|
2710
|
+
delete[] C;
|
2711
|
+
break;
|
2712
|
+
|
2713
|
+
}
|
2714
|
+
case L2R_L1LOSS_SVR_DUAL:
|
2715
|
+
solve_l2r_l1l2_svr(prob, w, param, L2R_L1LOSS_SVR_DUAL);
|
2716
|
+
break;
|
2717
|
+
case L2R_L2LOSS_SVR_DUAL:
|
2718
|
+
solve_l2r_l1l2_svr(prob, w, param, L2R_L2LOSS_SVR_DUAL);
|
2719
|
+
break;
|
2720
|
+
default:
|
2721
|
+
fprintf(stderr, "ERROR: unknown solver_type\n");
|
2722
|
+
break;
|
2723
|
+
}
|
2724
|
+
}
|
2725
|
+
|
2726
|
+
// Calculate the initial C for parameter selection
|
2727
|
+
static double calc_start_C(const problem *prob, const parameter *param)
|
2728
|
+
{
|
2729
|
+
int i;
|
2730
|
+
double xTx, max_xTx;
|
2731
|
+
max_xTx = 0;
|
2732
|
+
for(i=0; i<prob->l; i++)
|
2733
|
+
{
|
2734
|
+
xTx = 0;
|
2735
|
+
feature_node *xi=prob->x[i];
|
2736
|
+
while(xi->index != -1)
|
2737
|
+
{
|
2738
|
+
double val = xi->value;
|
2739
|
+
xTx += val*val;
|
2740
|
+
xi++;
|
2741
|
+
}
|
2742
|
+
if(xTx > max_xTx)
|
2743
|
+
max_xTx = xTx;
|
2744
|
+
}
|
2745
|
+
|
2746
|
+
double min_C = 1.0;
|
2747
|
+
if(param->solver_type == L2R_LR)
|
2748
|
+
min_C = 1.0 / (prob->l * max_xTx);
|
2749
|
+
else if(param->solver_type == L2R_L2LOSS_SVC)
|
2750
|
+
min_C = 1.0 / (2 * prob->l * max_xTx);
|
2751
|
+
else if(param->solver_type == L2R_L2LOSS_SVR)
|
2752
|
+
{
|
2753
|
+
double sum_y, loss, y_abs;
|
2754
|
+
double delta2 = 0.1;
|
2755
|
+
sum_y = 0, loss = 0;
|
2756
|
+
for(i=0; i<prob->l; i++)
|
2757
|
+
{
|
2758
|
+
y_abs = fabs(prob->y[i]);
|
2759
|
+
sum_y += y_abs;
|
2760
|
+
loss += max(y_abs - param->p, 0.0) * max(y_abs - param->p, 0.0);
|
2761
|
+
}
|
2762
|
+
if(loss > 0)
|
2763
|
+
min_C = delta2 * delta2 * loss / (8 * sum_y * sum_y * max_xTx);
|
2764
|
+
else
|
2765
|
+
min_C = INF;
|
2766
|
+
}
|
2767
|
+
|
2768
|
+
return pow( 2, floor(log(min_C) / log(2.0)) );
|
2769
|
+
}
|
2770
|
+
|
2771
|
+
static double calc_max_p(const problem *prob, const parameter *param)
|
2772
|
+
{
|
2773
|
+
int i;
|
2774
|
+
double max_p = 0.0;
|
2775
|
+
for(i = 0; i < prob->l; i++)
|
2776
|
+
max_p = max(max_p, fabs(prob->y[i]));
|
2777
|
+
|
2778
|
+
return max_p;
|
2779
|
+
}
|
2780
|
+
|
2781
|
+
static void find_parameter_C(const problem *prob, parameter *param_tmp, double start_C, double max_C, double *best_C, double *best_score, const int *fold_start, const int *perm, const problem *subprob, int nr_fold)
|
2782
|
+
{
|
2783
|
+
// variables for CV
|
2784
|
+
int i;
|
2785
|
+
double *target = Malloc(double, prob->l);
|
2786
|
+
|
2787
|
+
// variables for warm start
|
2788
|
+
double ratio = 2;
|
2789
|
+
double **prev_w = Malloc(double*, nr_fold);
|
2790
|
+
for(i = 0; i < nr_fold; i++)
|
2791
|
+
prev_w[i] = NULL;
|
2792
|
+
int num_unchanged_w = 0;
|
2793
|
+
void (*default_print_string) (const char *) = liblinear_print_string;
|
2794
|
+
|
2795
|
+
if(param_tmp->solver_type == L2R_LR || param_tmp->solver_type == L2R_L2LOSS_SVC)
|
2796
|
+
*best_score = 0.0;
|
2797
|
+
else if(param_tmp->solver_type == L2R_L2LOSS_SVR)
|
2798
|
+
*best_score = INF;
|
2799
|
+
*best_C = start_C;
|
2800
|
+
|
2801
|
+
param_tmp->C = start_C;
|
2802
|
+
while(param_tmp->C <= max_C)
|
2803
|
+
{
|
2804
|
+
//Output disabled for running CV at a particular C
|
2805
|
+
set_print_string_function(&print_null);
|
2806
|
+
|
2807
|
+
for(i=0; i<nr_fold; i++)
|
2808
|
+
{
|
2809
|
+
int j;
|
2810
|
+
int begin = fold_start[i];
|
2811
|
+
int end = fold_start[i+1];
|
2812
|
+
|
2813
|
+
param_tmp->init_sol = prev_w[i];
|
2814
|
+
struct model *submodel = train(&subprob[i],param_tmp);
|
2815
|
+
|
2816
|
+
int total_w_size;
|
2817
|
+
if(submodel->nr_class == 2)
|
2818
|
+
total_w_size = subprob[i].n;
|
2819
|
+
else
|
2820
|
+
total_w_size = subprob[i].n * submodel->nr_class;
|
2821
|
+
|
2822
|
+
if(prev_w[i] == NULL)
|
2823
|
+
{
|
2824
|
+
prev_w[i] = Malloc(double, total_w_size);
|
2825
|
+
for(j=0; j<total_w_size; j++)
|
2826
|
+
prev_w[i][j] = submodel->w[j];
|
2827
|
+
}
|
2828
|
+
else if(num_unchanged_w >= 0)
|
2829
|
+
{
|
2830
|
+
double norm_w_diff = 0;
|
2831
|
+
for(j=0; j<total_w_size; j++)
|
2832
|
+
{
|
2833
|
+
norm_w_diff += (submodel->w[j] - prev_w[i][j])*(submodel->w[j] - prev_w[i][j]);
|
2834
|
+
prev_w[i][j] = submodel->w[j];
|
2835
|
+
}
|
2836
|
+
norm_w_diff = sqrt(norm_w_diff);
|
2837
|
+
|
2838
|
+
if(norm_w_diff > 1e-15)
|
2839
|
+
num_unchanged_w = -1;
|
2840
|
+
}
|
2841
|
+
else
|
2842
|
+
{
|
2843
|
+
for(j=0; j<total_w_size; j++)
|
2844
|
+
prev_w[i][j] = submodel->w[j];
|
2845
|
+
}
|
2846
|
+
|
2847
|
+
for(j=begin; j<end; j++)
|
2848
|
+
target[perm[j]] = predict(submodel,prob->x[perm[j]]);
|
2849
|
+
|
2850
|
+
free_and_destroy_model(&submodel);
|
2851
|
+
}
|
2852
|
+
set_print_string_function(default_print_string);
|
2853
|
+
|
2854
|
+
if(param_tmp->solver_type == L2R_LR || param_tmp->solver_type == L2R_L2LOSS_SVC)
|
2855
|
+
{
|
2856
|
+
int total_correct = 0;
|
2857
|
+
for(i=0; i<prob->l; i++)
|
2858
|
+
if(target[i] == prob->y[i])
|
2859
|
+
++total_correct;
|
2860
|
+
double current_rate = (double)total_correct/prob->l;
|
2861
|
+
if(current_rate > *best_score)
|
2862
|
+
{
|
2863
|
+
*best_C = param_tmp->C;
|
2864
|
+
*best_score = current_rate;
|
2865
|
+
}
|
2866
|
+
|
2867
|
+
info("log2c=%7.2f\trate=%g\n",log(param_tmp->C)/log(2.0),100.0*current_rate);
|
2868
|
+
}
|
2869
|
+
else if(param_tmp->solver_type == L2R_L2LOSS_SVR)
|
2870
|
+
{
|
2871
|
+
double total_error = 0.0;
|
2872
|
+
for(i=0; i<prob->l; i++)
|
2873
|
+
{
|
2874
|
+
double y = prob->y[i];
|
2875
|
+
double v = target[i];
|
2876
|
+
total_error += (v-y)*(v-y);
|
2877
|
+
}
|
2878
|
+
double current_error = total_error/prob->l;
|
2879
|
+
if(current_error < *best_score)
|
2880
|
+
{
|
2881
|
+
*best_C = param_tmp->C;
|
2882
|
+
*best_score = current_error;
|
2883
|
+
}
|
2884
|
+
|
2885
|
+
info("log2c=%7.2f\tp=%7.2f\tMean squared error=%g\n",log(param_tmp->C)/log(2.0),param_tmp->p,current_error);
|
2886
|
+
}
|
2887
|
+
|
2888
|
+
num_unchanged_w++;
|
2889
|
+
if(num_unchanged_w == 5)
|
2890
|
+
break;
|
2891
|
+
param_tmp->C = param_tmp->C*ratio;
|
2892
|
+
}
|
2893
|
+
|
2894
|
+
if(param_tmp->C > max_C)
|
2895
|
+
info("WARNING: maximum C reached.\n");
|
2896
|
+
free(target);
|
2897
|
+
for(i=0; i<nr_fold; i++)
|
2898
|
+
free(prev_w[i]);
|
2899
|
+
free(prev_w);
|
2900
|
+
}
|
2901
|
+
|
2902
|
+
|
2903
|
+
//
|
2904
|
+
// Interface functions
|
2905
|
+
//
|
2906
|
+
model* train(const problem *prob, const parameter *param)
|
2907
|
+
{
|
2908
|
+
int i,j;
|
2909
|
+
int l = prob->l;
|
2910
|
+
int n = prob->n;
|
2911
|
+
int w_size = prob->n;
|
2912
|
+
model *model_ = Malloc(model,1);
|
2913
|
+
|
2914
|
+
if(prob->bias>=0)
|
2915
|
+
model_->nr_feature=n-1;
|
2916
|
+
else
|
2917
|
+
model_->nr_feature=n;
|
2918
|
+
model_->param = *param;
|
2919
|
+
model_->bias = prob->bias;
|
2920
|
+
|
2921
|
+
if(check_regression_model(model_))
|
2922
|
+
{
|
2923
|
+
model_->w = Malloc(double, w_size);
|
2924
|
+
|
2925
|
+
if(param->init_sol != NULL)
|
2926
|
+
for(i=0;i<w_size;i++)
|
2927
|
+
model_->w[i] = param->init_sol[i];
|
2928
|
+
else
|
2929
|
+
for(i=0;i<w_size;i++)
|
2930
|
+
model_->w[i] = 0;
|
2931
|
+
|
2932
|
+
model_->nr_class = 2;
|
2933
|
+
model_->label = NULL;
|
2934
|
+
train_one(prob, param, model_->w, 0, 0);
|
2935
|
+
}
|
2936
|
+
else if(check_oneclass_model(model_))
|
2937
|
+
{
|
2938
|
+
model_->w = Malloc(double, w_size);
|
2939
|
+
model_->nr_class = 2;
|
2940
|
+
model_->label = NULL;
|
2941
|
+
solve_oneclass_svm(prob, model_->w, &(model_->rho), param->eps, param->nu);
|
2942
|
+
}
|
2943
|
+
else
|
2944
|
+
{
|
2945
|
+
int nr_class;
|
2946
|
+
int *label = NULL;
|
2947
|
+
int *start = NULL;
|
2948
|
+
int *count = NULL;
|
2949
|
+
int *perm = Malloc(int,l);
|
2950
|
+
|
2951
|
+
// group training data of the same class
|
2952
|
+
group_classes(prob,&nr_class,&label,&start,&count,perm);
|
2953
|
+
|
2954
|
+
model_->nr_class=nr_class;
|
2955
|
+
model_->label = Malloc(int,nr_class);
|
2956
|
+
for(i=0;i<nr_class;i++)
|
2957
|
+
model_->label[i] = label[i];
|
2958
|
+
|
2959
|
+
// calculate weighted C
|
2960
|
+
double *weighted_C = Malloc(double, nr_class);
|
2961
|
+
for(i=0;i<nr_class;i++)
|
2962
|
+
weighted_C[i] = param->C;
|
2963
|
+
for(i=0;i<param->nr_weight;i++)
|
2964
|
+
{
|
2965
|
+
for(j=0;j<nr_class;j++)
|
2966
|
+
if(param->weight_label[i] == label[j])
|
2967
|
+
break;
|
2968
|
+
if(j == nr_class)
|
2969
|
+
fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
|
2970
|
+
else
|
2971
|
+
weighted_C[j] *= param->weight[i];
|
2972
|
+
}
|
2973
|
+
|
2974
|
+
// constructing the subproblem
|
2975
|
+
feature_node **x = Malloc(feature_node *,l);
|
2976
|
+
for(i=0;i<l;i++)
|
2977
|
+
x[i] = prob->x[perm[i]];
|
2978
|
+
|
2979
|
+
int k;
|
2980
|
+
problem sub_prob;
|
2981
|
+
sub_prob.l = l;
|
2982
|
+
sub_prob.n = n;
|
2983
|
+
sub_prob.x = Malloc(feature_node *,sub_prob.l);
|
2984
|
+
sub_prob.y = Malloc(double,sub_prob.l);
|
2985
|
+
|
2986
|
+
for(k=0; k<sub_prob.l; k++)
|
2987
|
+
sub_prob.x[k] = x[k];
|
2988
|
+
|
2989
|
+
// multi-class svm by Crammer and Singer
|
2990
|
+
if(param->solver_type == MCSVM_CS)
|
2991
|
+
{
|
2992
|
+
model_->w=Malloc(double, n*nr_class);
|
2993
|
+
for(i=0;i<nr_class;i++)
|
2994
|
+
for(j=start[i];j<start[i]+count[i];j++)
|
2995
|
+
sub_prob.y[j] = i;
|
2996
|
+
Solver_MCSVM_CS Solver(&sub_prob, nr_class, weighted_C, param->eps);
|
2997
|
+
Solver.Solve(model_->w);
|
2998
|
+
}
|
2999
|
+
else
|
3000
|
+
{
|
3001
|
+
if(nr_class == 2)
|
3002
|
+
{
|
3003
|
+
model_->w=Malloc(double, w_size);
|
3004
|
+
|
3005
|
+
int e0 = start[0]+count[0];
|
3006
|
+
k=0;
|
3007
|
+
for(; k<e0; k++)
|
3008
|
+
sub_prob.y[k] = +1;
|
3009
|
+
for(; k<sub_prob.l; k++)
|
3010
|
+
sub_prob.y[k] = -1;
|
3011
|
+
|
3012
|
+
if(param->init_sol != NULL)
|
3013
|
+
for(i=0;i<w_size;i++)
|
3014
|
+
model_->w[i] = param->init_sol[i];
|
3015
|
+
else
|
3016
|
+
for(i=0;i<w_size;i++)
|
3017
|
+
model_->w[i] = 0;
|
3018
|
+
|
3019
|
+
train_one(&sub_prob, param, model_->w, weighted_C[0], weighted_C[1]);
|
3020
|
+
}
|
3021
|
+
else
|
3022
|
+
{
|
3023
|
+
model_->w=Malloc(double, w_size*nr_class);
|
3024
|
+
double *w=Malloc(double, w_size);
|
3025
|
+
for(i=0;i<nr_class;i++)
|
3026
|
+
{
|
3027
|
+
int si = start[i];
|
3028
|
+
int ei = si+count[i];
|
3029
|
+
|
3030
|
+
k=0;
|
3031
|
+
for(; k<si; k++)
|
3032
|
+
sub_prob.y[k] = -1;
|
3033
|
+
for(; k<ei; k++)
|
3034
|
+
sub_prob.y[k] = +1;
|
3035
|
+
for(; k<sub_prob.l; k++)
|
3036
|
+
sub_prob.y[k] = -1;
|
3037
|
+
|
3038
|
+
if(param->init_sol != NULL)
|
3039
|
+
for(j=0;j<w_size;j++)
|
3040
|
+
w[j] = param->init_sol[j*nr_class+i];
|
3041
|
+
else
|
3042
|
+
for(j=0;j<w_size;j++)
|
3043
|
+
w[j] = 0;
|
3044
|
+
|
3045
|
+
train_one(&sub_prob, param, w, weighted_C[i], param->C);
|
3046
|
+
|
3047
|
+
for(j=0;j<w_size;j++)
|
3048
|
+
model_->w[j*nr_class+i] = w[j];
|
3049
|
+
}
|
3050
|
+
free(w);
|
3051
|
+
}
|
3052
|
+
|
3053
|
+
}
|
3054
|
+
|
3055
|
+
free(x);
|
3056
|
+
free(label);
|
3057
|
+
free(start);
|
3058
|
+
free(count);
|
3059
|
+
free(perm);
|
3060
|
+
free(sub_prob.x);
|
3061
|
+
free(sub_prob.y);
|
3062
|
+
free(weighted_C);
|
3063
|
+
}
|
3064
|
+
return model_;
|
3065
|
+
}
|
3066
|
+
|
3067
|
+
void cross_validation(const problem *prob, const parameter *param, int nr_fold, double *target)
|
3068
|
+
{
|
3069
|
+
int i;
|
3070
|
+
int *fold_start;
|
3071
|
+
int l = prob->l;
|
3072
|
+
int *perm = Malloc(int,l);
|
3073
|
+
if (nr_fold > l)
|
3074
|
+
{
|
3075
|
+
nr_fold = l;
|
3076
|
+
fprintf(stderr,"WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
|
3077
|
+
}
|
3078
|
+
fold_start = Malloc(int,nr_fold+1);
|
3079
|
+
for(i=0;i<l;i++) perm[i]=i;
|
3080
|
+
for(i=0;i<l;i++)
|
3081
|
+
{
|
3082
|
+
int j = i+rand()%(l-i);
|
3083
|
+
swap(perm[i],perm[j]);
|
3084
|
+
}
|
3085
|
+
for(i=0;i<=nr_fold;i++)
|
3086
|
+
fold_start[i]=i*l/nr_fold;
|
3087
|
+
|
3088
|
+
for(i=0;i<nr_fold;i++)
|
3089
|
+
{
|
3090
|
+
int begin = fold_start[i];
|
3091
|
+
int end = fold_start[i+1];
|
3092
|
+
int j,k;
|
3093
|
+
struct problem subprob;
|
3094
|
+
|
3095
|
+
subprob.bias = prob->bias;
|
3096
|
+
subprob.n = prob->n;
|
3097
|
+
subprob.l = l-(end-begin);
|
3098
|
+
subprob.x = Malloc(struct feature_node*,subprob.l);
|
3099
|
+
subprob.y = Malloc(double,subprob.l);
|
3100
|
+
|
3101
|
+
k=0;
|
3102
|
+
for(j=0;j<begin;j++)
|
3103
|
+
{
|
3104
|
+
subprob.x[k] = prob->x[perm[j]];
|
3105
|
+
subprob.y[k] = prob->y[perm[j]];
|
3106
|
+
++k;
|
3107
|
+
}
|
3108
|
+
for(j=end;j<l;j++)
|
3109
|
+
{
|
3110
|
+
subprob.x[k] = prob->x[perm[j]];
|
3111
|
+
subprob.y[k] = prob->y[perm[j]];
|
3112
|
+
++k;
|
3113
|
+
}
|
3114
|
+
struct model *submodel = train(&subprob,param);
|
3115
|
+
for(j=begin;j<end;j++)
|
3116
|
+
target[perm[j]] = predict(submodel,prob->x[perm[j]]);
|
3117
|
+
free_and_destroy_model(&submodel);
|
3118
|
+
free(subprob.x);
|
3119
|
+
free(subprob.y);
|
3120
|
+
}
|
3121
|
+
free(fold_start);
|
3122
|
+
free(perm);
|
3123
|
+
}
|
3124
|
+
|
3125
|
+
|
3126
|
+
void find_parameters(const problem *prob, const parameter *param, int nr_fold, double start_C, double start_p, double *best_C, double *best_p, double *best_score)
|
3127
|
+
{
|
3128
|
+
// prepare CV folds
|
3129
|
+
|
3130
|
+
int i;
|
3131
|
+
int *fold_start;
|
3132
|
+
int l = prob->l;
|
3133
|
+
int *perm = Malloc(int, l);
|
3134
|
+
struct problem *subprob = Malloc(problem,nr_fold);
|
3135
|
+
|
3136
|
+
if (nr_fold > l)
|
3137
|
+
{
|
3138
|
+
nr_fold = l;
|
3139
|
+
fprintf(stderr,"WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
|
3140
|
+
}
|
3141
|
+
fold_start = Malloc(int,nr_fold+1);
|
3142
|
+
for(i=0;i<l;i++) perm[i]=i;
|
3143
|
+
for(i=0;i<l;i++)
|
3144
|
+
{
|
3145
|
+
int j = i+rand()%(l-i);
|
3146
|
+
swap(perm[i],perm[j]);
|
3147
|
+
}
|
3148
|
+
for(i=0;i<=nr_fold;i++)
|
3149
|
+
fold_start[i]=i*l/nr_fold;
|
3150
|
+
|
3151
|
+
for(i=0;i<nr_fold;i++)
|
3152
|
+
{
|
3153
|
+
int begin = fold_start[i];
|
3154
|
+
int end = fold_start[i+1];
|
3155
|
+
int j,k;
|
3156
|
+
|
3157
|
+
subprob[i].bias = prob->bias;
|
3158
|
+
subprob[i].n = prob->n;
|
3159
|
+
subprob[i].l = l-(end-begin);
|
3160
|
+
subprob[i].x = Malloc(struct feature_node*,subprob[i].l);
|
3161
|
+
subprob[i].y = Malloc(double,subprob[i].l);
|
3162
|
+
|
3163
|
+
k=0;
|
3164
|
+
for(j=0;j<begin;j++)
|
3165
|
+
{
|
3166
|
+
subprob[i].x[k] = prob->x[perm[j]];
|
3167
|
+
subprob[i].y[k] = prob->y[perm[j]];
|
3168
|
+
++k;
|
3169
|
+
}
|
3170
|
+
for(j=end;j<l;j++)
|
3171
|
+
{
|
3172
|
+
subprob[i].x[k] = prob->x[perm[j]];
|
3173
|
+
subprob[i].y[k] = prob->y[perm[j]];
|
3174
|
+
++k;
|
3175
|
+
}
|
3176
|
+
|
3177
|
+
}
|
3178
|
+
|
3179
|
+
struct parameter param_tmp = *param;
|
3180
|
+
*best_p = -1;
|
3181
|
+
if(param->solver_type == L2R_LR || param->solver_type == L2R_L2LOSS_SVC)
|
3182
|
+
{
|
3183
|
+
if(start_C <= 0)
|
3184
|
+
start_C = calc_start_C(prob, ¶m_tmp);
|
3185
|
+
double max_C = 1024;
|
3186
|
+
start_C = min(start_C, max_C);
|
3187
|
+
double best_C_tmp, best_score_tmp;
|
3188
|
+
|
3189
|
+
find_parameter_C(prob, ¶m_tmp, start_C, max_C, &best_C_tmp, &best_score_tmp, fold_start, perm, subprob, nr_fold);
|
3190
|
+
|
3191
|
+
*best_C = best_C_tmp;
|
3192
|
+
*best_score = best_score_tmp;
|
3193
|
+
}
|
3194
|
+
else if(param->solver_type == L2R_L2LOSS_SVR)
|
3195
|
+
{
|
3196
|
+
double max_p = calc_max_p(prob, ¶m_tmp);
|
3197
|
+
int num_p_steps = 20;
|
3198
|
+
double max_C = 1048576;
|
3199
|
+
*best_score = INF;
|
3200
|
+
|
3201
|
+
i = num_p_steps-1;
|
3202
|
+
if(start_p > 0)
|
3203
|
+
i = min((int)(start_p/(max_p/num_p_steps)), i);
|
3204
|
+
for(; i >= 0; i--)
|
3205
|
+
{
|
3206
|
+
param_tmp.p = i*max_p/num_p_steps;
|
3207
|
+
double start_C_tmp;
|
3208
|
+
if(start_C <= 0)
|
3209
|
+
start_C_tmp = calc_start_C(prob, ¶m_tmp);
|
3210
|
+
else
|
3211
|
+
start_C_tmp = start_C;
|
3212
|
+
start_C_tmp = min(start_C_tmp, max_C);
|
3213
|
+
double best_C_tmp, best_score_tmp;
|
3214
|
+
|
3215
|
+
find_parameter_C(prob, ¶m_tmp, start_C_tmp, max_C, &best_C_tmp, &best_score_tmp, fold_start, perm, subprob, nr_fold);
|
3216
|
+
|
3217
|
+
if(best_score_tmp < *best_score)
|
3218
|
+
{
|
3219
|
+
*best_p = param_tmp.p;
|
3220
|
+
*best_C = best_C_tmp;
|
3221
|
+
*best_score = best_score_tmp;
|
3222
|
+
}
|
3223
|
+
}
|
3224
|
+
}
|
3225
|
+
|
3226
|
+
free(fold_start);
|
3227
|
+
free(perm);
|
3228
|
+
for(i=0; i<nr_fold; i++)
|
3229
|
+
{
|
3230
|
+
free(subprob[i].x);
|
3231
|
+
free(subprob[i].y);
|
3232
|
+
}
|
3233
|
+
free(subprob);
|
3234
|
+
}
|
3235
|
+
|
3236
|
+
double predict_values(const struct model *model_, const struct feature_node *x, double *dec_values)
|
3237
|
+
{
|
3238
|
+
int idx;
|
3239
|
+
int n;
|
3240
|
+
if(model_->bias>=0)
|
3241
|
+
n=model_->nr_feature+1;
|
3242
|
+
else
|
3243
|
+
n=model_->nr_feature;
|
3244
|
+
double *w=model_->w;
|
3245
|
+
int nr_class=model_->nr_class;
|
3246
|
+
int i;
|
3247
|
+
int nr_w;
|
3248
|
+
if(nr_class==2 && model_->param.solver_type != MCSVM_CS)
|
3249
|
+
nr_w = 1;
|
3250
|
+
else
|
3251
|
+
nr_w = nr_class;
|
3252
|
+
|
3253
|
+
const feature_node *lx=x;
|
3254
|
+
for(i=0;i<nr_w;i++)
|
3255
|
+
dec_values[i] = 0;
|
3256
|
+
for(; (idx=lx->index)!=-1; lx++)
|
3257
|
+
{
|
3258
|
+
// the dimension of testing data may exceed that of training
|
3259
|
+
if(idx<=n)
|
3260
|
+
for(i=0;i<nr_w;i++)
|
3261
|
+
dec_values[i] += w[(idx-1)*nr_w+i]*lx->value;
|
3262
|
+
}
|
3263
|
+
if(check_oneclass_model(model_))
|
3264
|
+
dec_values[0] -= model_->rho;
|
3265
|
+
|
3266
|
+
if(nr_class==2)
|
3267
|
+
{
|
3268
|
+
if(check_regression_model(model_))
|
3269
|
+
return dec_values[0];
|
3270
|
+
else if(check_oneclass_model(model_))
|
3271
|
+
return (dec_values[0]>0)?1:-1;
|
3272
|
+
else
|
3273
|
+
return (dec_values[0]>0)?model_->label[0]:model_->label[1];
|
3274
|
+
}
|
3275
|
+
else
|
3276
|
+
{
|
3277
|
+
int dec_max_idx = 0;
|
3278
|
+
for(i=1;i<nr_class;i++)
|
3279
|
+
{
|
3280
|
+
if(dec_values[i] > dec_values[dec_max_idx])
|
3281
|
+
dec_max_idx = i;
|
3282
|
+
}
|
3283
|
+
return model_->label[dec_max_idx];
|
3284
|
+
}
|
3285
|
+
}
|
3286
|
+
|
3287
|
+
double predict(const model *model_, const feature_node *x)
|
3288
|
+
{
|
3289
|
+
double *dec_values = Malloc(double, model_->nr_class);
|
3290
|
+
double label=predict_values(model_, x, dec_values);
|
3291
|
+
free(dec_values);
|
3292
|
+
return label;
|
3293
|
+
}
|
3294
|
+
|
3295
|
+
double predict_probability(const struct model *model_, const struct feature_node *x, double* prob_estimates)
|
3296
|
+
{
|
3297
|
+
if(check_probability_model(model_))
|
3298
|
+
{
|
3299
|
+
int i;
|
3300
|
+
int nr_class=model_->nr_class;
|
3301
|
+
int nr_w;
|
3302
|
+
if(nr_class==2)
|
3303
|
+
nr_w = 1;
|
3304
|
+
else
|
3305
|
+
nr_w = nr_class;
|
3306
|
+
|
3307
|
+
double label=predict_values(model_, x, prob_estimates);
|
3308
|
+
for(i=0;i<nr_w;i++)
|
3309
|
+
prob_estimates[i]=1/(1+exp(-prob_estimates[i]));
|
3310
|
+
|
3311
|
+
if(nr_class==2) // for binary classification
|
3312
|
+
prob_estimates[1]=1.-prob_estimates[0];
|
3313
|
+
else
|
3314
|
+
{
|
3315
|
+
double sum=0;
|
3316
|
+
for(i=0; i<nr_class; i++)
|
3317
|
+
sum+=prob_estimates[i];
|
3318
|
+
|
3319
|
+
for(i=0; i<nr_class; i++)
|
3320
|
+
prob_estimates[i]=prob_estimates[i]/sum;
|
3321
|
+
}
|
3322
|
+
|
3323
|
+
return label;
|
3324
|
+
}
|
3325
|
+
else
|
3326
|
+
return 0;
|
3327
|
+
}
|
3328
|
+
|
3329
|
+
static const char *solver_type_table[]=
|
3330
|
+
{
|
3331
|
+
"L2R_LR", "L2R_L2LOSS_SVC_DUAL", "L2R_L2LOSS_SVC", "L2R_L1LOSS_SVC_DUAL", "MCSVM_CS",
|
3332
|
+
"L1R_L2LOSS_SVC", "L1R_LR", "L2R_LR_DUAL",
|
3333
|
+
"", "", "",
|
3334
|
+
"L2R_L2LOSS_SVR", "L2R_L2LOSS_SVR_DUAL", "L2R_L1LOSS_SVR_DUAL",
|
3335
|
+
"", "", "", "", "", "", "",
|
3336
|
+
"ONECLASS_SVM", NULL
|
3337
|
+
};
|
3338
|
+
|
3339
|
+
int save_model(const char *model_file_name, const struct model *model_)
|
3340
|
+
{
|
3341
|
+
int i;
|
3342
|
+
int nr_feature=model_->nr_feature;
|
3343
|
+
int n;
|
3344
|
+
const parameter& param = model_->param;
|
3345
|
+
|
3346
|
+
if(model_->bias>=0)
|
3347
|
+
n=nr_feature+1;
|
3348
|
+
else
|
3349
|
+
n=nr_feature;
|
3350
|
+
int w_size = n;
|
3351
|
+
FILE *fp = fopen(model_file_name,"w");
|
3352
|
+
if(fp==NULL) return -1;
|
3353
|
+
|
3354
|
+
char *old_locale = setlocale(LC_ALL, NULL);
|
3355
|
+
if (old_locale)
|
3356
|
+
{
|
3357
|
+
old_locale = strdup(old_locale);
|
3358
|
+
}
|
3359
|
+
setlocale(LC_ALL, "C");
|
3360
|
+
|
3361
|
+
int nr_w;
|
3362
|
+
if(model_->nr_class==2 && model_->param.solver_type != MCSVM_CS)
|
3363
|
+
nr_w=1;
|
3364
|
+
else
|
3365
|
+
nr_w=model_->nr_class;
|
3366
|
+
|
3367
|
+
fprintf(fp, "solver_type %s\n", solver_type_table[param.solver_type]);
|
3368
|
+
fprintf(fp, "nr_class %d\n", model_->nr_class);
|
3369
|
+
|
3370
|
+
if(model_->label)
|
3371
|
+
{
|
3372
|
+
fprintf(fp, "label");
|
3373
|
+
for(i=0; i<model_->nr_class; i++)
|
3374
|
+
fprintf(fp, " %d", model_->label[i]);
|
3375
|
+
fprintf(fp, "\n");
|
3376
|
+
}
|
3377
|
+
|
3378
|
+
fprintf(fp, "nr_feature %d\n", nr_feature);
|
3379
|
+
|
3380
|
+
fprintf(fp, "bias %.17g\n", model_->bias);
|
3381
|
+
|
3382
|
+
if(check_oneclass_model(model_))
|
3383
|
+
fprintf(fp, "rho %.17g\n", model_->rho);
|
3384
|
+
|
3385
|
+
fprintf(fp, "w\n");
|
3386
|
+
for(i=0; i<w_size; i++)
|
3387
|
+
{
|
3388
|
+
int j;
|
3389
|
+
for(j=0; j<nr_w; j++)
|
3390
|
+
fprintf(fp, "%.17g ", model_->w[i*nr_w+j]);
|
3391
|
+
fprintf(fp, "\n");
|
3392
|
+
}
|
3393
|
+
|
3394
|
+
setlocale(LC_ALL, old_locale);
|
3395
|
+
free(old_locale);
|
3396
|
+
|
3397
|
+
if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
|
3398
|
+
else return 0;
|
3399
|
+
}
|
3400
|
+
|
3401
|
+
//
|
3402
|
+
// FSCANF helps to handle fscanf failures.
|
3403
|
+
// Its do-while block avoids the ambiguity when
|
3404
|
+
// if (...)
|
3405
|
+
// FSCANF();
|
3406
|
+
// is used
|
3407
|
+
//
|
3408
|
+
#define FSCANF(_stream, _format, _var)do\
|
3409
|
+
{\
|
3410
|
+
if (fscanf(_stream, _format, _var) != 1)\
|
3411
|
+
{\
|
3412
|
+
fprintf(stderr, "ERROR: fscanf failed to read the model\n");\
|
3413
|
+
EXIT_LOAD_MODEL()\
|
3414
|
+
}\
|
3415
|
+
}while(0)
|
3416
|
+
// EXIT_LOAD_MODEL should NOT end with a semicolon.
|
3417
|
+
#define EXIT_LOAD_MODEL()\
|
3418
|
+
{\
|
3419
|
+
setlocale(LC_ALL, old_locale);\
|
3420
|
+
free(model_->label);\
|
3421
|
+
free(model_);\
|
3422
|
+
free(old_locale);\
|
3423
|
+
return NULL;\
|
3424
|
+
}
|
3425
|
+
struct model *load_model(const char *model_file_name)
|
3426
|
+
{
|
3427
|
+
FILE *fp = fopen(model_file_name,"r");
|
3428
|
+
if(fp==NULL) return NULL;
|
3429
|
+
|
3430
|
+
int i;
|
3431
|
+
int nr_feature;
|
3432
|
+
int n;
|
3433
|
+
int nr_class;
|
3434
|
+
double bias;
|
3435
|
+
double rho;
|
3436
|
+
model *model_ = Malloc(model,1);
|
3437
|
+
parameter& param = model_->param;
|
3438
|
+
// parameters for training only won't be assigned, but arrays are assigned as NULL for safety
|
3439
|
+
param.nr_weight = 0;
|
3440
|
+
param.weight_label = NULL;
|
3441
|
+
param.weight = NULL;
|
3442
|
+
param.init_sol = NULL;
|
3443
|
+
|
3444
|
+
model_->label = NULL;
|
3445
|
+
|
3446
|
+
char *old_locale = setlocale(LC_ALL, NULL);
|
3447
|
+
if (old_locale)
|
3448
|
+
{
|
3449
|
+
old_locale = strdup(old_locale);
|
3450
|
+
}
|
3451
|
+
setlocale(LC_ALL, "C");
|
3452
|
+
|
3453
|
+
char cmd[81];
|
3454
|
+
while(1)
|
3455
|
+
{
|
3456
|
+
FSCANF(fp,"%80s",cmd);
|
3457
|
+
if(strcmp(cmd,"solver_type")==0)
|
3458
|
+
{
|
3459
|
+
FSCANF(fp,"%80s",cmd);
|
3460
|
+
int i;
|
3461
|
+
for(i=0;solver_type_table[i];i++)
|
3462
|
+
{
|
3463
|
+
if(strcmp(solver_type_table[i],cmd)==0)
|
3464
|
+
{
|
3465
|
+
param.solver_type=i;
|
3466
|
+
break;
|
3467
|
+
}
|
3468
|
+
}
|
3469
|
+
if(solver_type_table[i] == NULL)
|
3470
|
+
{
|
3471
|
+
fprintf(stderr,"unknown solver type.\n");
|
3472
|
+
EXIT_LOAD_MODEL()
|
3473
|
+
}
|
3474
|
+
}
|
3475
|
+
else if(strcmp(cmd,"nr_class")==0)
|
3476
|
+
{
|
3477
|
+
FSCANF(fp,"%d",&nr_class);
|
3478
|
+
model_->nr_class=nr_class;
|
3479
|
+
}
|
3480
|
+
else if(strcmp(cmd,"nr_feature")==0)
|
3481
|
+
{
|
3482
|
+
FSCANF(fp,"%d",&nr_feature);
|
3483
|
+
model_->nr_feature=nr_feature;
|
3484
|
+
}
|
3485
|
+
else if(strcmp(cmd,"bias")==0)
|
3486
|
+
{
|
3487
|
+
FSCANF(fp,"%lf",&bias);
|
3488
|
+
model_->bias=bias;
|
3489
|
+
}
|
3490
|
+
else if(strcmp(cmd,"rho")==0)
|
3491
|
+
{
|
3492
|
+
FSCANF(fp,"%lf",&rho);
|
3493
|
+
model_->rho=rho;
|
3494
|
+
}
|
3495
|
+
else if(strcmp(cmd,"w")==0)
|
3496
|
+
{
|
3497
|
+
break;
|
3498
|
+
}
|
3499
|
+
else if(strcmp(cmd,"label")==0)
|
3500
|
+
{
|
3501
|
+
int nr_class = model_->nr_class;
|
3502
|
+
model_->label = Malloc(int,nr_class);
|
3503
|
+
for(int i=0;i<nr_class;i++)
|
3504
|
+
FSCANF(fp,"%d",&model_->label[i]);
|
3505
|
+
}
|
3506
|
+
else
|
3507
|
+
{
|
3508
|
+
fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
|
3509
|
+
EXIT_LOAD_MODEL()
|
3510
|
+
}
|
3511
|
+
}
|
3512
|
+
|
3513
|
+
nr_feature=model_->nr_feature;
|
3514
|
+
if(model_->bias>=0)
|
3515
|
+
n=nr_feature+1;
|
3516
|
+
else
|
3517
|
+
n=nr_feature;
|
3518
|
+
int w_size = n;
|
3519
|
+
int nr_w;
|
3520
|
+
if(nr_class==2 && param.solver_type != MCSVM_CS)
|
3521
|
+
nr_w = 1;
|
3522
|
+
else
|
3523
|
+
nr_w = nr_class;
|
3524
|
+
|
3525
|
+
model_->w=Malloc(double, w_size*nr_w);
|
3526
|
+
for(i=0; i<w_size; i++)
|
3527
|
+
{
|
3528
|
+
int j;
|
3529
|
+
for(j=0; j<nr_w; j++)
|
3530
|
+
FSCANF(fp, "%lf ", &model_->w[i*nr_w+j]);
|
3531
|
+
}
|
3532
|
+
|
3533
|
+
setlocale(LC_ALL, old_locale);
|
3534
|
+
free(old_locale);
|
3535
|
+
|
3536
|
+
if (ferror(fp) != 0 || fclose(fp) != 0) return NULL;
|
3537
|
+
|
3538
|
+
return model_;
|
3539
|
+
}
|
3540
|
+
|
3541
|
+
int get_nr_feature(const model *model_)
|
3542
|
+
{
|
3543
|
+
return model_->nr_feature;
|
3544
|
+
}
|
3545
|
+
|
3546
|
+
int get_nr_class(const model *model_)
|
3547
|
+
{
|
3548
|
+
return model_->nr_class;
|
3549
|
+
}
|
3550
|
+
|
3551
|
+
void get_labels(const model *model_, int* label)
|
3552
|
+
{
|
3553
|
+
if (model_->label != NULL)
|
3554
|
+
for(int i=0;i<model_->nr_class;i++)
|
3555
|
+
label[i] = model_->label[i];
|
3556
|
+
}
|
3557
|
+
|
3558
|
+
// use inline here for better performance (around 20% faster than the non-inline one)
|
3559
|
+
static inline double get_w_value(const struct model *model_, int idx, int label_idx)
|
3560
|
+
{
|
3561
|
+
int nr_class = model_->nr_class;
|
3562
|
+
int solver_type = model_->param.solver_type;
|
3563
|
+
const double *w = model_->w;
|
3564
|
+
|
3565
|
+
if(idx < 0 || idx > model_->nr_feature)
|
3566
|
+
return 0;
|
3567
|
+
if(check_regression_model(model_) || check_oneclass_model(model_))
|
3568
|
+
return w[idx];
|
3569
|
+
else
|
3570
|
+
{
|
3571
|
+
if(label_idx < 0 || label_idx >= nr_class)
|
3572
|
+
return 0;
|
3573
|
+
if(nr_class == 2 && solver_type != MCSVM_CS)
|
3574
|
+
{
|
3575
|
+
if(label_idx == 0)
|
3576
|
+
return w[idx];
|
3577
|
+
else
|
3578
|
+
return -w[idx];
|
3579
|
+
}
|
3580
|
+
else
|
3581
|
+
return w[idx*nr_class+label_idx];
|
3582
|
+
}
|
3583
|
+
}
|
3584
|
+
|
3585
|
+
// feat_idx: starting from 1 to nr_feature
|
3586
|
+
// label_idx: starting from 0 to nr_class-1 for classification models;
|
3587
|
+
// for regression and one-class SVM models, label_idx is
|
3588
|
+
// ignored.
|
3589
|
+
double get_decfun_coef(const struct model *model_, int feat_idx, int label_idx)
|
3590
|
+
{
|
3591
|
+
if(feat_idx > model_->nr_feature)
|
3592
|
+
return 0;
|
3593
|
+
return get_w_value(model_, feat_idx-1, label_idx);
|
3594
|
+
}
|
3595
|
+
|
3596
|
+
double get_decfun_bias(const struct model *model_, int label_idx)
|
3597
|
+
{
|
3598
|
+
if(check_oneclass_model(model_))
|
3599
|
+
{
|
3600
|
+
fprintf(stderr, "ERROR: get_decfun_bias can not be called for a one-class SVM model\n");
|
3601
|
+
return 0;
|
3602
|
+
}
|
3603
|
+
int bias_idx = model_->nr_feature;
|
3604
|
+
double bias = model_->bias;
|
3605
|
+
if(bias <= 0)
|
3606
|
+
return 0;
|
3607
|
+
else
|
3608
|
+
return bias*get_w_value(model_, bias_idx, label_idx);
|
3609
|
+
}
|
3610
|
+
|
3611
|
+
double get_decfun_rho(const struct model *model_)
|
3612
|
+
{
|
3613
|
+
if(check_oneclass_model(model_))
|
3614
|
+
return model_->rho;
|
3615
|
+
else
|
3616
|
+
{
|
3617
|
+
fprintf(stderr, "ERROR: get_decfun_rho can be called only for a one-class SVM model\n");
|
3618
|
+
return 0;
|
3619
|
+
}
|
3620
|
+
}
|
3621
|
+
|
3622
|
+
void free_model_content(struct model *model_ptr)
|
3623
|
+
{
|
3624
|
+
if(model_ptr->w != NULL)
|
3625
|
+
free(model_ptr->w);
|
3626
|
+
if(model_ptr->label != NULL)
|
3627
|
+
free(model_ptr->label);
|
3628
|
+
}
|
3629
|
+
|
3630
|
+
void free_and_destroy_model(struct model **model_ptr_ptr)
|
3631
|
+
{
|
3632
|
+
struct model *model_ptr = *model_ptr_ptr;
|
3633
|
+
if(model_ptr != NULL)
|
3634
|
+
{
|
3635
|
+
free_model_content(model_ptr);
|
3636
|
+
free(model_ptr);
|
3637
|
+
}
|
3638
|
+
}
|
3639
|
+
|
3640
|
+
void destroy_param(parameter* param)
|
3641
|
+
{
|
3642
|
+
if(param->weight_label != NULL)
|
3643
|
+
free(param->weight_label);
|
3644
|
+
if(param->weight != NULL)
|
3645
|
+
free(param->weight);
|
3646
|
+
if(param->init_sol != NULL)
|
3647
|
+
free(param->init_sol);
|
3648
|
+
}
|
3649
|
+
|
3650
|
+
const char *check_parameter(const problem *prob, const parameter *param)
|
3651
|
+
{
|
3652
|
+
if(param->eps <= 0)
|
3653
|
+
return "eps <= 0";
|
3654
|
+
|
3655
|
+
if(param->C <= 0)
|
3656
|
+
return "C <= 0";
|
3657
|
+
|
3658
|
+
if(param->p < 0)
|
3659
|
+
return "p < 0";
|
3660
|
+
|
3661
|
+
if(prob->bias >= 0 && param->solver_type == ONECLASS_SVM)
|
3662
|
+
return "prob->bias >=0, but this is ignored in ONECLASS_SVM";
|
3663
|
+
|
3664
|
+
if(param->regularize_bias == 0)
|
3665
|
+
{
|
3666
|
+
if(prob->bias != 1.0)
|
3667
|
+
return "To not regularize bias, must specify -B 1 along with -R";
|
3668
|
+
if(param->solver_type != L2R_LR
|
3669
|
+
&& param->solver_type != L2R_L2LOSS_SVC
|
3670
|
+
&& param->solver_type != L1R_L2LOSS_SVC
|
3671
|
+
&& param->solver_type != L1R_LR
|
3672
|
+
&& param->solver_type != L2R_L2LOSS_SVR)
|
3673
|
+
return "-R option supported only for solver L2R_LR, L2R_L2LOSS_SVC, L1R_L2LOSS_SVC, L1R_LR, and L2R_L2LOSS_SVR";
|
3674
|
+
}
|
3675
|
+
|
3676
|
+
if(param->solver_type != L2R_LR
|
3677
|
+
&& param->solver_type != L2R_L2LOSS_SVC_DUAL
|
3678
|
+
&& param->solver_type != L2R_L2LOSS_SVC
|
3679
|
+
&& param->solver_type != L2R_L1LOSS_SVC_DUAL
|
3680
|
+
&& param->solver_type != MCSVM_CS
|
3681
|
+
&& param->solver_type != L1R_L2LOSS_SVC
|
3682
|
+
&& param->solver_type != L1R_LR
|
3683
|
+
&& param->solver_type != L2R_LR_DUAL
|
3684
|
+
&& param->solver_type != L2R_L2LOSS_SVR
|
3685
|
+
&& param->solver_type != L2R_L2LOSS_SVR_DUAL
|
3686
|
+
&& param->solver_type != L2R_L1LOSS_SVR_DUAL
|
3687
|
+
&& param->solver_type != ONECLASS_SVM)
|
3688
|
+
return "unknown solver type";
|
3689
|
+
|
3690
|
+
if(param->init_sol != NULL
|
3691
|
+
&& param->solver_type != L2R_LR
|
3692
|
+
&& param->solver_type != L2R_L2LOSS_SVC
|
3693
|
+
&& param->solver_type != L2R_L2LOSS_SVR)
|
3694
|
+
return "Initial-solution specification supported only for solvers L2R_LR, L2R_L2LOSS_SVC, and L2R_L2LOSS_SVR";
|
3695
|
+
|
3696
|
+
return NULL;
|
3697
|
+
}
|
3698
|
+
|
3699
|
+
int check_probability_model(const struct model *model_)
|
3700
|
+
{
|
3701
|
+
return (model_->param.solver_type==L2R_LR ||
|
3702
|
+
model_->param.solver_type==L2R_LR_DUAL ||
|
3703
|
+
model_->param.solver_type==L1R_LR);
|
3704
|
+
}
|
3705
|
+
|
3706
|
+
int check_regression_model(const struct model *model_)
|
3707
|
+
{
|
3708
|
+
return (model_->param.solver_type==L2R_L2LOSS_SVR ||
|
3709
|
+
model_->param.solver_type==L2R_L1LOSS_SVR_DUAL ||
|
3710
|
+
model_->param.solver_type==L2R_L2LOSS_SVR_DUAL);
|
3711
|
+
}
|
3712
|
+
|
3713
|
+
int check_oneclass_model(const struct model *model_)
|
3714
|
+
{
|
3715
|
+
return model_->param.solver_type == ONECLASS_SVM;
|
3716
|
+
}
|
3717
|
+
|
3718
|
+
void set_print_string_function(void (*print_func)(const char*))
|
3719
|
+
{
|
3720
|
+
if (print_func == NULL)
|
3721
|
+
liblinear_print_string = &print_string_stdout;
|
3722
|
+
else
|
3723
|
+
liblinear_print_string = print_func;
|
3724
|
+
}
|
3725
|
+
|