numerals 0.0.0 → 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +149 -5
  3. data/lib/numerals/conversions/bigdecimal.rb +209 -9
  4. data/lib/numerals/conversions/context_conversion.rb +40 -0
  5. data/lib/numerals/conversions/float.rb +106 -71
  6. data/lib/numerals/conversions/flt.rb +115 -44
  7. data/lib/numerals/conversions/integer.rb +32 -3
  8. data/lib/numerals/conversions/rational.rb +27 -3
  9. data/lib/numerals/conversions.rb +74 -33
  10. data/lib/numerals/digits.rb +8 -5
  11. data/lib/numerals/format/base_scaler.rb +160 -0
  12. data/lib/numerals/format/exp_setter.rb +218 -0
  13. data/lib/numerals/format/format.rb +257 -0
  14. data/lib/numerals/format/input.rb +140 -0
  15. data/lib/numerals/format/mode.rb +157 -0
  16. data/lib/numerals/format/notation.rb +51 -0
  17. data/lib/numerals/format/notations/html.rb +53 -0
  18. data/lib/numerals/format/notations/latex.rb +48 -0
  19. data/lib/numerals/format/notations/text.rb +141 -0
  20. data/lib/numerals/format/output.rb +167 -0
  21. data/lib/numerals/format/symbols.rb +565 -0
  22. data/lib/numerals/format/text_parts.rb +35 -0
  23. data/lib/numerals/format.rb +25 -0
  24. data/lib/numerals/formatting_aspect.rb +36 -0
  25. data/lib/numerals/numeral.rb +34 -21
  26. data/lib/numerals/repeat_detector.rb +99 -0
  27. data/lib/numerals/rounding.rb +340 -181
  28. data/lib/numerals/version.rb +1 -1
  29. data/lib/numerals.rb +4 -2
  30. data/numerals.gemspec +1 -1
  31. data/test/test_base_scaler.rb +189 -0
  32. data/test/test_big_conversions.rb +105 -0
  33. data/test/test_digits_definition.rb +23 -28
  34. data/test/test_exp_setter.rb +732 -0
  35. data/test/test_float_conversions.rb +48 -30
  36. data/test/test_flt_conversions.rb +476 -80
  37. data/test/test_format.rb +124 -0
  38. data/test/test_format_input.rb +226 -0
  39. data/test/test_format_mode.rb +124 -0
  40. data/test/test_format_output.rb +789 -0
  41. data/test/test_integer_conversions.rb +22 -22
  42. data/test/test_numeral.rb +35 -0
  43. data/test/test_rational_conversions.rb +28 -28
  44. data/test/test_repeat_detector.rb +72 -0
  45. data/test/test_rounding.rb +158 -0
  46. data/test/test_symbols.rb +32 -0
  47. metadata +38 -5
  48. data/lib/numerals/formatting/digits_definition.rb +0 -75
@@ -22,15 +22,15 @@ module Numerals
22
22
  #
23
23
  # A Numeral is equivalent to a Rational number; a quotient of integers
24
24
  # can be converted to a Numeral in any base and back to a quotient without
25
- # altering its value (though the fraction might be simplified).
25
+ # altering its value (although the fraction might be simplified).
26
26
  #
27
27
  # By default a Numeral represents an exact quantity (rational number).
28
- # A numeral can alo represent an approximate value given with a certain
29
- # precision, the number of significant digits (numeral.digits.size)
28
+ # A numeral can also represent an approximate value with a specific
29
+ # precision: the number of significant digits (numeral.digits.size),
30
30
  # which can include significant trailing zeros. Approximate numerals
31
31
  # are never repeating.
32
32
  #
33
- # Exact numerals are always repeating, but when the repeating digits are
33
+ # Exact numerals are always repeating, but, when the repeating digits are
34
34
  # just zeros, the repeating? method returns false.
35
35
  #
36
36
  class Numeral
@@ -44,24 +44,25 @@ module Numerals
44
44
  def self.maximum_number_of_digits=(n)
45
45
  @maximum_number_of_digits = [n, 2048].max
46
46
  end
47
+
47
48
  # Return the maximum number of digits that Numeral objects
48
49
  # can handle.
49
50
  def self.maximum_number_of_digits
50
51
  @maximum_number_of_digits
51
52
  end
52
53
 
53
- # Special nomerals may be contructed with the symbols :nan, :infinity,
54
- # :negative_infinity, :positive_infinity. Or also with :infinity and the
55
- # :sign option which should be either +1 or -1:
54
+ # Special numerals may be constructed with the symbols :nan, :infinity,
55
+ # :negative_infinity, :positive_infinity (or with :infinity and the
56
+ # :sign option which should be either +1 or -1)
56
57
  #
57
58
  # Examples:
58
59
  #
59
60
  # Numeral[:nan]
60
61
  # Numeral[:infinity, sign: -1]
61
62
  #
62
- # For nonspecial numerals, the first argument may be a Digits object or
63
- # an Array of digits, and the rest parameters (:base, :sign, :point and
64
- # :repeat) are passed as options.
63
+ # For non-special numerals, the first argument may be a Digits object or
64
+ # an Array of digits, and the remaining parameters (:base, :sign, :point
65
+ # and :repeat) are passed as options.
65
66
  #
66
67
  # Examples:
67
68
  #
@@ -69,10 +70,10 @@ module Numerals
69
70
  # Numeral[1,2,3,4, point: 1, repeat: 2] # 1.234343434...
70
71
  #
71
72
  # The :normalize option can be used to specify the kind of normalization
72
- # applied to the numeral:
73
+ # to be applied to the numeral:
73
74
  #
74
- # * :exact, the default produces a normalized :exact number,
75
- # where no trailing zeros are kept and there are always a repeat point
75
+ # * :exact, the default, produces a normalized :exact number
76
+ # where no trailing zeros are kept and there is always a repeat point
76
77
  # (which may just repeat trailing zeros)
77
78
  # * :approximate produces a non-repeating numeral with a fixed number of
78
79
  # digits (where trailing zeros are significant)
@@ -213,7 +214,8 @@ module Numerals
213
214
  else
214
215
  repeated_length = @digits.size - @repeat
215
216
  i = (i - @repeat) % repeated_length
216
- @digits[i + @repeat]
217
+ i += @repeat
218
+ i < 0 ? 0 : @digits[i]
217
219
  end
218
220
  end
219
221
 
@@ -249,6 +251,16 @@ module Numerals
249
251
  @digits.replace @digits[0...-rep_length]
250
252
  end
251
253
  end
254
+ # remove unneeded partial repetitions
255
+ if rep_length > 0 && @digits.size > rep_length
256
+ removed = 0
257
+ while @repeat > 0 && @digits[@repeat-1] == @digits[@repeat-1+rep_length]
258
+ @repeat -= 1
259
+ removed += 1
260
+ end
261
+ @digits.replace @digits[0...-removed] if removed > 0
262
+ end
263
+
252
264
  end
253
265
 
254
266
  # Replace 'nines' repetition 0.999... -> 1
@@ -313,7 +325,6 @@ module Numerals
313
325
  end
314
326
  end
315
327
  end
316
-
317
328
  self
318
329
  end
319
330
 
@@ -383,9 +394,10 @@ module Numerals
383
394
  Numeral[digits, sign: sign]
384
395
  end
385
396
 
386
- # Create a Numeral from a quotient (Rational number)
387
- # The quotient can be passed as an Array, so that fractions with a zero denominator
388
- # can be handled (represented indefinite or infinite numbers).
397
+ # Create a Numeral from a quotient (Rational number).
398
+ # The quotient can be passed as an Array [numerator, denomnator];
399
+ # to allow fractions with a zero denominator
400
+ # (representing indefinite or infinite numbers).
389
401
  def self.from_quotient(*args)
390
402
  r = args.shift
391
403
  if Integer === args.first
@@ -451,7 +463,7 @@ module Numerals
451
463
 
452
464
  # Return a quotient (Rational) that represents the exact value of the numeral.
453
465
  # The quotient is returned as an Array, so that fractions with a zero denominator
454
- # can be handled (represented indefinite or infinite numbers).
466
+ # can be handled (representing indefinite or infinite numbers).
455
467
  def to_quotient
456
468
  if @special
457
469
  y = 0
@@ -503,7 +515,7 @@ module Numerals
503
515
  else
504
516
  sign = +1
505
517
  end
506
- digits = Digits[radix]
518
+ digits = Digits[base: radix]
507
519
  digits.value = coefficient
508
520
  point = scale + digits.size
509
521
  normalization = options[:normalize] || :exact
@@ -564,6 +576,7 @@ module Numerals
564
576
  'Numeral[:inf]'
565
577
  end
566
578
  else
579
+ args = ''
567
580
  if @digits.size > 0
568
581
  args = @digits.digits_array.to_s.unwrap('[]')
569
582
  args << ', '
@@ -581,7 +594,7 @@ module Numerals
581
594
  end
582
595
 
583
596
  # An exact Numeral represents exactly a rational number.
584
- # It always has a repeat position, althugh the repeated digits
597
+ # It always has a repeat position, although the repeated digits
585
598
  # may all be zero.
586
599
  def exact?
587
600
  !!@repeat
@@ -0,0 +1,99 @@
1
+ module RepeatDetector
2
+
3
+ # detec digitss repetitions
4
+ def self.detect(digits, min_repetitions=1)
5
+ n = min_repetitions + 1
6
+ for l in 1..(digits.size/n)
7
+ l = digits.size/n + 1 - l
8
+ # l loops from digits.size/n to 1
9
+ # l is the length of the trailing repetition to be check
10
+ # the longest possible repetition to occur at least n times
11
+ # is 1/n of the digits,
12
+ # and the shortest is 1 digit long.
13
+ # Longest repetitions are found first.
14
+
15
+ # check the last l digits for n repetitions
16
+ repeating = true
17
+ (2..n).each do |i|
18
+ if digits[-l..-1] != digits[-i*l...-(i-1)*l]
19
+ repeating = false
20
+ break
21
+ end
22
+ end
23
+
24
+ if repeating
25
+ # found n-1 repetitions of length l;
26
+ # remove them:
27
+ digits = digits[0...-(n-1)*l]
28
+ # keap index of repetition beginning
29
+ repeat = digits.size - l
30
+
31
+ # now iterate over the divisors of l
32
+ # to find sub-repetitions
33
+ for m in 1..l
34
+ if l.modulo(m) == 0
35
+ # m is a divisor of l
36
+ # check if the l-digit repeating sequence
37
+ # is composed of m-digit sub-repetitions
38
+ reduce_l = true
39
+ for i in 2..l/m
40
+ if digits[-m..-1] != digits[-i*m...-i*m+m]
41
+ reduce_l = false
42
+ break
43
+ end
44
+ end
45
+ if reduce_l
46
+ # found an m-digit sub-repetition
47
+ l = m
48
+ repeat = digits.size - l
49
+ break
50
+ end
51
+ end
52
+ end
53
+
54
+ # now remove innecesary repetitions
55
+ while digits.size >= 2*l && digits[-l..-1] == digits[-2*l...-l]
56
+ repeat -= l
57
+ digits = digits[0...-l]
58
+ end
59
+
60
+ break
61
+ end
62
+ end
63
+
64
+ if repeat
65
+ # remove zero repetition
66
+ if digits.size == repeat+1 && digits[repeat]==0
67
+ repeat = nil
68
+ digits.pop
69
+ end
70
+ end
71
+ # and remove trailing zeros that may be exposed
72
+ # TODO: review: this may not be needed
73
+ digits.pop while digits[-1]==0 && !digits.empty?
74
+
75
+ [digits, repeat]
76
+ end
77
+
78
+ # Compute the miniumum number of times the repeated part must
79
+ # apper in a digit sequence so that it is correctly detected
80
+ # with detect_min_rep repeatitions
81
+ def self.min_repeat_count(digits, repeat, detect_min_rep=1)
82
+ if repeat
83
+ n = detect_min_rep
84
+ loop do
85
+ n += 1
86
+ detected_digits, detected_repeat = detect(
87
+ digits + digits[repeat..-1]*(n-1), detect_min_rep
88
+ )
89
+ if repeat == detected_repeat # && detected_digits == digits
90
+ break
91
+ end
92
+ end
93
+ n
94
+ else
95
+ 0
96
+ end
97
+ end
98
+
99
+ end