numerals 0.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +22 -0
- data/Gemfile +3 -0
- data/LICENSE +22 -0
- data/README.md +24 -0
- data/Rakefile +19 -0
- data/lib/numerals/conversions/bigdecimal.rb +30 -0
- data/lib/numerals/conversions/float.rb +226 -0
- data/lib/numerals/conversions/flt.rb +162 -0
- data/lib/numerals/conversions/integer.rb +39 -0
- data/lib/numerals/conversions/rational.rb +32 -0
- data/lib/numerals/conversions.rb +57 -0
- data/lib/numerals/digits.rb +99 -0
- data/lib/numerals/formatting/digits_definition.rb +75 -0
- data/lib/numerals/formatting/options.rb +84 -0
- data/lib/numerals/numeral.rb +650 -0
- data/lib/numerals/rounding.rb +229 -0
- data/lib/numerals/support.rb +10 -0
- data/lib/numerals/version.rb +3 -0
- data/lib/numerals.rb +12 -0
- data/numerals.gemspec +26 -0
- data/test/data.yaml +101 -0
- data/test/helper.rb +40 -0
- data/test/test_digits_definition.rb +110 -0
- data/test/test_float_conversions.rb +58 -0
- data/test/test_flt_conversions.rb +277 -0
- data/test/test_integer_conversions.rb +50 -0
- data/test/test_numeral.rb +366 -0
- data/test/test_rational_conversions.rb +75 -0
- data/test/test_rounding.rb +77 -0
- metadata +138 -0
@@ -0,0 +1,650 @@
|
|
1
|
+
require 'numerals/digits'
|
2
|
+
require 'numerals/support'
|
3
|
+
|
4
|
+
module Numerals
|
5
|
+
|
6
|
+
class NumeralError < StandardError
|
7
|
+
end
|
8
|
+
|
9
|
+
# A Numeral represents a numeric value as a sequence of digits
|
10
|
+
# (possibly repeating) in some numeric base.
|
11
|
+
#
|
12
|
+
# A numeral can have a special value (infinity or not-a-number).
|
13
|
+
#
|
14
|
+
# A non-special numeral is defined by:
|
15
|
+
#
|
16
|
+
# * radix (the base)
|
17
|
+
# * digits (a Digits object)
|
18
|
+
# * sign (+1/-1)
|
19
|
+
# * point: the position of the fractional point; 0 would place it
|
20
|
+
# before the first digit, 1 before the second, etc.
|
21
|
+
# * repeat: the digits starting at this position repeat indefinitely
|
22
|
+
#
|
23
|
+
# A Numeral is equivalent to a Rational number; a quotient of integers
|
24
|
+
# can be converted to a Numeral in any base and back to a quotient without
|
25
|
+
# altering its value (though the fraction might be simplified).
|
26
|
+
#
|
27
|
+
# By default a Numeral represents an exact quantity (rational number).
|
28
|
+
# A numeral can alo represent an approximate value given with a certain
|
29
|
+
# precision, the number of significant digits (numeral.digits.size)
|
30
|
+
# which can include significant trailing zeros. Approximate numerals
|
31
|
+
# are never repeating.
|
32
|
+
#
|
33
|
+
# Exact numerals are always repeating, but when the repeating digits are
|
34
|
+
# just zeros, the repeating? method returns false.
|
35
|
+
#
|
36
|
+
class Numeral
|
37
|
+
include ModalSupport::StateEquivalent
|
38
|
+
include ModalSupport::BracketConstructor
|
39
|
+
|
40
|
+
@maximum_number_of_digits = 5000
|
41
|
+
|
42
|
+
# Change the maximum number of digits that Numeral objects
|
43
|
+
# can handle.
|
44
|
+
def self.maximum_number_of_digits=(n)
|
45
|
+
@maximum_number_of_digits = [n, 2048].max
|
46
|
+
end
|
47
|
+
# Return the maximum number of digits that Numeral objects
|
48
|
+
# can handle.
|
49
|
+
def self.maximum_number_of_digits
|
50
|
+
@maximum_number_of_digits
|
51
|
+
end
|
52
|
+
|
53
|
+
# Special nomerals may be contructed with the symbols :nan, :infinity,
|
54
|
+
# :negative_infinity, :positive_infinity. Or also with :infinity and the
|
55
|
+
# :sign option which should be either +1 or -1:
|
56
|
+
#
|
57
|
+
# Examples:
|
58
|
+
#
|
59
|
+
# Numeral[:nan]
|
60
|
+
# Numeral[:infinity, sign: -1]
|
61
|
+
#
|
62
|
+
# For nonspecial numerals, the first argument may be a Digits object or
|
63
|
+
# an Array of digits, and the rest parameters (:base, :sign, :point and
|
64
|
+
# :repeat) are passed as options.
|
65
|
+
#
|
66
|
+
# Examples:
|
67
|
+
#
|
68
|
+
# Numeral[1,2,3, base: 10, point: 1] # 1.23
|
69
|
+
# Numeral[1,2,3,4, point: 1, repeat: 2] # 1.234343434...
|
70
|
+
#
|
71
|
+
# The :normalize option can be used to specify the kind of normalization
|
72
|
+
# applied to the numeral:
|
73
|
+
#
|
74
|
+
# * :exact, the default produces a normalized :exact number,
|
75
|
+
# where no trailing zeros are kept and there are always a repeat point
|
76
|
+
# (which may just repeat trailing zeros)
|
77
|
+
# * :approximate produces a non-repeating numeral with a fixed number of
|
78
|
+
# digits (where trailing zeros are significant)
|
79
|
+
# * false or nil will not normalize the result, mantaining the digits
|
80
|
+
# and repeat values passed.
|
81
|
+
#
|
82
|
+
def initialize(*args)
|
83
|
+
if Hash === args.last
|
84
|
+
options = args.pop
|
85
|
+
else
|
86
|
+
options = {}
|
87
|
+
end
|
88
|
+
options = { normalize: :exact }.merge(options)
|
89
|
+
normalize = options.delete(:normalize)
|
90
|
+
@point = nil
|
91
|
+
@repeat = nil
|
92
|
+
@sign = nil
|
93
|
+
@radix = options[:base] || options[:radix] || 10
|
94
|
+
if args.size == 1 && Symbol === args.first
|
95
|
+
@special = args.first
|
96
|
+
case @special
|
97
|
+
when :positive_infinity
|
98
|
+
@special = :inf
|
99
|
+
@sign = +1
|
100
|
+
when :negative_infinity
|
101
|
+
@special = :inf
|
102
|
+
@sign = -1
|
103
|
+
when :infinity
|
104
|
+
@special = :inf
|
105
|
+
end
|
106
|
+
elsif args.size == 1 && Digits === args.first
|
107
|
+
@digits = args.first
|
108
|
+
@radix = @digits.radix || @radix
|
109
|
+
elsif args.size == 1 && Array === args.first
|
110
|
+
@digits = Digits[args.first, base: @radix]
|
111
|
+
else
|
112
|
+
if args.any? { |v| Symbol === v }
|
113
|
+
@digits = Digits[base: @radix]
|
114
|
+
args.each do |v|
|
115
|
+
case v
|
116
|
+
when :point
|
117
|
+
@point = @digits.size
|
118
|
+
when :repeat
|
119
|
+
@repeat = @digits.size
|
120
|
+
else # when Integer
|
121
|
+
@digits.push v
|
122
|
+
end
|
123
|
+
end
|
124
|
+
elsif args.size > 0
|
125
|
+
@digits = Digits[args, base: @radix]
|
126
|
+
end
|
127
|
+
end
|
128
|
+
if options[:value]
|
129
|
+
@digits = Digits[value: options[:value], base: @radix]
|
130
|
+
end
|
131
|
+
@sign ||= options[:sign] || +1
|
132
|
+
@special ||= options[:special]
|
133
|
+
unless @special
|
134
|
+
@point ||= options[:point] || @digits.size
|
135
|
+
@repeat ||= options[:repeat] || @digits.size
|
136
|
+
end
|
137
|
+
case normalize
|
138
|
+
when :exact
|
139
|
+
normalize! Numeral.exact_normalization
|
140
|
+
when :approximate
|
141
|
+
normalize! Numeral.approximate_normalization
|
142
|
+
when Hash
|
143
|
+
normalize! normalize
|
144
|
+
end
|
145
|
+
end
|
146
|
+
|
147
|
+
attr_accessor :sign, :digits, :point, :repeat, :special, :radix
|
148
|
+
|
149
|
+
def base
|
150
|
+
@radix
|
151
|
+
end
|
152
|
+
|
153
|
+
def base=(b)
|
154
|
+
@radix = b
|
155
|
+
end
|
156
|
+
|
157
|
+
def scale
|
158
|
+
@point - @digits.size
|
159
|
+
end
|
160
|
+
|
161
|
+
def special?
|
162
|
+
!!@special
|
163
|
+
end
|
164
|
+
|
165
|
+
def nan?
|
166
|
+
@special == :nan
|
167
|
+
end
|
168
|
+
|
169
|
+
def indeterminate?
|
170
|
+
nan?
|
171
|
+
end
|
172
|
+
|
173
|
+
def infinite?
|
174
|
+
@special == :inf
|
175
|
+
end
|
176
|
+
|
177
|
+
def positive_infinite?
|
178
|
+
@special == :inf && @sign == +1
|
179
|
+
end
|
180
|
+
|
181
|
+
def negative_infinite?
|
182
|
+
@special == :inf && @sign == -1
|
183
|
+
end
|
184
|
+
|
185
|
+
def zero?
|
186
|
+
!special? && @digits.zero?
|
187
|
+
end
|
188
|
+
|
189
|
+
# unlike the repeat attribute, this is nevel nil
|
190
|
+
def repeating_position
|
191
|
+
@repeat || @digits.size
|
192
|
+
end
|
193
|
+
|
194
|
+
def repeating?
|
195
|
+
!special? && @repeat && @repeat < @digits.size
|
196
|
+
end
|
197
|
+
|
198
|
+
def nonrepeating?
|
199
|
+
!special && !repeating?
|
200
|
+
end
|
201
|
+
|
202
|
+
def scale=(s)
|
203
|
+
@point = s + @digits.size
|
204
|
+
end
|
205
|
+
|
206
|
+
def digit_value_at(i)
|
207
|
+
if i < 0
|
208
|
+
0
|
209
|
+
elsif i < @digits.size
|
210
|
+
@digits[i]
|
211
|
+
elsif @repeat.nil? || @repeat >= @digits.size
|
212
|
+
0
|
213
|
+
else
|
214
|
+
repeated_length = @digits.size - @repeat
|
215
|
+
i = (i - @repeat) % repeated_length
|
216
|
+
@digits[i + @repeat]
|
217
|
+
end
|
218
|
+
end
|
219
|
+
|
220
|
+
def self.approximate_normalization
|
221
|
+
{ remove_extra_reps: false, remove_trailing_zeros: false, remove_leading_zeros: true, force_repeat: false }
|
222
|
+
end
|
223
|
+
|
224
|
+
def self.exact_normalization
|
225
|
+
{ remove_extra_reps: true, remove_trailing_zeros: true, remove_leading_zeros: true, force_repeat: true }
|
226
|
+
end
|
227
|
+
|
228
|
+
def normalize!(options = {})
|
229
|
+
if @special
|
230
|
+
if @special == :nan
|
231
|
+
@sign = nil
|
232
|
+
end
|
233
|
+
@point = @repeat = nil
|
234
|
+
else
|
235
|
+
|
236
|
+
defaults = { remove_extra_reps: true, remove_trailing_zeros: true }
|
237
|
+
options = defaults.merge(options)
|
238
|
+
remove_trailing_zeros = options[:remove_trailing_zeros]
|
239
|
+
remove_extra_reps = options[:remove_extra_reps]
|
240
|
+
remove_leading_zeros = options[:remove_extra_reps]
|
241
|
+
force_repeat = options[:force_repeat]
|
242
|
+
|
243
|
+
# Remove unneeded repetitions
|
244
|
+
if @repeat && remove_extra_reps
|
245
|
+
rep_length = @digits.size - @repeat
|
246
|
+
if rep_length > 0 && @digits.size >= 2*rep_length
|
247
|
+
while @repeat > rep_length && @digits[@repeat, rep_length] == @digits[@repeat-rep_length, rep_length]
|
248
|
+
@repeat -= rep_length
|
249
|
+
@digits.replace @digits[0...-rep_length]
|
250
|
+
end
|
251
|
+
end
|
252
|
+
end
|
253
|
+
|
254
|
+
# Replace 'nines' repetition 0.999... -> 1
|
255
|
+
if @repeat && @repeat == @digits.size-1 && @digits[@repeat] == (@radix-1)
|
256
|
+
@digits.pop
|
257
|
+
@repeat = nil
|
258
|
+
|
259
|
+
i = @digits.size - 1
|
260
|
+
carry = 1
|
261
|
+
while carry > 0 && i >= 0
|
262
|
+
@digits[i] += carry
|
263
|
+
carry = 0
|
264
|
+
if @digits[i] > @radix
|
265
|
+
carry = 1
|
266
|
+
@digits[i] = 0
|
267
|
+
@digits.pop if i == @digits.size
|
268
|
+
end
|
269
|
+
i -= 1
|
270
|
+
end
|
271
|
+
if carry > 0
|
272
|
+
digits.unshift carry
|
273
|
+
@point += 1
|
274
|
+
end
|
275
|
+
end
|
276
|
+
|
277
|
+
# Remove zeros repetitions
|
278
|
+
if remove_trailing_zeros
|
279
|
+
if @repeat && @repeat >= @digits.size
|
280
|
+
@repeat = @digits.size
|
281
|
+
end
|
282
|
+
if @repeat && @repeat >= 0
|
283
|
+
unless @digits[@repeat..-1].any? { |x| x != 0 }
|
284
|
+
@digits.replace @digits[0...@repeat]
|
285
|
+
@repeat = nil
|
286
|
+
end
|
287
|
+
end
|
288
|
+
end
|
289
|
+
|
290
|
+
if force_repeat
|
291
|
+
@repeat ||= @digits.size
|
292
|
+
else
|
293
|
+
@repeat = nil if @repeat && @repeat >= @digits.size
|
294
|
+
end
|
295
|
+
|
296
|
+
# Remove leading zeros
|
297
|
+
if remove_leading_zeros
|
298
|
+
# if all digits are zero, we consider all to be trailing zeros
|
299
|
+
unless !remove_trailing_zeros && @digits.zero?
|
300
|
+
while @digits.first == 0
|
301
|
+
@digits.shift
|
302
|
+
@repeat -= 1 if @repeat
|
303
|
+
@point -= 1
|
304
|
+
end
|
305
|
+
end
|
306
|
+
end
|
307
|
+
|
308
|
+
# Remove trailing zeros
|
309
|
+
if remove_trailing_zeros && !repeating?
|
310
|
+
while @digits.last == 0
|
311
|
+
@digits.pop
|
312
|
+
@repeat -= 1 if @repeat
|
313
|
+
end
|
314
|
+
end
|
315
|
+
end
|
316
|
+
|
317
|
+
self
|
318
|
+
end
|
319
|
+
|
320
|
+
# Deep copy
|
321
|
+
def dup
|
322
|
+
duped = super
|
323
|
+
duped.digits = duped.digits.dup
|
324
|
+
duped
|
325
|
+
end
|
326
|
+
|
327
|
+
def negate!
|
328
|
+
@sign = -@sign
|
329
|
+
self
|
330
|
+
end
|
331
|
+
|
332
|
+
def negated
|
333
|
+
dup.negate!
|
334
|
+
end
|
335
|
+
|
336
|
+
def -@
|
337
|
+
negated
|
338
|
+
end
|
339
|
+
|
340
|
+
def normalized(options={})
|
341
|
+
dup.normalize! options
|
342
|
+
end
|
343
|
+
|
344
|
+
def self.zero(options={})
|
345
|
+
integer 0, options
|
346
|
+
end
|
347
|
+
|
348
|
+
def self.positive_infinity
|
349
|
+
Numeral[:inf, sign: +1]
|
350
|
+
end
|
351
|
+
|
352
|
+
def self.negative_infinity
|
353
|
+
Numeral[:inf, sign: -1]
|
354
|
+
end
|
355
|
+
|
356
|
+
def self.infinity(sign=+1)
|
357
|
+
Numeral[:inf, sign: sign]
|
358
|
+
end
|
359
|
+
|
360
|
+
def self.nan
|
361
|
+
Numeral[:nan]
|
362
|
+
end
|
363
|
+
|
364
|
+
def self.indeterminate
|
365
|
+
nan
|
366
|
+
end
|
367
|
+
|
368
|
+
def self.integer(x, options={})
|
369
|
+
base = options[:base] || options[:radix] || 10
|
370
|
+
if x == 0
|
371
|
+
# we also could conventionally keep 0 either as Digits[[], ...]
|
372
|
+
digits = Digits[0, base: base]
|
373
|
+
sign = +1
|
374
|
+
else
|
375
|
+
if x < 0
|
376
|
+
sign = -1
|
377
|
+
x = -x
|
378
|
+
else
|
379
|
+
sign = +1
|
380
|
+
end
|
381
|
+
digits = Digits[value: x, base: base]
|
382
|
+
end
|
383
|
+
Numeral[digits, sign: sign]
|
384
|
+
end
|
385
|
+
|
386
|
+
# Create a Numeral from a quotient (Rational number)
|
387
|
+
# The quotient can be passed as an Array, so that fractions with a zero denominator
|
388
|
+
# can be handled (represented indefinite or infinite numbers).
|
389
|
+
def self.from_quotient(*args)
|
390
|
+
r = args.shift
|
391
|
+
if Integer === args.first
|
392
|
+
r = [r, args.shift]
|
393
|
+
end
|
394
|
+
options = args.shift || {}
|
395
|
+
raise "Invalid number of arguments" unless args.empty?
|
396
|
+
max_d = options.delete(:maximum_number_of_digits) || Numeral.maximum_number_of_digits
|
397
|
+
if Rational === r
|
398
|
+
x, y = r.numerator, r.denominator
|
399
|
+
else
|
400
|
+
x, y = r
|
401
|
+
end
|
402
|
+
return integer(x, options) if (x == 0 && y != 0) || y == 1
|
403
|
+
|
404
|
+
radix = options[:base] || options[:radix] || 10
|
405
|
+
|
406
|
+
xy_sign = x == 0 ? 0 : x < 0 ? -1 : +1
|
407
|
+
xy_sign = -xy_sign if y < 0
|
408
|
+
x = x.abs
|
409
|
+
y = y.abs
|
410
|
+
|
411
|
+
digits = Digits[base: radix]
|
412
|
+
repeat = nil
|
413
|
+
special = nil
|
414
|
+
|
415
|
+
if y == 0
|
416
|
+
if x == 0
|
417
|
+
special = :nan
|
418
|
+
else
|
419
|
+
special = :inf
|
420
|
+
end
|
421
|
+
end
|
422
|
+
|
423
|
+
return Numeral[special, sign: xy_sign] if special
|
424
|
+
|
425
|
+
point = 1
|
426
|
+
k = {}
|
427
|
+
i = 0
|
428
|
+
|
429
|
+
while (z = y*radix) < x
|
430
|
+
y = z
|
431
|
+
point += 1
|
432
|
+
end
|
433
|
+
|
434
|
+
while x > 0 && (max_d <= 0 || i < max_d)
|
435
|
+
break if repeat = k[x]
|
436
|
+
k[x] = i
|
437
|
+
d, x = x.divmod(y)
|
438
|
+
x *= radix
|
439
|
+
digits.push d
|
440
|
+
i += 1
|
441
|
+
end
|
442
|
+
|
443
|
+
while digits.size > 1 && digits.first == 0
|
444
|
+
digits.shift
|
445
|
+
repeat -= 1 if repeat
|
446
|
+
point -= 1
|
447
|
+
end
|
448
|
+
|
449
|
+
Numeral[digits, sign: xy_sign, repeat: repeat, point: point]
|
450
|
+
end
|
451
|
+
|
452
|
+
# Return a quotient (Rational) that represents the exact value of the numeral.
|
453
|
+
# The quotient is returned as an Array, so that fractions with a zero denominator
|
454
|
+
# can be handled (represented indefinite or infinite numbers).
|
455
|
+
def to_quotient
|
456
|
+
if @special
|
457
|
+
y = 0
|
458
|
+
case @special
|
459
|
+
when :nan
|
460
|
+
x = 0
|
461
|
+
when :inf
|
462
|
+
x = @sign
|
463
|
+
end
|
464
|
+
return [x, y]
|
465
|
+
end
|
466
|
+
|
467
|
+
n = @digits.size
|
468
|
+
a = 0
|
469
|
+
b = a
|
470
|
+
|
471
|
+
repeat = @repeat
|
472
|
+
repeat = nil if repeat && repeat >= n
|
473
|
+
|
474
|
+
for i in 0...n
|
475
|
+
a *= @radix
|
476
|
+
a += @digits[i]
|
477
|
+
if repeat && i < repeat
|
478
|
+
b *= @radix
|
479
|
+
b += @digits[i]
|
480
|
+
end
|
481
|
+
end
|
482
|
+
|
483
|
+
x = a
|
484
|
+
x -= b if repeat
|
485
|
+
|
486
|
+
y = @radix**(n - @point)
|
487
|
+
y -= @radix**(repeat - @point) if repeat
|
488
|
+
|
489
|
+
d = Numerals.gcd(x, y)
|
490
|
+
x /= d
|
491
|
+
y /= d
|
492
|
+
|
493
|
+
x = -x if @sign < 0
|
494
|
+
|
495
|
+
[x.to_i, y.to_i]
|
496
|
+
end
|
497
|
+
|
498
|
+
def self.from_coefficient_scale(coefficient, scale, options={})
|
499
|
+
radix = options[:base] || options[:radix] || 10
|
500
|
+
if coefficient < 0
|
501
|
+
sign = -1
|
502
|
+
coefficient = -coefficient
|
503
|
+
else
|
504
|
+
sign = +1
|
505
|
+
end
|
506
|
+
digits = Digits[radix]
|
507
|
+
digits.value = coefficient
|
508
|
+
point = scale + digits.size
|
509
|
+
normalization = options[:normalize] || :exact
|
510
|
+
normalization = :approximate if options[:approximate]
|
511
|
+
Numeral[digits, base: radix, point: point, sign: sign, normalize: normalization]
|
512
|
+
end
|
513
|
+
|
514
|
+
def split
|
515
|
+
if @special || (@repeat && @repeat < @digits.size)
|
516
|
+
raise NumeralError, "Numeral cannot be represented as sign, coefficient, scale"
|
517
|
+
end
|
518
|
+
[@sign, @digits.value, scale]
|
519
|
+
end
|
520
|
+
|
521
|
+
def to_value_scale
|
522
|
+
if @special || (@repeat && @repeat < @digits.size)
|
523
|
+
raise NumeralError, "Numeral cannot be represented as value, scale"
|
524
|
+
end
|
525
|
+
[@digits.value*@sign, scale]
|
526
|
+
end
|
527
|
+
|
528
|
+
# Convert a Numeral to a different base
|
529
|
+
def to_base(other_base)
|
530
|
+
if other_base == @radix
|
531
|
+
dup
|
532
|
+
else
|
533
|
+
normalization = exact? ? :exact : :approximate
|
534
|
+
Numeral.from_quotient to_quotient, base: other_base, normalize: normalization
|
535
|
+
end
|
536
|
+
end
|
537
|
+
|
538
|
+
def parameters
|
539
|
+
if special?
|
540
|
+
params = { special: @special }
|
541
|
+
params.merge! sign: @sign if @special == :inf
|
542
|
+
else
|
543
|
+
params = {
|
544
|
+
digits: @digits,
|
545
|
+
sign: @sign,
|
546
|
+
point: @point
|
547
|
+
}
|
548
|
+
params.merge! repeat: @repeat if @repeat
|
549
|
+
if approximate?
|
550
|
+
params.merge! normalize: :approximate
|
551
|
+
end
|
552
|
+
end
|
553
|
+
params
|
554
|
+
end
|
555
|
+
|
556
|
+
def to_s
|
557
|
+
case @special
|
558
|
+
when :nan
|
559
|
+
'Numeral[:nan]'
|
560
|
+
when :inf
|
561
|
+
if @sign < 0
|
562
|
+
'Numeral[:inf, sign: -1]'
|
563
|
+
else
|
564
|
+
'Numeral[:inf]'
|
565
|
+
end
|
566
|
+
else
|
567
|
+
if @digits.size > 0
|
568
|
+
args = @digits.digits_array.to_s.unwrap('[]')
|
569
|
+
args << ', '
|
570
|
+
end
|
571
|
+
params = parameters
|
572
|
+
params.delete :digits
|
573
|
+
params.merge! base: @radix
|
574
|
+
args << params.to_s.unwrap('{}')
|
575
|
+
"Numeral[#{args}]"
|
576
|
+
end
|
577
|
+
end
|
578
|
+
|
579
|
+
def inspect
|
580
|
+
to_s
|
581
|
+
end
|
582
|
+
|
583
|
+
# An exact Numeral represents exactly a rational number.
|
584
|
+
# It always has a repeat position, althugh the repeated digits
|
585
|
+
# may all be zero.
|
586
|
+
def exact?
|
587
|
+
!!@repeat
|
588
|
+
end
|
589
|
+
|
590
|
+
# An approximate Numeral has limited precision (number of significant digits).
|
591
|
+
# In an approximate Numeral, trailing zeros are significant.
|
592
|
+
def approximate?
|
593
|
+
!exact?
|
594
|
+
end
|
595
|
+
|
596
|
+
# Make sure the numeral has at least the given number of digits;
|
597
|
+
# This may denormalize the number.
|
598
|
+
def expand!(minimum_number_of_digits)
|
599
|
+
if @repeat
|
600
|
+
while @digits.size < minimum_number_of_digits
|
601
|
+
@digits.push @digits[@repeat] || 0
|
602
|
+
@repeat += 1
|
603
|
+
end
|
604
|
+
else
|
605
|
+
@digits.push 0 while @digits.size < minimum_number_of_digits
|
606
|
+
end
|
607
|
+
self
|
608
|
+
end
|
609
|
+
|
610
|
+
def expand(minimum_number_of_digits)
|
611
|
+
dup.expand! minimum_number_of_digits
|
612
|
+
end
|
613
|
+
|
614
|
+
# Expand to the specified number of digits,
|
615
|
+
# then truncate and remove repetitions.
|
616
|
+
def approximate!(number_of_digits)
|
617
|
+
expand! number_of_digits
|
618
|
+
@digits.truncate! number_of_digits
|
619
|
+
@repeat = nil
|
620
|
+
self
|
621
|
+
end
|
622
|
+
|
623
|
+
def approximate(number_of_digits)
|
624
|
+
dup.approximate! number_of_digits
|
625
|
+
end
|
626
|
+
|
627
|
+
def exact!
|
628
|
+
normalize! Numeral.exact_normalization
|
629
|
+
end
|
630
|
+
|
631
|
+
def exact
|
632
|
+
dup.exact!
|
633
|
+
end
|
634
|
+
|
635
|
+
private
|
636
|
+
|
637
|
+
def test_equal(other)
|
638
|
+
return false if other.nil? || !other.is_a?(Numeral)
|
639
|
+
if self.special? || other.special?
|
640
|
+
self.special == other.special && self.sign == other.sign
|
641
|
+
else
|
642
|
+
this = self.normalized
|
643
|
+
that = other.normalized
|
644
|
+
this.sign == that.sign && this.point == that.point && this.repeat == that.repeat && this.digits == that.digits
|
645
|
+
end
|
646
|
+
end
|
647
|
+
|
648
|
+
end
|
649
|
+
|
650
|
+
end
|