numo-liblinear 0.1.0 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 7db70ba7431ce52aa9530d3d340a6dce5a616daa
4
- data.tar.gz: ce1a99b9082477922ed35768de8467b514d36541
3
+ metadata.gz: 3bf71a14ccac359b6dffce32a5a5d3c784ef9efa
4
+ data.tar.gz: 6af9f95c6b28c11b06fc0b10628a37e9397564c5
5
5
  SHA512:
6
- metadata.gz: 79e9cbacea54a665ddb971da7b08fd3a43d159a0314715d0aecbf5c19b3b3c95adca6f8b29217c354348d9d8417b9c14742a8d1a5f2debd2db51dd92c32007d5
7
- data.tar.gz: 96a37fde1a15d9a79d7c2bbf374691e8358b42afadf1df58ac1097a6af1bc52ebcd5e6b43601e5ec15582fc79e9b430c20bc39b42503083c0991066b34d9bbbc
6
+ metadata.gz: 18e64c5d487cab2636216425e45fd8eeaefa0f14026068d3678f0d8d643aea00acf867aa64ba510a62d4c343408a9e22bace2a0347a7b7aba7ddd872f2bbc579
7
+ data.tar.gz: 43e16f69a931aab7a45163f1909e307f3334ef88f4e45ed79e5513b288804d5c0dfcbb92ef79642bb7c40e70bcdffe6f47548a2cad10351da3585dd48f0a84db
data/CHANGELOG.md CHANGED
@@ -1,2 +1,6 @@
1
+ # 0.2.0
2
+ - Add valation of method parameters.
3
+ - Several documentation improvements.
4
+
1
5
  # 0.1.0
2
6
  - First release.
data/README.md CHANGED
@@ -1,7 +1,9 @@
1
1
  # Numo::Liblinear
2
2
 
3
3
  [![Build Status](https://travis-ci.org/yoshoku/numo-liblinear.svg?branch=master)](https://travis-ci.org/yoshoku/numo-liblinear)
4
+ [![Gem Version](https://badge.fury.io/rb/numo-liblinear.svg)](https://badge.fury.io/rb/numo-liblinear)
4
5
  [![BSD 3-Clause License](https://img.shields.io/badge/License-BSD%203--Clause-orange.svg)](https://github.com/yoshoku/numo-liblinear/blob/master/LICENSE.txt)
6
+ [![Documentation](http://img.shields.io/badge/docs-rdoc.info-blue.svg)](https://www.rubydoc.info/gems/numo-liblinear/0.2.0)
5
7
 
6
8
  Numo::Liblinear is a Ruby gem binding to the [LIBLINEAR](https://www.csie.ntu.edu.tw/~cjlin/liblinear/) library.
7
9
  LIBLINEAR is one of the famous libraries for large-scale regularized linear classification and regression.
@@ -12,10 +12,13 @@ void print_null(const char *s) {}
12
12
  * Train the model according to the given training data.
13
13
  *
14
14
  * @overload train(x, y, param) -> Hash
15
+ * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for training the model.
16
+ * @param y [Numo::DFloat] (shape: [n_samples]) The labels or target values for samples.
17
+ * @param param [Hash] The parameters of a model.
15
18
  *
16
- * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for training the model.
17
- * @param y [Numo::DFloat] (shape: [n_samples]) The labels or target values for samples.
18
- * @param param [Hash] The parameters of a model.
19
+ * @raise [ArgumentError] If the sample array is not 2-dimensional, the label array is not 1-dimensional,
20
+ * the sample array and label array do not have the same number of samples, or
21
+ * the hyperparameter has an invalid value, this error is raised.
19
22
  * @return [Hash] The model obtained from the training procedure.
20
23
  */
21
24
  static
@@ -24,6 +27,9 @@ VALUE numo_liblinear_train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_has
24
27
  struct problem* problem;
25
28
  struct parameter* param;
26
29
  struct model* model;
30
+ narray_t* x_nary;
31
+ narray_t* y_nary;
32
+ char* err_msg;
27
33
  VALUE model_hash;
28
34
 
29
35
  if (CLASS_OF(x_val) != numo_cDFloat) {
@@ -39,9 +45,32 @@ VALUE numo_liblinear_train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_has
39
45
  y_val = nary_dup(y_val);
40
46
  }
41
47
 
48
+ GetNArray(x_val, x_nary);
49
+ GetNArray(y_val, y_nary);
50
+ if (NA_NDIM(x_nary) != 2) {
51
+ rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
52
+ return Qnil;
53
+ }
54
+ if (NA_NDIM(y_nary) != 1) {
55
+ rb_raise(rb_eArgError, "Expect label or target values to be 1-D arrray.");
56
+ return Qnil;
57
+ }
58
+ if (NA_SHAPE(x_nary)[0] != NA_SHAPE(y_nary)[0]) {
59
+ rb_raise(rb_eArgError, "Expect to have the same number of samples for samples and labels.");
60
+ return Qnil;
61
+ }
62
+
42
63
  param = rb_hash_to_parameter(param_hash);
43
64
  problem = dataset_to_problem(x_val, y_val);
44
65
 
66
+ err_msg = check_parameter(problem, param);
67
+ if (err_msg) {
68
+ xfree_problem(problem);
69
+ xfree_parameter(param);
70
+ rb_raise(rb_eArgError, "Invalid LIBLINEAR parameter is given: %s", err_msg);
71
+ return Qnil;
72
+ }
73
+
45
74
  set_print_string_function(print_null);
46
75
  model = train(problem, param);
47
76
  model_hash = model_to_rb_hash(model);
@@ -58,11 +87,14 @@ VALUE numo_liblinear_train(VALUE self, VALUE x_val, VALUE y_val, VALUE param_has
58
87
  * The predicted labels or values in the validation process are returned.
59
88
  *
60
89
  * @overload cv(x, y, param, n_folds) -> Numo::DFloat
90
+ * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for training the model.
91
+ * @param y [Numo::DFloat] (shape: [n_samples]) The labels or target values for samples.
92
+ * @param param [Hash] The parameters of a model.
93
+ * @param n_folds [Integer] The number of folds.
61
94
  *
62
- * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be used for training the model.
63
- * @param y [Numo::DFloat] (shape: [n_samples]) The labels or target values for samples.
64
- * @param param [Hash] The parameters of a model.
65
- * @param n_folds [Integer] The number of folds.
95
+ * @raise [ArgumentError] If the sample array is not 2-dimensional, the label array is not 1-dimensional,
96
+ * the sample array and label array do not have the same number of samples, or
97
+ * the hyperparameter has an invalid value, this error is raised.
66
98
  * @return [Numo::DFloat] (shape: [n_samples]) The predicted class label or value of each sample.
67
99
  */
68
100
  static
@@ -72,6 +104,9 @@ VALUE numo_liblinear_cross_validation(VALUE self, VALUE x_val, VALUE y_val, VALU
72
104
  size_t t_shape[1];
73
105
  VALUE t_val;
74
106
  double* t_pt;
107
+ narray_t* x_nary;
108
+ narray_t* y_nary;
109
+ char* err_msg;
75
110
  struct problem* problem;
76
111
  struct parameter* param;
77
112
 
@@ -88,9 +123,32 @@ VALUE numo_liblinear_cross_validation(VALUE self, VALUE x_val, VALUE y_val, VALU
88
123
  y_val = nary_dup(y_val);
89
124
  }
90
125
 
126
+ GetNArray(x_val, x_nary);
127
+ GetNArray(y_val, y_nary);
128
+ if (NA_NDIM(x_nary) != 2) {
129
+ rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
130
+ return Qnil;
131
+ }
132
+ if (NA_NDIM(y_nary) != 1) {
133
+ rb_raise(rb_eArgError, "Expect label or target values to be 1-D arrray.");
134
+ return Qnil;
135
+ }
136
+ if (NA_SHAPE(x_nary)[0] != NA_SHAPE(y_nary)[0]) {
137
+ rb_raise(rb_eArgError, "Expect to have the same number of samples for samples and labels.");
138
+ return Qnil;
139
+ }
140
+
91
141
  param = rb_hash_to_parameter(param_hash);
92
142
  problem = dataset_to_problem(x_val, y_val);
93
143
 
144
+ err_msg = check_parameter(problem, param);
145
+ if (err_msg) {
146
+ xfree_problem(problem);
147
+ xfree_parameter(param);
148
+ rb_raise(rb_eArgError, "Invalid LIBLINEAR parameter is given: %s", err_msg);
149
+ return Qnil;
150
+ }
151
+
94
152
  t_shape[0] = problem->l;
95
153
  t_val = rb_narray_new(numo_cDFloat, 1, t_shape);
96
154
  t_pt = (double*)na_get_pointer_for_write(t_val);
@@ -109,10 +167,11 @@ VALUE numo_liblinear_cross_validation(VALUE self, VALUE x_val, VALUE y_val, VALU
109
167
  * Predict class labels or values for given samples.
110
168
  *
111
169
  * @overload predict(x, param, model) -> Numo::DFloat
170
+ * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the scores.
171
+ * @param param [Hash] The parameters of the trained model.
172
+ * @param model [Hash] The model obtained from the training procedure.
112
173
  *
113
- * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the scores.
114
- * @param param [Hash] The parameters of the trained model.
115
- * @param model [Hash] The model obtained from the training procedure.
174
+ * @raise [ArgumentError] If the sample array is not 2-dimensional, this error is raised.
116
175
  * @return [Numo::DFloat] (shape: [n_samples]) The predicted class label or value of each sample.
117
176
  */
118
177
  static
@@ -137,7 +196,13 @@ VALUE numo_liblinear_predict(VALUE self, VALUE x_val, VALUE param_hash, VALUE mo
137
196
  if (!RTEST(nary_check_contiguous(x_val))) {
138
197
  x_val = nary_dup(x_val);
139
198
  }
199
+
140
200
  GetNArray(x_val, x_nary);
201
+ if (NA_NDIM(x_nary) != 2) {
202
+ rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
203
+ return Qnil;
204
+ }
205
+
141
206
  param = rb_hash_to_parameter(param_hash);
142
207
  model = rb_hash_to_model(model_hash);
143
208
  model->param = *param;
@@ -173,10 +238,11 @@ VALUE numo_liblinear_predict(VALUE self, VALUE x_val, VALUE param_hash, VALUE mo
173
238
  * Calculate decision values for given samples.
174
239
  *
175
240
  * @overload decision_function(x, param, model) -> Numo::DFloat
241
+ * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the scores.
242
+ * @param param [Hash] The parameters of the trained model.
243
+ * @param model [Hash] The model obtained from the training procedure.
176
244
  *
177
- * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the scores.
178
- * @param param [Hash] The parameters of the trained model.
179
- * @param model [Hash] The model obtained from the training procedure.
245
+ * @raise [ArgumentError] If the sample array is not 2-dimensional, this error is raised.
180
246
  * @return [Numo::DFloat] (shape: [n_samples, n_classes]) The decision value of each sample.
181
247
  */
182
248
  static
@@ -203,7 +269,13 @@ VALUE numo_liblinear_decision_function(VALUE self, VALUE x_val, VALUE param_hash
203
269
  if (!RTEST(nary_check_contiguous(x_val))) {
204
270
  x_val = nary_dup(x_val);
205
271
  }
272
+
206
273
  GetNArray(x_val, x_nary);
274
+ if (NA_NDIM(x_nary) != 2) {
275
+ rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
276
+ return Qnil;
277
+ }
278
+
207
279
  param = rb_hash_to_parameter(param_hash);
208
280
  model = rb_hash_to_model(model_hash);
209
281
  model->param = *param;
@@ -270,10 +342,11 @@ VALUE numo_liblinear_decision_function(VALUE self, VALUE x_val, VALUE param_hash
270
342
  * The method supports only the logistic regression.
271
343
  *
272
344
  * @overload predict_proba(x, param, model) -> Numo::DFloat
345
+ * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the class probabilities.
346
+ * @param param [Hash] The parameters of the trained Logistic Regression model.
347
+ * @param model [Hash] The model obtained from the training procedure.
273
348
  *
274
- * @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the class probabilities.
275
- * @param param [Hash] The parameters of the trained Logistic Regression model.
276
- * @param model [Hash] The model obtained from the training procedure.
349
+ * @raise [ArgumentError] If the sample array is not 2-dimensional, this error is raised.
277
350
  * @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probablity of each class per sample.
278
351
  */
279
352
  static
@@ -292,6 +365,12 @@ VALUE numo_liblinear_predict_proba(VALUE self, VALUE x_val, VALUE param_hash, VA
292
365
  int n_samples;
293
366
  int n_features;
294
367
 
368
+ GetNArray(x_val, x_nary);
369
+ if (NA_NDIM(x_nary) != 2) {
370
+ rb_raise(rb_eArgError, "Expect samples to be 2-D array.");
371
+ return Qnil;
372
+ }
373
+
295
374
  param = rb_hash_to_parameter(param_hash);
296
375
  model = rb_hash_to_model(model_hash);
297
376
  model->param = *param;
@@ -304,7 +383,6 @@ VALUE numo_liblinear_predict_proba(VALUE self, VALUE x_val, VALUE param_hash, VA
304
383
  if (!RTEST(nary_check_contiguous(x_val))) {
305
384
  x_val = nary_dup(x_val);
306
385
  }
307
- GetNArray(x_val, x_nary);
308
386
 
309
387
  /* Initialize some variables. */
310
388
  n_samples = (int)NA_SHAPE(x_nary)[0];
@@ -343,17 +421,26 @@ VALUE numo_liblinear_predict_proba(VALUE self, VALUE x_val, VALUE param_hash, VA
343
421
  /**
344
422
  * Load the parameters and model from a text file with LIBLINEAR format.
345
423
  *
346
- * @param filename [String] The path to a file to load.
424
+ * @overload load_model(filename) -> Array
425
+ * @param filename [String] The path to a file to load.
426
+ *
427
+ * @raise [IOError] This error raises when failed to load the model file.
347
428
  * @return [Array] Array contains the parameters and model.
348
429
  */
349
430
  static
350
431
  VALUE numo_liblinear_load_model(VALUE self, VALUE filename)
351
432
  {
352
- struct model* model = load_model(StringValuePtr(filename));
433
+ char* filename_ = StringValuePtr(filename);
434
+ struct model* model = load_model(filename_);
353
435
  VALUE res = rb_ary_new2(2);
354
436
  VALUE param_hash = Qnil;
355
437
  VALUE model_hash = Qnil;
356
438
 
439
+ if (model == NULL) {
440
+ rb_raise(rb_eIOError, "Failed to load file '%s'", filename_);
441
+ return Qnil;
442
+ }
443
+
357
444
  if (model) {
358
445
  param_hash = parameter_to_rb_hash(&(model->param));
359
446
  model_hash = model_to_rb_hash(model);
@@ -371,26 +458,33 @@ VALUE numo_liblinear_load_model(VALUE self, VALUE filename)
371
458
  * Note that the save_model saves only the parameters necessary for estimation with the trained model.
372
459
  *
373
460
  * @overload save_model(filename, param, model) -> Boolean
461
+ * @param filename [String] The path to a file to save.
462
+ * @param param [Hash] The parameters of the trained model.
463
+ * @param model [Hash] The model obtained from the training procedure.
374
464
  *
375
- * @param filename [String] The path to a file to save.
376
- * @param param [Hash] The parameters of the trained model.
377
- * @param model [Hash] The model obtained from the training procedure.
465
+ * @raise [IOError] This error raises when failed to save the model file.
378
466
  * @return [Boolean] true on success, or false if an error occurs.
379
467
  */
380
468
  static
381
469
  VALUE numo_liblinear_save_model(VALUE self, VALUE filename, VALUE param_hash, VALUE model_hash)
382
470
  {
471
+ char* filename_ = StringValuePtr(filename);
383
472
  struct parameter* param = rb_hash_to_parameter(param_hash);
384
473
  struct model* model = rb_hash_to_model(model_hash);
385
474
  int res;
386
475
 
387
476
  model->param = *param;
388
- res = save_model(StringValuePtr(filename), model);
477
+ res = save_model(filename_, model);
389
478
 
390
479
  xfree_model(model);
391
480
  xfree_parameter(param);
392
481
 
393
- return res < 0 ? Qfalse : Qtrue;
482
+ if (res < 0) {
483
+ rb_raise(rb_eIOError, "Failed to save file '%s'", filename_);
484
+ return Qfalse;
485
+ }
486
+
487
+ return Qtrue;
394
488
  }
395
489
 
396
490
  void Init_liblinearext()
@@ -3,6 +3,6 @@
3
3
  module Numo
4
4
  module Liblinear
5
5
  # The version of Numo::Liblienar you are using.
6
- VERSION = '0.1.0'
6
+ VERSION = '0.2.0'
7
7
  end
8
8
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: numo-liblinear
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.0
4
+ version: 0.2.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2019-07-26 00:00:00.000000000 Z
11
+ date: 2019-08-15 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: numo-narray