numo-liblinear 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
 - data/.gitignore +20 -0
 - data/.rspec +3 -0
 - data/.travis.yml +14 -0
 - data/CHANGELOG.md +2 -0
 - data/CODE_OF_CONDUCT.md +74 -0
 - data/Gemfile +4 -0
 - data/LICENSE.txt +27 -0
 - data/README.md +168 -0
 - data/Rakefile +15 -0
 - data/ext/numo/liblinear/converter.c +102 -0
 - data/ext/numo/liblinear/converter.h +16 -0
 - data/ext/numo/liblinear/extconf.rb +39 -0
 - data/ext/numo/liblinear/liblinearext.c +421 -0
 - data/ext/numo/liblinear/liblinearext.h +17 -0
 - data/ext/numo/liblinear/model.c +45 -0
 - data/ext/numo/liblinear/model.h +15 -0
 - data/ext/numo/liblinear/parameter.c +98 -0
 - data/ext/numo/liblinear/parameter.h +15 -0
 - data/ext/numo/liblinear/problem.c +61 -0
 - data/ext/numo/liblinear/problem.h +12 -0
 - data/ext/numo/liblinear/solver_type.c +34 -0
 - data/ext/numo/liblinear/solver_type.h +9 -0
 - data/lib/numo/liblinear.rb +5 -0
 - data/lib/numo/liblinear/version.rb +8 -0
 - data/numo-liblinear.gemspec +40 -0
 - metadata +144 -0
 
| 
         @@ -0,0 +1,16 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            #ifndef NUMO_LIBLINEAR_CONVERTER_H
         
     | 
| 
      
 2 
     | 
    
         
            +
            #define NUMO_LIBLINEAR_CONVERTER_H 1
         
     | 
| 
      
 3 
     | 
    
         
            +
             
     | 
| 
      
 4 
     | 
    
         
            +
            #include <string.h>
         
     | 
| 
      
 5 
     | 
    
         
            +
            #include <ruby.h>
         
     | 
| 
      
 6 
     | 
    
         
            +
            #include <numo/narray.h>
         
     | 
| 
      
 7 
     | 
    
         
            +
            #include <numo/template.h>
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            VALUE int_vec_to_nary(int* const arr, int const size);
         
     | 
| 
      
 10 
     | 
    
         
            +
            int* nary_to_int_vec(VALUE vec_val);
         
     | 
| 
      
 11 
     | 
    
         
            +
            VALUE dbl_vec_to_nary(double* const arr, int const size);
         
     | 
| 
      
 12 
     | 
    
         
            +
            double* nary_to_dbl_vec(VALUE vec_val);
         
     | 
| 
      
 13 
     | 
    
         
            +
            VALUE dbl_mat_to_nary(double** const mat, int const n_rows, int const n_cols);
         
     | 
| 
      
 14 
     | 
    
         
            +
            double** nary_to_dbl_mat(VALUE mat_val);
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
            #endif /* NUMO_LIBLINEAR_CONVERTER_H */
         
     | 
| 
         @@ -0,0 +1,39 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            require 'mkmf'
         
     | 
| 
      
 2 
     | 
    
         
            +
            require 'numo/narray'
         
     | 
| 
      
 3 
     | 
    
         
            +
             
     | 
| 
      
 4 
     | 
    
         
            +
            $LOAD_PATH.each do |lp|
         
     | 
| 
      
 5 
     | 
    
         
            +
              if File.exist?(File.join(lp, 'numo/numo/narray.h'))
         
     | 
| 
      
 6 
     | 
    
         
            +
                $INCFLAGS = "-I#{lp}/numo #{$INCFLAGS}"
         
     | 
| 
      
 7 
     | 
    
         
            +
                break
         
     | 
| 
      
 8 
     | 
    
         
            +
              end
         
     | 
| 
      
 9 
     | 
    
         
            +
            end
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            unless have_header('numo/narray.h')
         
     | 
| 
      
 12 
     | 
    
         
            +
              puts 'numo/narray.h not found.'
         
     | 
| 
      
 13 
     | 
    
         
            +
              exit(1)
         
     | 
| 
      
 14 
     | 
    
         
            +
            end
         
     | 
| 
      
 15 
     | 
    
         
            +
             
     | 
| 
      
 16 
     | 
    
         
            +
            if RUBY_PLATFORM =~ /mswin|cygwin|mingw/
         
     | 
| 
      
 17 
     | 
    
         
            +
              $LOAD_PATH.each do |lp|
         
     | 
| 
      
 18 
     | 
    
         
            +
                if File.exist?(File.join(lp, 'numo/libnarray.a'))
         
     | 
| 
      
 19 
     | 
    
         
            +
                  $LDFLAGS = "-L#{lp}/numo #{$LDFLAGS}"
         
     | 
| 
      
 20 
     | 
    
         
            +
                  break
         
     | 
| 
      
 21 
     | 
    
         
            +
                end
         
     | 
| 
      
 22 
     | 
    
         
            +
              end
         
     | 
| 
      
 23 
     | 
    
         
            +
              unless have_library('narray', 'nary_new')
         
     | 
| 
      
 24 
     | 
    
         
            +
                puts 'libnarray.a not found.'
         
     | 
| 
      
 25 
     | 
    
         
            +
                exit(1)
         
     | 
| 
      
 26 
     | 
    
         
            +
              end
         
     | 
| 
      
 27 
     | 
    
         
            +
            end
         
     | 
| 
      
 28 
     | 
    
         
            +
             
     | 
| 
      
 29 
     | 
    
         
            +
            unless have_header('linear.h')
         
     | 
| 
      
 30 
     | 
    
         
            +
              puts 'linear.h not found.'
         
     | 
| 
      
 31 
     | 
    
         
            +
              exit(1)
         
     | 
| 
      
 32 
     | 
    
         
            +
            end
         
     | 
| 
      
 33 
     | 
    
         
            +
             
     | 
| 
      
 34 
     | 
    
         
            +
            unless have_library('linear')
         
     | 
| 
      
 35 
     | 
    
         
            +
              puts 'liblinear not found.'
         
     | 
| 
      
 36 
     | 
    
         
            +
              exit(1)
         
     | 
| 
      
 37 
     | 
    
         
            +
            end
         
     | 
| 
      
 38 
     | 
    
         
            +
             
     | 
| 
      
 39 
     | 
    
         
            +
            create_makefile('numo/liblinear/liblinearext')
         
     | 
| 
         @@ -0,0 +1,421 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            /**
         
     | 
| 
      
 2 
     | 
    
         
            +
             * LIBLINEAR interface for Numo::NArray
         
     | 
| 
      
 3 
     | 
    
         
            +
             */
         
     | 
| 
      
 4 
     | 
    
         
            +
            #include "liblinearext.h"
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            VALUE mNumo;
         
     | 
| 
      
 7 
     | 
    
         
            +
            VALUE mLiblinear;
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            void print_null(const char *s) {}
         
     | 
| 
      
 10 
     | 
    
         
            +
             
     | 
| 
      
 11 
     | 
    
         
            +
            /**
         
     | 
| 
      
 12 
     | 
    
         
            +
             * Train the model according to the given training data.
         
     | 
| 
      
 13 
     | 
    
         
            +
             *
         
     | 
| 
      
 14 
     | 
    
         
            +
             * @overload train(x, y, param) -> Hash
         
     | 
| 
      
 15 
     | 
    
         
            +
             *
         
     | 
| 
      
 16 
     | 
    
         
            +
             * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for training the model.
         
     | 
| 
      
 17 
     | 
    
         
            +
             * @param y [Numo::DFloat] (shape: [n_samples]) The labels or target values for samples.
         
     | 
| 
      
 18 
     | 
    
         
            +
             * @param param [Hash] The parameters of a model.
         
     | 
| 
      
 19 
     | 
    
         
            +
             * @return [Hash] The model obtained from the training procedure.
         
     | 
| 
      
 20 
     | 
    
         
            +
             */
         
     | 
| 
      
 21 
     | 
    
         
            +
            static
         
     | 
| 
      
 22 
     | 
    
         
            +
            VALUE numo_liblinear_train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash)
         
     | 
| 
      
 23 
     | 
    
         
            +
            {
         
     | 
| 
      
 24 
     | 
    
         
            +
              struct problem* problem;
         
     | 
| 
      
 25 
     | 
    
         
            +
              struct parameter* param;
         
     | 
| 
      
 26 
     | 
    
         
            +
              struct model* model;
         
     | 
| 
      
 27 
     | 
    
         
            +
              VALUE model_hash;
         
     | 
| 
      
 28 
     | 
    
         
            +
             
     | 
| 
      
 29 
     | 
    
         
            +
              if (CLASS_OF(x_val) != numo_cDFloat) {
         
     | 
| 
      
 30 
     | 
    
         
            +
                x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
         
     | 
| 
      
 31 
     | 
    
         
            +
              }
         
     | 
| 
      
 32 
     | 
    
         
            +
              if (CLASS_OF(y_val) != numo_cDFloat) {
         
     | 
| 
      
 33 
     | 
    
         
            +
                y_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, y_val);
         
     | 
| 
      
 34 
     | 
    
         
            +
              }
         
     | 
| 
      
 35 
     | 
    
         
            +
              if (!RTEST(nary_check_contiguous(x_val))) {
         
     | 
| 
      
 36 
     | 
    
         
            +
                x_val = nary_dup(x_val);
         
     | 
| 
      
 37 
     | 
    
         
            +
              }
         
     | 
| 
      
 38 
     | 
    
         
            +
              if (!RTEST(nary_check_contiguous(y_val))) {
         
     | 
| 
      
 39 
     | 
    
         
            +
                y_val = nary_dup(y_val);
         
     | 
| 
      
 40 
     | 
    
         
            +
              }
         
     | 
| 
      
 41 
     | 
    
         
            +
             
     | 
| 
      
 42 
     | 
    
         
            +
              param = rb_hash_to_parameter(param_hash);
         
     | 
| 
      
 43 
     | 
    
         
            +
              problem = dataset_to_problem(x_val, y_val);
         
     | 
| 
      
 44 
     | 
    
         
            +
             
     | 
| 
      
 45 
     | 
    
         
            +
              set_print_string_function(print_null);
         
     | 
| 
      
 46 
     | 
    
         
            +
              model = train(problem, param);
         
     | 
| 
      
 47 
     | 
    
         
            +
              model_hash = model_to_rb_hash(model);
         
     | 
| 
      
 48 
     | 
    
         
            +
              free_and_destroy_model(&model);
         
     | 
| 
      
 49 
     | 
    
         
            +
             
     | 
| 
      
 50 
     | 
    
         
            +
              xfree_problem(problem);
         
     | 
| 
      
 51 
     | 
    
         
            +
              xfree_parameter(param);
         
     | 
| 
      
 52 
     | 
    
         
            +
             
     | 
| 
      
 53 
     | 
    
         
            +
              return model_hash;
         
     | 
| 
      
 54 
     | 
    
         
            +
            }
         
     | 
| 
      
 55 
     | 
    
         
            +
             
     | 
| 
      
 56 
     | 
    
         
            +
            /**
         
     | 
| 
      
 57 
     | 
    
         
            +
             * Perform cross validation under given parameters. The given samples are separated to n_fols folds.
         
     | 
| 
      
 58 
     | 
    
         
            +
             * The predicted labels or values in the validation process are returned.
         
     | 
| 
      
 59 
     | 
    
         
            +
             *
         
     | 
| 
      
 60 
     | 
    
         
            +
             * @overload cv(x, y, param, n_folds) -> Numo::DFloat
         
     | 
| 
      
 61 
     | 
    
         
            +
             *
         
     | 
| 
      
 62 
     | 
    
         
            +
             * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for training the model.
         
     | 
| 
      
 63 
     | 
    
         
            +
             * @param y [Numo::DFloat] (shape: [n_samples]) The labels or target values for samples.
         
     | 
| 
      
 64 
     | 
    
         
            +
             * @param param [Hash] The parameters of a model.
         
     | 
| 
      
 65 
     | 
    
         
            +
             * @param n_folds [Integer] The number of folds.
         
     | 
| 
      
 66 
     | 
    
         
            +
             * @return [Numo::DFloat] (shape: [n_samples]) The predicted class label or value of each sample.
         
     | 
| 
      
 67 
     | 
    
         
            +
             */
         
     | 
| 
      
 68 
     | 
    
         
            +
            static
         
     | 
| 
      
 69 
     | 
    
         
            +
            VALUE numo_liblinear_cross_validation(VALUE self, VALUE x_val, VALUE y_val, VALUE param_hash, VALUE nr_folds)
         
     | 
| 
      
 70 
     | 
    
         
            +
            {
         
     | 
| 
      
 71 
     | 
    
         
            +
              const int n_folds = NUM2INT(nr_folds);
         
     | 
| 
      
 72 
     | 
    
         
            +
              size_t t_shape[1];
         
     | 
| 
      
 73 
     | 
    
         
            +
              VALUE t_val;
         
     | 
| 
      
 74 
     | 
    
         
            +
              double* t_pt;
         
     | 
| 
      
 75 
     | 
    
         
            +
              struct problem* problem;
         
     | 
| 
      
 76 
     | 
    
         
            +
              struct parameter* param;
         
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
              if (CLASS_OF(x_val) != numo_cDFloat) {
         
     | 
| 
      
 79 
     | 
    
         
            +
                x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
         
     | 
| 
      
 80 
     | 
    
         
            +
              }
         
     | 
| 
      
 81 
     | 
    
         
            +
              if (CLASS_OF(y_val) != numo_cDFloat) {
         
     | 
| 
      
 82 
     | 
    
         
            +
                y_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, y_val);
         
     | 
| 
      
 83 
     | 
    
         
            +
              }
         
     | 
| 
      
 84 
     | 
    
         
            +
              if (!RTEST(nary_check_contiguous(x_val))) {
         
     | 
| 
      
 85 
     | 
    
         
            +
                x_val = nary_dup(x_val);
         
     | 
| 
      
 86 
     | 
    
         
            +
              }
         
     | 
| 
      
 87 
     | 
    
         
            +
              if (!RTEST(nary_check_contiguous(y_val))) {
         
     | 
| 
      
 88 
     | 
    
         
            +
                y_val = nary_dup(y_val);
         
     | 
| 
      
 89 
     | 
    
         
            +
              }
         
     | 
| 
      
 90 
     | 
    
         
            +
             
     | 
| 
      
 91 
     | 
    
         
            +
              param = rb_hash_to_parameter(param_hash);
         
     | 
| 
      
 92 
     | 
    
         
            +
              problem = dataset_to_problem(x_val, y_val);
         
     | 
| 
      
 93 
     | 
    
         
            +
             
     | 
| 
      
 94 
     | 
    
         
            +
              t_shape[0] = problem->l;
         
     | 
| 
      
 95 
     | 
    
         
            +
              t_val = rb_narray_new(numo_cDFloat, 1, t_shape);
         
     | 
| 
      
 96 
     | 
    
         
            +
              t_pt = (double*)na_get_pointer_for_write(t_val);
         
     | 
| 
      
 97 
     | 
    
         
            +
             
     | 
| 
      
 98 
     | 
    
         
            +
              set_print_string_function(print_null);
         
     | 
| 
      
 99 
     | 
    
         
            +
              cross_validation(problem, param, n_folds, t_pt);
         
     | 
| 
      
 100 
     | 
    
         
            +
             
     | 
| 
      
 101 
     | 
    
         
            +
              xfree_problem(problem);
         
     | 
| 
      
 102 
     | 
    
         
            +
              xfree_parameter(param);
         
     | 
| 
      
 103 
     | 
    
         
            +
             
     | 
| 
      
 104 
     | 
    
         
            +
              return t_val;
         
     | 
| 
      
 105 
     | 
    
         
            +
            }
         
     | 
| 
      
 106 
     | 
    
         
            +
             
     | 
| 
      
 107 
     | 
    
         
            +
             
     | 
| 
      
 108 
     | 
    
         
            +
            /**
         
     | 
| 
      
 109 
     | 
    
         
            +
             * Predict class labels or values for given samples.
         
     | 
| 
      
 110 
     | 
    
         
            +
             *
         
     | 
| 
      
 111 
     | 
    
         
            +
             * @overload predict(x, param, model) -> Numo::DFloat
         
     | 
| 
      
 112 
     | 
    
         
            +
             *
         
     | 
| 
      
 113 
     | 
    
         
            +
             * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the scores.
         
     | 
| 
      
 114 
     | 
    
         
            +
             * @param param [Hash] The parameters of the trained model.
         
     | 
| 
      
 115 
     | 
    
         
            +
             * @param model [Hash] The model obtained from the training procedure.
         
     | 
| 
      
 116 
     | 
    
         
            +
             * @return [Numo::DFloat] (shape: [n_samples]) The predicted class label or value of each sample.
         
     | 
| 
      
 117 
     | 
    
         
            +
             */
         
     | 
| 
      
 118 
     | 
    
         
            +
            static
         
     | 
| 
      
 119 
     | 
    
         
            +
            VALUE numo_liblinear_predict(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash)
         
     | 
| 
      
 120 
     | 
    
         
            +
            {
         
     | 
| 
      
 121 
     | 
    
         
            +
              struct parameter* param;
         
     | 
| 
      
 122 
     | 
    
         
            +
              struct model* model;
         
     | 
| 
      
 123 
     | 
    
         
            +
              struct feature_node* x_nodes;
         
     | 
| 
      
 124 
     | 
    
         
            +
              narray_t* x_nary;
         
     | 
| 
      
 125 
     | 
    
         
            +
              double* x_pt;
         
     | 
| 
      
 126 
     | 
    
         
            +
              size_t y_shape[1];
         
     | 
| 
      
 127 
     | 
    
         
            +
              VALUE y_val;
         
     | 
| 
      
 128 
     | 
    
         
            +
              double* y_pt;
         
     | 
| 
      
 129 
     | 
    
         
            +
              int i, j;
         
     | 
| 
      
 130 
     | 
    
         
            +
              int n_samples;
         
     | 
| 
      
 131 
     | 
    
         
            +
              int n_features;
         
     | 
| 
      
 132 
     | 
    
         
            +
             
     | 
| 
      
 133 
     | 
    
         
            +
              /* Obtain C data structures. */
         
     | 
| 
      
 134 
     | 
    
         
            +
              if (CLASS_OF(x_val) != numo_cDFloat) {
         
     | 
| 
      
 135 
     | 
    
         
            +
                x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
         
     | 
| 
      
 136 
     | 
    
         
            +
              }
         
     | 
| 
      
 137 
     | 
    
         
            +
              if (!RTEST(nary_check_contiguous(x_val))) {
         
     | 
| 
      
 138 
     | 
    
         
            +
                x_val = nary_dup(x_val);
         
     | 
| 
      
 139 
     | 
    
         
            +
              }
         
     | 
| 
      
 140 
     | 
    
         
            +
              GetNArray(x_val, x_nary);
         
     | 
| 
      
 141 
     | 
    
         
            +
              param = rb_hash_to_parameter(param_hash);
         
     | 
| 
      
 142 
     | 
    
         
            +
              model = rb_hash_to_model(model_hash);
         
     | 
| 
      
 143 
     | 
    
         
            +
              model->param = *param;
         
     | 
| 
      
 144 
     | 
    
         
            +
             
     | 
| 
      
 145 
     | 
    
         
            +
              /* Initialize some variables. */
         
     | 
| 
      
 146 
     | 
    
         
            +
              n_samples = (int)NA_SHAPE(x_nary)[0];
         
     | 
| 
      
 147 
     | 
    
         
            +
              n_features = (int)NA_SHAPE(x_nary)[1];
         
     | 
| 
      
 148 
     | 
    
         
            +
              y_shape[0] = n_samples;
         
     | 
| 
      
 149 
     | 
    
         
            +
              y_val = rb_narray_new(numo_cDFloat, 1, y_shape);
         
     | 
| 
      
 150 
     | 
    
         
            +
              y_pt = (double*)na_get_pointer_for_write(y_val);
         
     | 
| 
      
 151 
     | 
    
         
            +
              x_pt = (double*)na_get_pointer_for_read(x_val);
         
     | 
| 
      
 152 
     | 
    
         
            +
             
     | 
| 
      
 153 
     | 
    
         
            +
              /* Predict values. */
         
     | 
| 
      
 154 
     | 
    
         
            +
              x_nodes = ALLOC_N(struct feature_node, n_features + 1);
         
     | 
| 
      
 155 
     | 
    
         
            +
              x_nodes[n_features].index = -1;
         
     | 
| 
      
 156 
     | 
    
         
            +
              x_nodes[n_features].value = 0.0;
         
     | 
| 
      
 157 
     | 
    
         
            +
              for (i = 0; i < n_samples; i++) {
         
     | 
| 
      
 158 
     | 
    
         
            +
                for (j = 0; j < n_features; j++) {
         
     | 
| 
      
 159 
     | 
    
         
            +
                  x_nodes[j].index = j + 1;
         
     | 
| 
      
 160 
     | 
    
         
            +
                  x_nodes[j].value = (double)x_pt[i * n_features + j];
         
     | 
| 
      
 161 
     | 
    
         
            +
                }
         
     | 
| 
      
 162 
     | 
    
         
            +
                y_pt[i] = predict(model, x_nodes);
         
     | 
| 
      
 163 
     | 
    
         
            +
              }
         
     | 
| 
      
 164 
     | 
    
         
            +
             
     | 
| 
      
 165 
     | 
    
         
            +
              xfree(x_nodes);
         
     | 
| 
      
 166 
     | 
    
         
            +
              xfree_model(model);
         
     | 
| 
      
 167 
     | 
    
         
            +
              xfree_parameter(param);
         
     | 
| 
      
 168 
     | 
    
         
            +
             
     | 
| 
      
 169 
     | 
    
         
            +
              return y_val;
         
     | 
| 
      
 170 
     | 
    
         
            +
            }
         
     | 
| 
      
 171 
     | 
    
         
            +
             
     | 
| 
      
 172 
     | 
    
         
            +
            /**
         
     | 
| 
      
 173 
     | 
    
         
            +
             * Calculate decision values for given samples.
         
     | 
| 
      
 174 
     | 
    
         
            +
             *
         
     | 
| 
      
 175 
     | 
    
         
            +
             * @overload decision_function(x, param, model) -> Numo::DFloat
         
     | 
| 
      
 176 
     | 
    
         
            +
             *
         
     | 
| 
      
 177 
     | 
    
         
            +
             * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the scores.
         
     | 
| 
      
 178 
     | 
    
         
            +
             * @param param [Hash] The parameters of the trained model.
         
     | 
| 
      
 179 
     | 
    
         
            +
             * @param model [Hash] The model obtained from the training procedure.
         
     | 
| 
      
 180 
     | 
    
         
            +
             * @return [Numo::DFloat] (shape: [n_samples, n_classes]) The decision value of each sample.
         
     | 
| 
      
 181 
     | 
    
         
            +
             */
         
     | 
| 
      
 182 
     | 
    
         
            +
            static
         
     | 
| 
      
 183 
     | 
    
         
            +
            VALUE numo_liblinear_decision_function(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash)
         
     | 
| 
      
 184 
     | 
    
         
            +
            {
         
     | 
| 
      
 185 
     | 
    
         
            +
              struct parameter* param;
         
     | 
| 
      
 186 
     | 
    
         
            +
              struct model* model;
         
     | 
| 
      
 187 
     | 
    
         
            +
              struct feature_node* x_nodes;
         
     | 
| 
      
 188 
     | 
    
         
            +
              narray_t* x_nary;
         
     | 
| 
      
 189 
     | 
    
         
            +
              double* x_pt;
         
     | 
| 
      
 190 
     | 
    
         
            +
              size_t y_shape[2];
         
     | 
| 
      
 191 
     | 
    
         
            +
              VALUE y_val;
         
     | 
| 
      
 192 
     | 
    
         
            +
              double* y_pt;
         
     | 
| 
      
 193 
     | 
    
         
            +
              double* dec_values;
         
     | 
| 
      
 194 
     | 
    
         
            +
              int y_cols;
         
     | 
| 
      
 195 
     | 
    
         
            +
              int i, j;
         
     | 
| 
      
 196 
     | 
    
         
            +
              int n_samples;
         
     | 
| 
      
 197 
     | 
    
         
            +
              int n_features;
         
     | 
| 
      
 198 
     | 
    
         
            +
             
     | 
| 
      
 199 
     | 
    
         
            +
              /* Obtain C data structures. */
         
     | 
| 
      
 200 
     | 
    
         
            +
              if (CLASS_OF(x_val) != numo_cDFloat) {
         
     | 
| 
      
 201 
     | 
    
         
            +
                x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
         
     | 
| 
      
 202 
     | 
    
         
            +
              }
         
     | 
| 
      
 203 
     | 
    
         
            +
              if (!RTEST(nary_check_contiguous(x_val))) {
         
     | 
| 
      
 204 
     | 
    
         
            +
                x_val = nary_dup(x_val);
         
     | 
| 
      
 205 
     | 
    
         
            +
              }
         
     | 
| 
      
 206 
     | 
    
         
            +
              GetNArray(x_val, x_nary);
         
     | 
| 
      
 207 
     | 
    
         
            +
              param = rb_hash_to_parameter(param_hash);
         
     | 
| 
      
 208 
     | 
    
         
            +
              model = rb_hash_to_model(model_hash);
         
     | 
| 
      
 209 
     | 
    
         
            +
              model->param = *param;
         
     | 
| 
      
 210 
     | 
    
         
            +
             
     | 
| 
      
 211 
     | 
    
         
            +
              /* Initialize some variables. */
         
     | 
| 
      
 212 
     | 
    
         
            +
              n_samples = (int)NA_SHAPE(x_nary)[0];
         
     | 
| 
      
 213 
     | 
    
         
            +
              n_features = (int)NA_SHAPE(x_nary)[1];
         
     | 
| 
      
 214 
     | 
    
         
            +
             
     | 
| 
      
 215 
     | 
    
         
            +
              if (model->nr_class == 2 && model->param.solver_type != MCSVM_CS) {
         
     | 
| 
      
 216 
     | 
    
         
            +
                y_shape[0] = n_samples;
         
     | 
| 
      
 217 
     | 
    
         
            +
                y_shape[1] = 1;
         
     | 
| 
      
 218 
     | 
    
         
            +
                y_val = rb_narray_new(numo_cDFloat, 1, y_shape);
         
     | 
| 
      
 219 
     | 
    
         
            +
              } else {
         
     | 
| 
      
 220 
     | 
    
         
            +
                y_shape[0] = n_samples;
         
     | 
| 
      
 221 
     | 
    
         
            +
                y_shape[1] = model->nr_class;
         
     | 
| 
      
 222 
     | 
    
         
            +
                y_val = rb_narray_new(numo_cDFloat, 2, y_shape);
         
     | 
| 
      
 223 
     | 
    
         
            +
              }
         
     | 
| 
      
 224 
     | 
    
         
            +
             
     | 
| 
      
 225 
     | 
    
         
            +
              x_pt = (double*)na_get_pointer_for_read(x_val);
         
     | 
| 
      
 226 
     | 
    
         
            +
              y_pt = (double*)na_get_pointer_for_write(y_val);
         
     | 
| 
      
 227 
     | 
    
         
            +
             
     | 
| 
      
 228 
     | 
    
         
            +
              /* Predict values. */
         
     | 
| 
      
 229 
     | 
    
         
            +
              if (model->nr_class == 2 && model->param.solver_type != MCSVM_CS) {
         
     | 
| 
      
 230 
     | 
    
         
            +
                x_nodes = ALLOC_N(struct feature_node, n_features + 1);
         
     | 
| 
      
 231 
     | 
    
         
            +
                x_nodes[n_features].index = -1;
         
     | 
| 
      
 232 
     | 
    
         
            +
                x_nodes[n_features].value = 0.0;
         
     | 
| 
      
 233 
     | 
    
         
            +
                for (i = 0; i < n_samples; i++) {
         
     | 
| 
      
 234 
     | 
    
         
            +
                  for (j = 0; j < n_features; j++) {
         
     | 
| 
      
 235 
     | 
    
         
            +
                    x_nodes[j].index = j + 1;
         
     | 
| 
      
 236 
     | 
    
         
            +
                    x_nodes[j].value = (double)x_pt[i * n_features + j];
         
     | 
| 
      
 237 
     | 
    
         
            +
                  }
         
     | 
| 
      
 238 
     | 
    
         
            +
                  predict_values(model, x_nodes, &y_pt[i]);
         
     | 
| 
      
 239 
     | 
    
         
            +
                }
         
     | 
| 
      
 240 
     | 
    
         
            +
                xfree(x_nodes);
         
     | 
| 
      
 241 
     | 
    
         
            +
              } else {
         
     | 
| 
      
 242 
     | 
    
         
            +
                y_cols = (int)y_shape[1];
         
     | 
| 
      
 243 
     | 
    
         
            +
                dec_values = ALLOC_N(double, y_cols);
         
     | 
| 
      
 244 
     | 
    
         
            +
                x_nodes = ALLOC_N(struct feature_node, n_features + 1);
         
     | 
| 
      
 245 
     | 
    
         
            +
                x_nodes[n_features].index = -1;
         
     | 
| 
      
 246 
     | 
    
         
            +
                x_nodes[n_features].value = 0.0;
         
     | 
| 
      
 247 
     | 
    
         
            +
                for (i = 0; i < n_samples; i++) {
         
     | 
| 
      
 248 
     | 
    
         
            +
                  for (j = 0; j < n_features; j++) {
         
     | 
| 
      
 249 
     | 
    
         
            +
                    x_nodes[j].index = j + 1;
         
     | 
| 
      
 250 
     | 
    
         
            +
                    x_nodes[j].value = (double)x_pt[i * n_features + j];
         
     | 
| 
      
 251 
     | 
    
         
            +
                  }
         
     | 
| 
      
 252 
     | 
    
         
            +
                  predict_values(model, x_nodes, dec_values);
         
     | 
| 
      
 253 
     | 
    
         
            +
                  for (j = 0; j < y_cols; j++) {
         
     | 
| 
      
 254 
     | 
    
         
            +
                    y_pt[i * y_cols + j] = dec_values[j];
         
     | 
| 
      
 255 
     | 
    
         
            +
                  }
         
     | 
| 
      
 256 
     | 
    
         
            +
                }
         
     | 
| 
      
 257 
     | 
    
         
            +
                xfree(x_nodes);
         
     | 
| 
      
 258 
     | 
    
         
            +
                xfree(dec_values);
         
     | 
| 
      
 259 
     | 
    
         
            +
              }
         
     | 
| 
      
 260 
     | 
    
         
            +
             
     | 
| 
      
 261 
     | 
    
         
            +
              xfree_model(model);
         
     | 
| 
      
 262 
     | 
    
         
            +
              xfree_parameter(param);
         
     | 
| 
      
 263 
     | 
    
         
            +
             
     | 
| 
      
 264 
     | 
    
         
            +
              return y_val;
         
     | 
| 
      
 265 
     | 
    
         
            +
            }
         
     | 
| 
      
 266 
     | 
    
         
            +
             
     | 
| 
      
 267 
     | 
    
         
            +
            /**
         
     | 
| 
      
 268 
     | 
    
         
            +
             * Predict class probability for given samples.
         
     | 
| 
      
 269 
     | 
    
         
            +
             * The model must have probability information calcualted in training procedure.
         
     | 
| 
      
 270 
     | 
    
         
            +
             * The method supports only the logistic regression.
         
     | 
| 
      
 271 
     | 
    
         
            +
             *
         
     | 
| 
      
 272 
     | 
    
         
            +
             * @overload predict_proba(x, param, model) -> Numo::DFloat
         
     | 
| 
      
 273 
     | 
    
         
            +
             *
         
     | 
| 
      
 274 
     | 
    
         
            +
             * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the class probabilities.
         
     | 
| 
      
 275 
     | 
    
         
            +
             * @param param [Hash] The parameters of the trained Logistic Regression model.
         
     | 
| 
      
 276 
     | 
    
         
            +
             * @param model [Hash] The model obtained from the training procedure.
         
     | 
| 
      
 277 
     | 
    
         
            +
             * @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probablity of each class per sample.
         
     | 
| 
      
 278 
     | 
    
         
            +
             */
         
     | 
| 
      
 279 
     | 
    
         
            +
            static
         
     | 
| 
      
 280 
     | 
    
         
            +
            VALUE numo_liblinear_predict_proba(VALUE self, VALUE x_val, VALUE param_hash, VALUE model_hash)
         
     | 
| 
      
 281 
     | 
    
         
            +
            {
         
     | 
| 
      
 282 
     | 
    
         
            +
              struct parameter* param;
         
     | 
| 
      
 283 
     | 
    
         
            +
              struct model* model;
         
     | 
| 
      
 284 
     | 
    
         
            +
              struct feature_node* x_nodes;
         
     | 
| 
      
 285 
     | 
    
         
            +
              narray_t* x_nary;
         
     | 
| 
      
 286 
     | 
    
         
            +
              double* x_pt;
         
     | 
| 
      
 287 
     | 
    
         
            +
              size_t y_shape[2];
         
     | 
| 
      
 288 
     | 
    
         
            +
              VALUE y_val = Qnil;
         
     | 
| 
      
 289 
     | 
    
         
            +
              double* y_pt;
         
     | 
| 
      
 290 
     | 
    
         
            +
              double* probs;
         
     | 
| 
      
 291 
     | 
    
         
            +
              int i, j;
         
     | 
| 
      
 292 
     | 
    
         
            +
              int n_samples;
         
     | 
| 
      
 293 
     | 
    
         
            +
              int n_features;
         
     | 
| 
      
 294 
     | 
    
         
            +
             
     | 
| 
      
 295 
     | 
    
         
            +
              param = rb_hash_to_parameter(param_hash);
         
     | 
| 
      
 296 
     | 
    
         
            +
              model = rb_hash_to_model(model_hash);
         
     | 
| 
      
 297 
     | 
    
         
            +
              model->param = *param;
         
     | 
| 
      
 298 
     | 
    
         
            +
             
     | 
| 
      
 299 
     | 
    
         
            +
              if (model->param.solver_type == L2R_LR || model->param.solver_type == L1R_LR || model->param.solver_type == L2R_LR_DUAL) {
         
     | 
| 
      
 300 
     | 
    
         
            +
                /* Obtain C data structures. */
         
     | 
| 
      
 301 
     | 
    
         
            +
                if (CLASS_OF(x_val) != numo_cDFloat) {
         
     | 
| 
      
 302 
     | 
    
         
            +
                  x_val = rb_funcall(numo_cDFloat, rb_intern("cast"), 1, x_val);
         
     | 
| 
      
 303 
     | 
    
         
            +
                }
         
     | 
| 
      
 304 
     | 
    
         
            +
                if (!RTEST(nary_check_contiguous(x_val))) {
         
     | 
| 
      
 305 
     | 
    
         
            +
                  x_val = nary_dup(x_val);
         
     | 
| 
      
 306 
     | 
    
         
            +
                }
         
     | 
| 
      
 307 
     | 
    
         
            +
                GetNArray(x_val, x_nary);
         
     | 
| 
      
 308 
     | 
    
         
            +
             
     | 
| 
      
 309 
     | 
    
         
            +
                /* Initialize some variables. */
         
     | 
| 
      
 310 
     | 
    
         
            +
                n_samples = (int)NA_SHAPE(x_nary)[0];
         
     | 
| 
      
 311 
     | 
    
         
            +
                n_features = (int)NA_SHAPE(x_nary)[1];
         
     | 
| 
      
 312 
     | 
    
         
            +
                y_shape[0] = n_samples;
         
     | 
| 
      
 313 
     | 
    
         
            +
                y_shape[1] = model->nr_class;
         
     | 
| 
      
 314 
     | 
    
         
            +
                y_val = rb_narray_new(numo_cDFloat, 2, y_shape);
         
     | 
| 
      
 315 
     | 
    
         
            +
                x_pt = (double*)na_get_pointer_for_read(x_val);
         
     | 
| 
      
 316 
     | 
    
         
            +
                y_pt = (double*)na_get_pointer_for_write(y_val);
         
     | 
| 
      
 317 
     | 
    
         
            +
             
     | 
| 
      
 318 
     | 
    
         
            +
                /* Predict values. */
         
     | 
| 
      
 319 
     | 
    
         
            +
                probs = ALLOC_N(double, model->nr_class);
         
     | 
| 
      
 320 
     | 
    
         
            +
                x_nodes = ALLOC_N(struct feature_node, n_features + 1);
         
     | 
| 
      
 321 
     | 
    
         
            +
                x_nodes[n_features].index = -1;
         
     | 
| 
      
 322 
     | 
    
         
            +
                x_nodes[n_features].value = 0.0;
         
     | 
| 
      
 323 
     | 
    
         
            +
                for (i = 0; i < n_samples; i++) {
         
     | 
| 
      
 324 
     | 
    
         
            +
                  for (j = 0; j < n_features; j++) {
         
     | 
| 
      
 325 
     | 
    
         
            +
                    x_nodes[j].index = j + 1;
         
     | 
| 
      
 326 
     | 
    
         
            +
                    x_nodes[j].value = (double)x_pt[i * n_features + j];
         
     | 
| 
      
 327 
     | 
    
         
            +
                  }
         
     | 
| 
      
 328 
     | 
    
         
            +
                  predict_probability(model, x_nodes, probs);
         
     | 
| 
      
 329 
     | 
    
         
            +
                  for (j = 0; j < model->nr_class; j++) {
         
     | 
| 
      
 330 
     | 
    
         
            +
                    y_pt[i * model->nr_class + j] = probs[j];
         
     | 
| 
      
 331 
     | 
    
         
            +
                  }
         
     | 
| 
      
 332 
     | 
    
         
            +
                }
         
     | 
| 
      
 333 
     | 
    
         
            +
                xfree(x_nodes);
         
     | 
| 
      
 334 
     | 
    
         
            +
                xfree(probs);
         
     | 
| 
      
 335 
     | 
    
         
            +
              }
         
     | 
| 
      
 336 
     | 
    
         
            +
             
     | 
| 
      
 337 
     | 
    
         
            +
              xfree_model(model);
         
     | 
| 
      
 338 
     | 
    
         
            +
              xfree_parameter(param);
         
     | 
| 
      
 339 
     | 
    
         
            +
             
     | 
| 
      
 340 
     | 
    
         
            +
              return y_val;
         
     | 
| 
      
 341 
     | 
    
         
            +
            }
         
     | 
| 
      
 342 
     | 
    
         
            +
             
     | 
| 
      
 343 
     | 
    
         
            +
            /**
         
     | 
| 
      
 344 
     | 
    
         
            +
             * Load the parameters and model from a text file with LIBLINEAR format.
         
     | 
| 
      
 345 
     | 
    
         
            +
             *
         
     | 
| 
      
 346 
     | 
    
         
            +
             * @param filename [String] The path to a file to load.
         
     | 
| 
      
 347 
     | 
    
         
            +
             * @return [Array] Array contains the parameters and model.
         
     | 
| 
      
 348 
     | 
    
         
            +
             */
         
     | 
| 
      
 349 
     | 
    
         
            +
            static
         
     | 
| 
      
 350 
     | 
    
         
            +
            VALUE numo_liblinear_load_model(VALUE self, VALUE filename)
         
     | 
| 
      
 351 
     | 
    
         
            +
            {
         
     | 
| 
      
 352 
     | 
    
         
            +
              struct model* model = load_model(StringValuePtr(filename));
         
     | 
| 
      
 353 
     | 
    
         
            +
              VALUE res = rb_ary_new2(2);
         
     | 
| 
      
 354 
     | 
    
         
            +
              VALUE param_hash = Qnil;
         
     | 
| 
      
 355 
     | 
    
         
            +
              VALUE model_hash = Qnil;
         
     | 
| 
      
 356 
     | 
    
         
            +
             
     | 
| 
      
 357 
     | 
    
         
            +
              if (model) {
         
     | 
| 
      
 358 
     | 
    
         
            +
                param_hash = parameter_to_rb_hash(&(model->param));
         
     | 
| 
      
 359 
     | 
    
         
            +
                model_hash = model_to_rb_hash(model);
         
     | 
| 
      
 360 
     | 
    
         
            +
                free_and_destroy_model(&model);
         
     | 
| 
      
 361 
     | 
    
         
            +
              }
         
     | 
| 
      
 362 
     | 
    
         
            +
             
     | 
| 
      
 363 
     | 
    
         
            +
              rb_ary_store(res, 0, param_hash);
         
     | 
| 
      
 364 
     | 
    
         
            +
              rb_ary_store(res, 1, model_hash);
         
     | 
| 
      
 365 
     | 
    
         
            +
             
     | 
| 
      
 366 
     | 
    
         
            +
              return res;
         
     | 
| 
      
 367 
     | 
    
         
            +
            }
         
     | 
| 
      
 368 
     | 
    
         
            +
             
     | 
| 
      
 369 
     | 
    
         
            +
            /**
         
     | 
| 
      
 370 
     | 
    
         
            +
             * Save the parameters and model as a text file with LIBLINEAR format. The saved file can be used with the liblinear tools.
         
     | 
| 
      
 371 
     | 
    
         
            +
             * Note that the save_model saves only the parameters necessary for estimation with the trained model.
         
     | 
| 
      
 372 
     | 
    
         
            +
             *
         
     | 
| 
      
 373 
     | 
    
         
            +
             * @overload save_model(filename, param, model) -> Boolean
         
     | 
| 
      
 374 
     | 
    
         
            +
             *
         
     | 
| 
      
 375 
     | 
    
         
            +
             * @param filename [String] The path to a file to save.
         
     | 
| 
      
 376 
     | 
    
         
            +
             * @param param [Hash] The parameters of the trained model.
         
     | 
| 
      
 377 
     | 
    
         
            +
             * @param model [Hash] The model obtained from the training procedure.
         
     | 
| 
      
 378 
     | 
    
         
            +
             * @return [Boolean] true on success, or false if an error occurs.
         
     | 
| 
      
 379 
     | 
    
         
            +
             */
         
     | 
| 
      
 380 
     | 
    
         
            +
            static
         
     | 
| 
      
 381 
     | 
    
         
            +
            VALUE numo_liblinear_save_model(VALUE self, VALUE filename, VALUE param_hash, VALUE model_hash)
         
     | 
| 
      
 382 
     | 
    
         
            +
            {
         
     | 
| 
      
 383 
     | 
    
         
            +
              struct parameter* param = rb_hash_to_parameter(param_hash);
         
     | 
| 
      
 384 
     | 
    
         
            +
              struct model* model = rb_hash_to_model(model_hash);
         
     | 
| 
      
 385 
     | 
    
         
            +
              int res;
         
     | 
| 
      
 386 
     | 
    
         
            +
             
     | 
| 
      
 387 
     | 
    
         
            +
              model->param = *param;
         
     | 
| 
      
 388 
     | 
    
         
            +
              res = save_model(StringValuePtr(filename), model);
         
     | 
| 
      
 389 
     | 
    
         
            +
             
     | 
| 
      
 390 
     | 
    
         
            +
              xfree_model(model);
         
     | 
| 
      
 391 
     | 
    
         
            +
              xfree_parameter(param);
         
     | 
| 
      
 392 
     | 
    
         
            +
             
     | 
| 
      
 393 
     | 
    
         
            +
              return res < 0 ? Qfalse : Qtrue;
         
     | 
| 
      
 394 
     | 
    
         
            +
            }
         
     | 
| 
      
 395 
     | 
    
         
            +
             
     | 
| 
      
 396 
     | 
    
         
            +
            void Init_liblinearext()
         
     | 
| 
      
 397 
     | 
    
         
            +
            {
         
     | 
| 
      
 398 
     | 
    
         
            +
              rb_require("numo/narray");
         
     | 
| 
      
 399 
     | 
    
         
            +
             
     | 
| 
      
 400 
     | 
    
         
            +
              /**
         
     | 
| 
      
 401 
     | 
    
         
            +
               * Document-module: Numo
         
     | 
| 
      
 402 
     | 
    
         
            +
               * Numo is the top level namespace of NUmerical MOdules for Ruby.
         
     | 
| 
      
 403 
     | 
    
         
            +
               */
         
     | 
| 
      
 404 
     | 
    
         
            +
              mNumo = rb_define_module("Numo");
         
     | 
| 
      
 405 
     | 
    
         
            +
             
     | 
| 
      
 406 
     | 
    
         
            +
              /**
         
     | 
| 
      
 407 
     | 
    
         
            +
               * Document-module: Numo::Liblinear
         
     | 
| 
      
 408 
     | 
    
         
            +
               * Numo::Liblinear is a binding library for LIBLINEAR that handles dataset with Numo::NArray.
         
     | 
| 
      
 409 
     | 
    
         
            +
               */
         
     | 
| 
      
 410 
     | 
    
         
            +
              mLiblinear = rb_define_module_under(mNumo, "Liblinear");
         
     | 
| 
      
 411 
     | 
    
         
            +
             
     | 
| 
      
 412 
     | 
    
         
            +
              rb_define_module_function(mLiblinear, "train", numo_liblinear_train, 3);
         
     | 
| 
      
 413 
     | 
    
         
            +
              rb_define_module_function(mLiblinear, "cv", numo_liblinear_cross_validation, 4);
         
     | 
| 
      
 414 
     | 
    
         
            +
              rb_define_module_function(mLiblinear, "predict", numo_liblinear_predict, 3);
         
     | 
| 
      
 415 
     | 
    
         
            +
              rb_define_module_function(mLiblinear, "decision_function", numo_liblinear_decision_function, 3);
         
     | 
| 
      
 416 
     | 
    
         
            +
              rb_define_module_function(mLiblinear, "predict_proba", numo_liblinear_predict_proba, 3);
         
     | 
| 
      
 417 
     | 
    
         
            +
              rb_define_module_function(mLiblinear, "load_model", numo_liblinear_load_model, 1);
         
     | 
| 
      
 418 
     | 
    
         
            +
              rb_define_module_function(mLiblinear, "save_model", numo_liblinear_save_model, 3);
         
     | 
| 
      
 419 
     | 
    
         
            +
             
     | 
| 
      
 420 
     | 
    
         
            +
              rb_init_solver_type_module();
         
     | 
| 
      
 421 
     | 
    
         
            +
            }
         
     |