numerals 0.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +22 -0
- data/Gemfile +3 -0
- data/LICENSE +22 -0
- data/README.md +24 -0
- data/Rakefile +19 -0
- data/lib/numerals/conversions/bigdecimal.rb +30 -0
- data/lib/numerals/conversions/float.rb +226 -0
- data/lib/numerals/conversions/flt.rb +162 -0
- data/lib/numerals/conversions/integer.rb +39 -0
- data/lib/numerals/conversions/rational.rb +32 -0
- data/lib/numerals/conversions.rb +57 -0
- data/lib/numerals/digits.rb +99 -0
- data/lib/numerals/formatting/digits_definition.rb +75 -0
- data/lib/numerals/formatting/options.rb +84 -0
- data/lib/numerals/numeral.rb +650 -0
- data/lib/numerals/rounding.rb +229 -0
- data/lib/numerals/support.rb +10 -0
- data/lib/numerals/version.rb +3 -0
- data/lib/numerals.rb +12 -0
- data/numerals.gemspec +26 -0
- data/test/data.yaml +101 -0
- data/test/helper.rb +40 -0
- data/test/test_digits_definition.rb +110 -0
- data/test/test_float_conversions.rb +58 -0
- data/test/test_flt_conversions.rb +277 -0
- data/test/test_integer_conversions.rb +50 -0
- data/test/test_numeral.rb +366 -0
- data/test/test_rational_conversions.rb +75 -0
- data/test/test_rounding.rb +77 -0
- metadata +138 -0
@@ -0,0 +1,650 @@
|
|
1
|
+
require 'numerals/digits'
|
2
|
+
require 'numerals/support'
|
3
|
+
|
4
|
+
module Numerals
|
5
|
+
|
6
|
+
class NumeralError < StandardError
|
7
|
+
end
|
8
|
+
|
9
|
+
# A Numeral represents a numeric value as a sequence of digits
|
10
|
+
# (possibly repeating) in some numeric base.
|
11
|
+
#
|
12
|
+
# A numeral can have a special value (infinity or not-a-number).
|
13
|
+
#
|
14
|
+
# A non-special numeral is defined by:
|
15
|
+
#
|
16
|
+
# * radix (the base)
|
17
|
+
# * digits (a Digits object)
|
18
|
+
# * sign (+1/-1)
|
19
|
+
# * point: the position of the fractional point; 0 would place it
|
20
|
+
# before the first digit, 1 before the second, etc.
|
21
|
+
# * repeat: the digits starting at this position repeat indefinitely
|
22
|
+
#
|
23
|
+
# A Numeral is equivalent to a Rational number; a quotient of integers
|
24
|
+
# can be converted to a Numeral in any base and back to a quotient without
|
25
|
+
# altering its value (though the fraction might be simplified).
|
26
|
+
#
|
27
|
+
# By default a Numeral represents an exact quantity (rational number).
|
28
|
+
# A numeral can alo represent an approximate value given with a certain
|
29
|
+
# precision, the number of significant digits (numeral.digits.size)
|
30
|
+
# which can include significant trailing zeros. Approximate numerals
|
31
|
+
# are never repeating.
|
32
|
+
#
|
33
|
+
# Exact numerals are always repeating, but when the repeating digits are
|
34
|
+
# just zeros, the repeating? method returns false.
|
35
|
+
#
|
36
|
+
class Numeral
|
37
|
+
include ModalSupport::StateEquivalent
|
38
|
+
include ModalSupport::BracketConstructor
|
39
|
+
|
40
|
+
@maximum_number_of_digits = 5000
|
41
|
+
|
42
|
+
# Change the maximum number of digits that Numeral objects
|
43
|
+
# can handle.
|
44
|
+
def self.maximum_number_of_digits=(n)
|
45
|
+
@maximum_number_of_digits = [n, 2048].max
|
46
|
+
end
|
47
|
+
# Return the maximum number of digits that Numeral objects
|
48
|
+
# can handle.
|
49
|
+
def self.maximum_number_of_digits
|
50
|
+
@maximum_number_of_digits
|
51
|
+
end
|
52
|
+
|
53
|
+
# Special nomerals may be contructed with the symbols :nan, :infinity,
|
54
|
+
# :negative_infinity, :positive_infinity. Or also with :infinity and the
|
55
|
+
# :sign option which should be either +1 or -1:
|
56
|
+
#
|
57
|
+
# Examples:
|
58
|
+
#
|
59
|
+
# Numeral[:nan]
|
60
|
+
# Numeral[:infinity, sign: -1]
|
61
|
+
#
|
62
|
+
# For nonspecial numerals, the first argument may be a Digits object or
|
63
|
+
# an Array of digits, and the rest parameters (:base, :sign, :point and
|
64
|
+
# :repeat) are passed as options.
|
65
|
+
#
|
66
|
+
# Examples:
|
67
|
+
#
|
68
|
+
# Numeral[1,2,3, base: 10, point: 1] # 1.23
|
69
|
+
# Numeral[1,2,3,4, point: 1, repeat: 2] # 1.234343434...
|
70
|
+
#
|
71
|
+
# The :normalize option can be used to specify the kind of normalization
|
72
|
+
# applied to the numeral:
|
73
|
+
#
|
74
|
+
# * :exact, the default produces a normalized :exact number,
|
75
|
+
# where no trailing zeros are kept and there are always a repeat point
|
76
|
+
# (which may just repeat trailing zeros)
|
77
|
+
# * :approximate produces a non-repeating numeral with a fixed number of
|
78
|
+
# digits (where trailing zeros are significant)
|
79
|
+
# * false or nil will not normalize the result, mantaining the digits
|
80
|
+
# and repeat values passed.
|
81
|
+
#
|
82
|
+
def initialize(*args)
|
83
|
+
if Hash === args.last
|
84
|
+
options = args.pop
|
85
|
+
else
|
86
|
+
options = {}
|
87
|
+
end
|
88
|
+
options = { normalize: :exact }.merge(options)
|
89
|
+
normalize = options.delete(:normalize)
|
90
|
+
@point = nil
|
91
|
+
@repeat = nil
|
92
|
+
@sign = nil
|
93
|
+
@radix = options[:base] || options[:radix] || 10
|
94
|
+
if args.size == 1 && Symbol === args.first
|
95
|
+
@special = args.first
|
96
|
+
case @special
|
97
|
+
when :positive_infinity
|
98
|
+
@special = :inf
|
99
|
+
@sign = +1
|
100
|
+
when :negative_infinity
|
101
|
+
@special = :inf
|
102
|
+
@sign = -1
|
103
|
+
when :infinity
|
104
|
+
@special = :inf
|
105
|
+
end
|
106
|
+
elsif args.size == 1 && Digits === args.first
|
107
|
+
@digits = args.first
|
108
|
+
@radix = @digits.radix || @radix
|
109
|
+
elsif args.size == 1 && Array === args.first
|
110
|
+
@digits = Digits[args.first, base: @radix]
|
111
|
+
else
|
112
|
+
if args.any? { |v| Symbol === v }
|
113
|
+
@digits = Digits[base: @radix]
|
114
|
+
args.each do |v|
|
115
|
+
case v
|
116
|
+
when :point
|
117
|
+
@point = @digits.size
|
118
|
+
when :repeat
|
119
|
+
@repeat = @digits.size
|
120
|
+
else # when Integer
|
121
|
+
@digits.push v
|
122
|
+
end
|
123
|
+
end
|
124
|
+
elsif args.size > 0
|
125
|
+
@digits = Digits[args, base: @radix]
|
126
|
+
end
|
127
|
+
end
|
128
|
+
if options[:value]
|
129
|
+
@digits = Digits[value: options[:value], base: @radix]
|
130
|
+
end
|
131
|
+
@sign ||= options[:sign] || +1
|
132
|
+
@special ||= options[:special]
|
133
|
+
unless @special
|
134
|
+
@point ||= options[:point] || @digits.size
|
135
|
+
@repeat ||= options[:repeat] || @digits.size
|
136
|
+
end
|
137
|
+
case normalize
|
138
|
+
when :exact
|
139
|
+
normalize! Numeral.exact_normalization
|
140
|
+
when :approximate
|
141
|
+
normalize! Numeral.approximate_normalization
|
142
|
+
when Hash
|
143
|
+
normalize! normalize
|
144
|
+
end
|
145
|
+
end
|
146
|
+
|
147
|
+
attr_accessor :sign, :digits, :point, :repeat, :special, :radix
|
148
|
+
|
149
|
+
def base
|
150
|
+
@radix
|
151
|
+
end
|
152
|
+
|
153
|
+
def base=(b)
|
154
|
+
@radix = b
|
155
|
+
end
|
156
|
+
|
157
|
+
def scale
|
158
|
+
@point - @digits.size
|
159
|
+
end
|
160
|
+
|
161
|
+
def special?
|
162
|
+
!!@special
|
163
|
+
end
|
164
|
+
|
165
|
+
def nan?
|
166
|
+
@special == :nan
|
167
|
+
end
|
168
|
+
|
169
|
+
def indeterminate?
|
170
|
+
nan?
|
171
|
+
end
|
172
|
+
|
173
|
+
def infinite?
|
174
|
+
@special == :inf
|
175
|
+
end
|
176
|
+
|
177
|
+
def positive_infinite?
|
178
|
+
@special == :inf && @sign == +1
|
179
|
+
end
|
180
|
+
|
181
|
+
def negative_infinite?
|
182
|
+
@special == :inf && @sign == -1
|
183
|
+
end
|
184
|
+
|
185
|
+
def zero?
|
186
|
+
!special? && @digits.zero?
|
187
|
+
end
|
188
|
+
|
189
|
+
# unlike the repeat attribute, this is nevel nil
|
190
|
+
def repeating_position
|
191
|
+
@repeat || @digits.size
|
192
|
+
end
|
193
|
+
|
194
|
+
def repeating?
|
195
|
+
!special? && @repeat && @repeat < @digits.size
|
196
|
+
end
|
197
|
+
|
198
|
+
def nonrepeating?
|
199
|
+
!special && !repeating?
|
200
|
+
end
|
201
|
+
|
202
|
+
def scale=(s)
|
203
|
+
@point = s + @digits.size
|
204
|
+
end
|
205
|
+
|
206
|
+
def digit_value_at(i)
|
207
|
+
if i < 0
|
208
|
+
0
|
209
|
+
elsif i < @digits.size
|
210
|
+
@digits[i]
|
211
|
+
elsif @repeat.nil? || @repeat >= @digits.size
|
212
|
+
0
|
213
|
+
else
|
214
|
+
repeated_length = @digits.size - @repeat
|
215
|
+
i = (i - @repeat) % repeated_length
|
216
|
+
@digits[i + @repeat]
|
217
|
+
end
|
218
|
+
end
|
219
|
+
|
220
|
+
def self.approximate_normalization
|
221
|
+
{ remove_extra_reps: false, remove_trailing_zeros: false, remove_leading_zeros: true, force_repeat: false }
|
222
|
+
end
|
223
|
+
|
224
|
+
def self.exact_normalization
|
225
|
+
{ remove_extra_reps: true, remove_trailing_zeros: true, remove_leading_zeros: true, force_repeat: true }
|
226
|
+
end
|
227
|
+
|
228
|
+
def normalize!(options = {})
|
229
|
+
if @special
|
230
|
+
if @special == :nan
|
231
|
+
@sign = nil
|
232
|
+
end
|
233
|
+
@point = @repeat = nil
|
234
|
+
else
|
235
|
+
|
236
|
+
defaults = { remove_extra_reps: true, remove_trailing_zeros: true }
|
237
|
+
options = defaults.merge(options)
|
238
|
+
remove_trailing_zeros = options[:remove_trailing_zeros]
|
239
|
+
remove_extra_reps = options[:remove_extra_reps]
|
240
|
+
remove_leading_zeros = options[:remove_extra_reps]
|
241
|
+
force_repeat = options[:force_repeat]
|
242
|
+
|
243
|
+
# Remove unneeded repetitions
|
244
|
+
if @repeat && remove_extra_reps
|
245
|
+
rep_length = @digits.size - @repeat
|
246
|
+
if rep_length > 0 && @digits.size >= 2*rep_length
|
247
|
+
while @repeat > rep_length && @digits[@repeat, rep_length] == @digits[@repeat-rep_length, rep_length]
|
248
|
+
@repeat -= rep_length
|
249
|
+
@digits.replace @digits[0...-rep_length]
|
250
|
+
end
|
251
|
+
end
|
252
|
+
end
|
253
|
+
|
254
|
+
# Replace 'nines' repetition 0.999... -> 1
|
255
|
+
if @repeat && @repeat == @digits.size-1 && @digits[@repeat] == (@radix-1)
|
256
|
+
@digits.pop
|
257
|
+
@repeat = nil
|
258
|
+
|
259
|
+
i = @digits.size - 1
|
260
|
+
carry = 1
|
261
|
+
while carry > 0 && i >= 0
|
262
|
+
@digits[i] += carry
|
263
|
+
carry = 0
|
264
|
+
if @digits[i] > @radix
|
265
|
+
carry = 1
|
266
|
+
@digits[i] = 0
|
267
|
+
@digits.pop if i == @digits.size
|
268
|
+
end
|
269
|
+
i -= 1
|
270
|
+
end
|
271
|
+
if carry > 0
|
272
|
+
digits.unshift carry
|
273
|
+
@point += 1
|
274
|
+
end
|
275
|
+
end
|
276
|
+
|
277
|
+
# Remove zeros repetitions
|
278
|
+
if remove_trailing_zeros
|
279
|
+
if @repeat && @repeat >= @digits.size
|
280
|
+
@repeat = @digits.size
|
281
|
+
end
|
282
|
+
if @repeat && @repeat >= 0
|
283
|
+
unless @digits[@repeat..-1].any? { |x| x != 0 }
|
284
|
+
@digits.replace @digits[0...@repeat]
|
285
|
+
@repeat = nil
|
286
|
+
end
|
287
|
+
end
|
288
|
+
end
|
289
|
+
|
290
|
+
if force_repeat
|
291
|
+
@repeat ||= @digits.size
|
292
|
+
else
|
293
|
+
@repeat = nil if @repeat && @repeat >= @digits.size
|
294
|
+
end
|
295
|
+
|
296
|
+
# Remove leading zeros
|
297
|
+
if remove_leading_zeros
|
298
|
+
# if all digits are zero, we consider all to be trailing zeros
|
299
|
+
unless !remove_trailing_zeros && @digits.zero?
|
300
|
+
while @digits.first == 0
|
301
|
+
@digits.shift
|
302
|
+
@repeat -= 1 if @repeat
|
303
|
+
@point -= 1
|
304
|
+
end
|
305
|
+
end
|
306
|
+
end
|
307
|
+
|
308
|
+
# Remove trailing zeros
|
309
|
+
if remove_trailing_zeros && !repeating?
|
310
|
+
while @digits.last == 0
|
311
|
+
@digits.pop
|
312
|
+
@repeat -= 1 if @repeat
|
313
|
+
end
|
314
|
+
end
|
315
|
+
end
|
316
|
+
|
317
|
+
self
|
318
|
+
end
|
319
|
+
|
320
|
+
# Deep copy
|
321
|
+
def dup
|
322
|
+
duped = super
|
323
|
+
duped.digits = duped.digits.dup
|
324
|
+
duped
|
325
|
+
end
|
326
|
+
|
327
|
+
def negate!
|
328
|
+
@sign = -@sign
|
329
|
+
self
|
330
|
+
end
|
331
|
+
|
332
|
+
def negated
|
333
|
+
dup.negate!
|
334
|
+
end
|
335
|
+
|
336
|
+
def -@
|
337
|
+
negated
|
338
|
+
end
|
339
|
+
|
340
|
+
def normalized(options={})
|
341
|
+
dup.normalize! options
|
342
|
+
end
|
343
|
+
|
344
|
+
def self.zero(options={})
|
345
|
+
integer 0, options
|
346
|
+
end
|
347
|
+
|
348
|
+
def self.positive_infinity
|
349
|
+
Numeral[:inf, sign: +1]
|
350
|
+
end
|
351
|
+
|
352
|
+
def self.negative_infinity
|
353
|
+
Numeral[:inf, sign: -1]
|
354
|
+
end
|
355
|
+
|
356
|
+
def self.infinity(sign=+1)
|
357
|
+
Numeral[:inf, sign: sign]
|
358
|
+
end
|
359
|
+
|
360
|
+
def self.nan
|
361
|
+
Numeral[:nan]
|
362
|
+
end
|
363
|
+
|
364
|
+
def self.indeterminate
|
365
|
+
nan
|
366
|
+
end
|
367
|
+
|
368
|
+
def self.integer(x, options={})
|
369
|
+
base = options[:base] || options[:radix] || 10
|
370
|
+
if x == 0
|
371
|
+
# we also could conventionally keep 0 either as Digits[[], ...]
|
372
|
+
digits = Digits[0, base: base]
|
373
|
+
sign = +1
|
374
|
+
else
|
375
|
+
if x < 0
|
376
|
+
sign = -1
|
377
|
+
x = -x
|
378
|
+
else
|
379
|
+
sign = +1
|
380
|
+
end
|
381
|
+
digits = Digits[value: x, base: base]
|
382
|
+
end
|
383
|
+
Numeral[digits, sign: sign]
|
384
|
+
end
|
385
|
+
|
386
|
+
# Create a Numeral from a quotient (Rational number)
|
387
|
+
# The quotient can be passed as an Array, so that fractions with a zero denominator
|
388
|
+
# can be handled (represented indefinite or infinite numbers).
|
389
|
+
def self.from_quotient(*args)
|
390
|
+
r = args.shift
|
391
|
+
if Integer === args.first
|
392
|
+
r = [r, args.shift]
|
393
|
+
end
|
394
|
+
options = args.shift || {}
|
395
|
+
raise "Invalid number of arguments" unless args.empty?
|
396
|
+
max_d = options.delete(:maximum_number_of_digits) || Numeral.maximum_number_of_digits
|
397
|
+
if Rational === r
|
398
|
+
x, y = r.numerator, r.denominator
|
399
|
+
else
|
400
|
+
x, y = r
|
401
|
+
end
|
402
|
+
return integer(x, options) if (x == 0 && y != 0) || y == 1
|
403
|
+
|
404
|
+
radix = options[:base] || options[:radix] || 10
|
405
|
+
|
406
|
+
xy_sign = x == 0 ? 0 : x < 0 ? -1 : +1
|
407
|
+
xy_sign = -xy_sign if y < 0
|
408
|
+
x = x.abs
|
409
|
+
y = y.abs
|
410
|
+
|
411
|
+
digits = Digits[base: radix]
|
412
|
+
repeat = nil
|
413
|
+
special = nil
|
414
|
+
|
415
|
+
if y == 0
|
416
|
+
if x == 0
|
417
|
+
special = :nan
|
418
|
+
else
|
419
|
+
special = :inf
|
420
|
+
end
|
421
|
+
end
|
422
|
+
|
423
|
+
return Numeral[special, sign: xy_sign] if special
|
424
|
+
|
425
|
+
point = 1
|
426
|
+
k = {}
|
427
|
+
i = 0
|
428
|
+
|
429
|
+
while (z = y*radix) < x
|
430
|
+
y = z
|
431
|
+
point += 1
|
432
|
+
end
|
433
|
+
|
434
|
+
while x > 0 && (max_d <= 0 || i < max_d)
|
435
|
+
break if repeat = k[x]
|
436
|
+
k[x] = i
|
437
|
+
d, x = x.divmod(y)
|
438
|
+
x *= radix
|
439
|
+
digits.push d
|
440
|
+
i += 1
|
441
|
+
end
|
442
|
+
|
443
|
+
while digits.size > 1 && digits.first == 0
|
444
|
+
digits.shift
|
445
|
+
repeat -= 1 if repeat
|
446
|
+
point -= 1
|
447
|
+
end
|
448
|
+
|
449
|
+
Numeral[digits, sign: xy_sign, repeat: repeat, point: point]
|
450
|
+
end
|
451
|
+
|
452
|
+
# Return a quotient (Rational) that represents the exact value of the numeral.
|
453
|
+
# The quotient is returned as an Array, so that fractions with a zero denominator
|
454
|
+
# can be handled (represented indefinite or infinite numbers).
|
455
|
+
def to_quotient
|
456
|
+
if @special
|
457
|
+
y = 0
|
458
|
+
case @special
|
459
|
+
when :nan
|
460
|
+
x = 0
|
461
|
+
when :inf
|
462
|
+
x = @sign
|
463
|
+
end
|
464
|
+
return [x, y]
|
465
|
+
end
|
466
|
+
|
467
|
+
n = @digits.size
|
468
|
+
a = 0
|
469
|
+
b = a
|
470
|
+
|
471
|
+
repeat = @repeat
|
472
|
+
repeat = nil if repeat && repeat >= n
|
473
|
+
|
474
|
+
for i in 0...n
|
475
|
+
a *= @radix
|
476
|
+
a += @digits[i]
|
477
|
+
if repeat && i < repeat
|
478
|
+
b *= @radix
|
479
|
+
b += @digits[i]
|
480
|
+
end
|
481
|
+
end
|
482
|
+
|
483
|
+
x = a
|
484
|
+
x -= b if repeat
|
485
|
+
|
486
|
+
y = @radix**(n - @point)
|
487
|
+
y -= @radix**(repeat - @point) if repeat
|
488
|
+
|
489
|
+
d = Numerals.gcd(x, y)
|
490
|
+
x /= d
|
491
|
+
y /= d
|
492
|
+
|
493
|
+
x = -x if @sign < 0
|
494
|
+
|
495
|
+
[x.to_i, y.to_i]
|
496
|
+
end
|
497
|
+
|
498
|
+
def self.from_coefficient_scale(coefficient, scale, options={})
|
499
|
+
radix = options[:base] || options[:radix] || 10
|
500
|
+
if coefficient < 0
|
501
|
+
sign = -1
|
502
|
+
coefficient = -coefficient
|
503
|
+
else
|
504
|
+
sign = +1
|
505
|
+
end
|
506
|
+
digits = Digits[radix]
|
507
|
+
digits.value = coefficient
|
508
|
+
point = scale + digits.size
|
509
|
+
normalization = options[:normalize] || :exact
|
510
|
+
normalization = :approximate if options[:approximate]
|
511
|
+
Numeral[digits, base: radix, point: point, sign: sign, normalize: normalization]
|
512
|
+
end
|
513
|
+
|
514
|
+
def split
|
515
|
+
if @special || (@repeat && @repeat < @digits.size)
|
516
|
+
raise NumeralError, "Numeral cannot be represented as sign, coefficient, scale"
|
517
|
+
end
|
518
|
+
[@sign, @digits.value, scale]
|
519
|
+
end
|
520
|
+
|
521
|
+
def to_value_scale
|
522
|
+
if @special || (@repeat && @repeat < @digits.size)
|
523
|
+
raise NumeralError, "Numeral cannot be represented as value, scale"
|
524
|
+
end
|
525
|
+
[@digits.value*@sign, scale]
|
526
|
+
end
|
527
|
+
|
528
|
+
# Convert a Numeral to a different base
|
529
|
+
def to_base(other_base)
|
530
|
+
if other_base == @radix
|
531
|
+
dup
|
532
|
+
else
|
533
|
+
normalization = exact? ? :exact : :approximate
|
534
|
+
Numeral.from_quotient to_quotient, base: other_base, normalize: normalization
|
535
|
+
end
|
536
|
+
end
|
537
|
+
|
538
|
+
def parameters
|
539
|
+
if special?
|
540
|
+
params = { special: @special }
|
541
|
+
params.merge! sign: @sign if @special == :inf
|
542
|
+
else
|
543
|
+
params = {
|
544
|
+
digits: @digits,
|
545
|
+
sign: @sign,
|
546
|
+
point: @point
|
547
|
+
}
|
548
|
+
params.merge! repeat: @repeat if @repeat
|
549
|
+
if approximate?
|
550
|
+
params.merge! normalize: :approximate
|
551
|
+
end
|
552
|
+
end
|
553
|
+
params
|
554
|
+
end
|
555
|
+
|
556
|
+
def to_s
|
557
|
+
case @special
|
558
|
+
when :nan
|
559
|
+
'Numeral[:nan]'
|
560
|
+
when :inf
|
561
|
+
if @sign < 0
|
562
|
+
'Numeral[:inf, sign: -1]'
|
563
|
+
else
|
564
|
+
'Numeral[:inf]'
|
565
|
+
end
|
566
|
+
else
|
567
|
+
if @digits.size > 0
|
568
|
+
args = @digits.digits_array.to_s.unwrap('[]')
|
569
|
+
args << ', '
|
570
|
+
end
|
571
|
+
params = parameters
|
572
|
+
params.delete :digits
|
573
|
+
params.merge! base: @radix
|
574
|
+
args << params.to_s.unwrap('{}')
|
575
|
+
"Numeral[#{args}]"
|
576
|
+
end
|
577
|
+
end
|
578
|
+
|
579
|
+
def inspect
|
580
|
+
to_s
|
581
|
+
end
|
582
|
+
|
583
|
+
# An exact Numeral represents exactly a rational number.
|
584
|
+
# It always has a repeat position, althugh the repeated digits
|
585
|
+
# may all be zero.
|
586
|
+
def exact?
|
587
|
+
!!@repeat
|
588
|
+
end
|
589
|
+
|
590
|
+
# An approximate Numeral has limited precision (number of significant digits).
|
591
|
+
# In an approximate Numeral, trailing zeros are significant.
|
592
|
+
def approximate?
|
593
|
+
!exact?
|
594
|
+
end
|
595
|
+
|
596
|
+
# Make sure the numeral has at least the given number of digits;
|
597
|
+
# This may denormalize the number.
|
598
|
+
def expand!(minimum_number_of_digits)
|
599
|
+
if @repeat
|
600
|
+
while @digits.size < minimum_number_of_digits
|
601
|
+
@digits.push @digits[@repeat] || 0
|
602
|
+
@repeat += 1
|
603
|
+
end
|
604
|
+
else
|
605
|
+
@digits.push 0 while @digits.size < minimum_number_of_digits
|
606
|
+
end
|
607
|
+
self
|
608
|
+
end
|
609
|
+
|
610
|
+
def expand(minimum_number_of_digits)
|
611
|
+
dup.expand! minimum_number_of_digits
|
612
|
+
end
|
613
|
+
|
614
|
+
# Expand to the specified number of digits,
|
615
|
+
# then truncate and remove repetitions.
|
616
|
+
def approximate!(number_of_digits)
|
617
|
+
expand! number_of_digits
|
618
|
+
@digits.truncate! number_of_digits
|
619
|
+
@repeat = nil
|
620
|
+
self
|
621
|
+
end
|
622
|
+
|
623
|
+
def approximate(number_of_digits)
|
624
|
+
dup.approximate! number_of_digits
|
625
|
+
end
|
626
|
+
|
627
|
+
def exact!
|
628
|
+
normalize! Numeral.exact_normalization
|
629
|
+
end
|
630
|
+
|
631
|
+
def exact
|
632
|
+
dup.exact!
|
633
|
+
end
|
634
|
+
|
635
|
+
private
|
636
|
+
|
637
|
+
def test_equal(other)
|
638
|
+
return false if other.nil? || !other.is_a?(Numeral)
|
639
|
+
if self.special? || other.special?
|
640
|
+
self.special == other.special && self.sign == other.sign
|
641
|
+
else
|
642
|
+
this = self.normalized
|
643
|
+
that = other.normalized
|
644
|
+
this.sign == that.sign && this.point == that.point && this.repeat == that.repeat && this.digits == that.digits
|
645
|
+
end
|
646
|
+
end
|
647
|
+
|
648
|
+
end
|
649
|
+
|
650
|
+
end
|