num4tststatistic2 0.0.1 → 0.0.2

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 985be5e18949d9700b7a090374a2b2f85ec1caa6551f9659e11156e8d3a02f21
4
- data.tar.gz: 860c8e0145f0c045ef2fab8fe7bc84cbf3365ad026e6ccebcee3f092d9996048
3
+ metadata.gz: 1cde00758d2f1f56ba425ce885da276d76272564848fd176dc78ab7e271ffdc5
4
+ data.tar.gz: c0631d73f042ab0bc7be1be74f408cc298cf0237a6ad56c7b9342edfbf8ef807
5
5
  SHA512:
6
- metadata.gz: 3b39c6635a935546f966682151337005a240d53b8869190022b13a550cbfd5f06b04ba3d4202438a406258ba6d44f169fe9a0c336416cd2bf8e409bd7023f903
7
- data.tar.gz: 4cb404897944e4aa2ed7a608b292316ce4f2ce38c0771116890f4e025908fddfb4908885f59c3368ca30201138fd6a846fe8afc2c0130f5285589d8da6d18e04
6
+ metadata.gz: 80815f8945e899f8699bb3d06a27abc41c8b00967ab9f2b6b0badb2540c19a13f123f8a376c05358f277cc10c6947e6c4b028a5738d91b3f38002f6f614fd410
7
+ data.tar.gz: bd512533a00f76c4e6ed738c25bfb6cc61af2c634d5b28dac6236844e03e15088e5a846acead538b4dd8e1e4e38d99b258b5bc945fe68912f96999a519842374
data/CHANGELOG.md CHANGED
@@ -2,7 +2,13 @@
2
2
 
3
3
  ## Unreleased
4
4
 
5
- ## [0.0.1] - 2023-11-11
5
+ ## [0.0.2] - 2024-04-22
6
+
7
+ ### add
8
+ - add version in Gemfile.
9
+ - add raise function.
10
+
11
+ ## [0.0.1] - 2024-04-20
6
12
 
7
13
  ### Fixed
8
14
  - fix first fixed.
data/Gemfile CHANGED
@@ -1,7 +1,8 @@
1
1
  source "https://rubygems.org"
2
2
 
3
3
  platforms :jruby do
4
- gem "num4tststatistic"
5
- gem "num4hypothtst"
4
+ gem "rake-compiler", ">= 1.2.5"
5
+ gem "num4tststatistic", ">= 0.2.2"
6
+ gem "num4hypothtst" , ">= 0.1.1"
6
7
  end
7
8
 
@@ -16,12 +16,14 @@ module Num4TstStatistic2Lib
16
16
  # @param [double] a 有意水準
17
17
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
18
18
  # @example
19
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
20
19
  # xi = [15.5, 15.7, 15.4, 15.4, 15.6, 15.4, 15.6, 15.5, 15.4]
21
- # paraTest = Num4TstStatisticLib::ParametrixTestLib.new(hypothTest)
20
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
21
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
22
22
  # paraTest.populationMean(xi, 15.4, 0.05)
23
23
  # => true
24
24
  def populationMean(xi, m0, a)
25
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
26
+
25
27
  df = xi.size - 1
26
28
  statistic = @paraTest.populationMean(xi, m0)
27
29
  return @hypothTest3.tDistTest(statistic, df, a)
@@ -41,11 +43,13 @@ module Num4TstStatistic2Lib
41
43
  # paraTest.populationVar(xi, sd*sd, 0.05)
42
44
  # => true
43
45
  def populationVar(xi, sig0, a)
46
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
47
+
44
48
  df = xi.size - 1
45
49
  statistic = @paraTest.populationVar(xi, sig0)
46
50
  return @hypothTest3.chi2DistTest(statistic, df, a)
47
51
  end
48
- # 母比率の検定量
52
+ # 母比率の検定
49
53
  #
50
54
  # @overload populationRatio(m, n, p0, a)
51
55
  # @param [int] m m値
@@ -59,11 +63,12 @@ module Num4TstStatistic2Lib
59
63
  # paraTest.populationRatio(29, 346, 0.12, 0.05)
60
64
  # => true
61
65
  def populationRatio(m, n, p0, a)
66
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
67
+
62
68
  statistic = @paraTest.populationRatio(m, n, p0)
63
69
  return @hypothTest3.normDistTest(statistic, a)
64
70
  end
65
- # 2つの母平均の差の検定量
66
- # (等分散性を仮定)
71
+ # 2つの母平均の差の検定(等分散性を仮定)
67
72
  #
68
73
  # @overload diffPopulationMean2EquVar(xi1, xi2, a)
69
74
  # @param [Array] xi1 x1のデータ(double[])
@@ -78,14 +83,15 @@ module Num4TstStatistic2Lib
78
83
  # paraTest.diffPopulationMean2EquVar(xi1, xi2, 0.05)
79
84
  # => false
80
85
  def diffPopulationMean2EquVar(xi1, xi2, a)
86
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
87
+
81
88
  n1 = xi1.size
82
89
  n2 = xi2.size
83
90
  df = n1 + n2 - 2
84
91
  statistic = @paraTest.diffPopulationMean2EquVar(xi1, xi2)
85
92
  return @hypothTest3.tDistTest(statistic, df, a)
86
93
  end
87
- # 2つの母平均の差の検定量
88
- # (不等分散性を仮定)
94
+ # 2つの母平均の差の検定(不等分散性を仮定)
89
95
  #
90
96
  # @overload diffPopulationMean2UnEquVar(xi1, xi2, a)
91
97
  # @param [Array] xi1 x1のデータ(double[])
@@ -100,6 +106,8 @@ module Num4TstStatistic2Lib
100
106
  # paraTest.diffPopulationMean2UnEquVar(xi1, xi2, 0.05)
101
107
  # => false
102
108
  def diffPopulationMean2UnEquVar(xi1, xi2, a)
109
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
110
+
103
111
  df = @paraTest.df4welch(xi1, xi2)
104
112
  statistic = @paraTest.diffPopulationMean2UnEquVar(xi1, xi2)
105
113
  return @hypothTest3.tDistTest(statistic, df, a)
@@ -119,12 +127,14 @@ module Num4TstStatistic2Lib
119
127
  # paraTest.diffPopulationMean(xi1, xi2, 0.05)
120
128
  # => true
121
129
  def diffPopulationMean(xi1, xi2, a)
130
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
131
+
122
132
  n = xi1.size
123
133
  df = n - 1
124
134
  statistic = @paraTest.diffPopulationMean(xi1, xi2)
125
135
  return @hypothTest3.tDistTest(statistic, df, a)
126
136
  end
127
- # 2つの母分散の差の検定量
137
+ # 2つの母分散の差の検定
128
138
  #
129
139
  # @overload diffPopulationVar(xi1, xi2, a)
130
140
  # @param [Array] xi1 x1のデータ(double[])
@@ -139,12 +149,14 @@ module Num4TstStatistic2Lib
139
149
  # paraTest.diffPopulationVar(xi1, xi2, 0.05)
140
150
  # => false
141
151
  def diffPopulationVar(xi1, xi2, a)
152
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
153
+
142
154
  nf = xi1.size - 1
143
155
  df = xi2.size - 1
144
156
  statistic = @paraTest.diffPopulationVar(xi1, xi2)
145
157
  return @hypothTest3.fDistTest(statistic, nf, df, a)
146
158
  end
147
- # 2つの母比率の差の検定量
159
+ # 2つの母比率の差の検定
148
160
  #
149
161
  # @overload diffPopulationRatio(m1, n1, m2, n2, a)
150
162
  # @param [int] m1 m1値
@@ -159,10 +171,12 @@ module Num4TstStatistic2Lib
159
171
  # paraTest.diffPopulationRatio(469, 1200, 308, 900, 0.05)
160
172
  # => true
161
173
  def diffPopulationRatio(m1, n1, m2, n2, a)
174
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
175
+
162
176
  statistic = @paraTest.diffPopulationRatio(m1, n1, m2, n2)
163
177
  return @hypothTest3.normDistTest(statistic, a)
164
178
  end
165
- # 適合度の検定量
179
+ # 適合度の検定
166
180
  #
167
181
  # @overload fidelity(fi, pi, a)
168
182
  # @param [Array] fi 実測度数(double[])
@@ -177,11 +191,13 @@ module Num4TstStatistic2Lib
177
191
  # paraTest.fidelity(fi, pi, 0.05)
178
192
  # => false
179
193
  def fidelity(fi, pi, a)
194
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
195
+
180
196
  df = fi.size - 1
181
197
  statistic = @paraTest.fidelity(fi, pi)
182
198
  return @hypothTest3.chi2DistTest(statistic, df, a)
183
199
  end
184
- # 独立性の検定量
200
+ # 独立性の検定
185
201
  #
186
202
  # @overload independency(fij, a)
187
203
  # @param [Array] fij 実測度数(double[][])
@@ -197,6 +213,8 @@ module Num4TstStatistic2Lib
197
213
  # paraTest.independency(fij, 0.05)
198
214
  # => true
199
215
  def independency(fij, a)
216
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
217
+
200
218
  m = fij.size
201
219
  n = fij[0].size
202
220
  df = (m - 1) * (n - 1)
@@ -217,13 +235,15 @@ module Num4TstStatistic2Lib
217
235
  # @param [double] a 有意水準
218
236
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
219
237
  # @example
220
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
221
238
  # x = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
222
239
  # y = [180, 180, 235, 270, 240, 285, 164, 152]
240
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
223
241
  # nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
224
242
  # nonParaTest.utest(x, y, 0.05)
225
243
  # => true
226
244
  def utest(x, y, a)
245
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
246
+
227
247
  statistic = @nonParaTest.utest(x, y)
228
248
  return @hypothTest3.normDistTest(statistic, a)
229
249
  end
@@ -235,13 +255,15 @@ module Num4TstStatistic2Lib
235
255
  # @param [double] a 有意水準
236
256
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
237
257
  # @example
238
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
239
258
  # x = [37.1, 36.2, 36.6, 37.4, 36.8, 36.7, 36.9, 37.4, 36.6, 36.7]
240
259
  # y = [36.8, 36.6, 36.5, 37.0, 36.0, 36.5, 36.6, 37.1, 36.4, 36.7]
260
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
241
261
  # nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
242
262
  # nonParaTest.wilcoxon(x, y, 0.05)
243
263
  # => true
244
264
  def wilcoxon(x, y, a)
265
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
266
+
245
267
  statistic = @nonParaTest.wilcoxon(x, y)
246
268
  return @hypothTest3.normDistTest(statistic, a)
247
269
  end
@@ -253,13 +275,15 @@ module Num4TstStatistic2Lib
253
275
  # @param [double] a 有意水準
254
276
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
255
277
  # @example
256
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
257
278
  # xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
258
279
  # xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
259
- # nonParaTest = Num4TstStatisticLib::NonParametrixTestLib.new(hypothTest)
280
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
281
+ # nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
260
282
  # nonParaTest.ks2test(xi1, xi2, 0.05)
261
283
  # => false
262
284
  def ks2test(xi1, xi2, a)
285
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
286
+
263
287
  return @nonParaTest.ks2test(xi1, xi2, a)
264
288
  end
265
289
  end
@@ -268,7 +292,7 @@ module Num4TstStatistic2Lib
268
292
  @outlier = Num4TstStatisticLib::OutlierLib.new
269
293
  @hypothTest2 = Num4HypothTestLib::GrubbsTestLib.new
270
294
  end
271
- # グラプス・スミルノフの外れ値の検定量
295
+ # グラプス・スミルノフの外れ値の検定
272
296
  #
273
297
  # @overload grubbs(xi, xk, a)
274
298
  # @param [Array] xi xiのデータ(double[])
@@ -276,7 +300,7 @@ module Num4TstStatistic2Lib
276
300
  # @return [double] 検定統計量
277
301
  # @example
278
302
  # xi = [3.4, 3.5, 3.3, 2.2, 3.3, 3.4, 3.6, 3.2]
279
- # outlier = Num4TstStatisticLib::OutlierLib.new
303
+ # outlier = Num4TstStatistic2Lib::OutlierLib.new
280
304
  # outlier.grubbs(xi, 2.2, 0.05)
281
305
  # => true
282
306
  def grubbs(xi, xk, a)
@@ -292,7 +316,7 @@ module Num4TstStatistic2Lib
292
316
  # @return [void] errbar.jpegファイルを出力
293
317
  # @example
294
318
  # xi = [3.4, 3.5, 3.3, 2.2, 3.3, 3.4, 3.6, 3.2]
295
- # outlier = Num4TstStatisticLib::OutlierLib.new
319
+ # outlier = Num4TstStatistic2Lib::OutlierLib.new
296
320
  # outlier.grubbs("LDH", xi)
297
321
  # => errbar.jpeg
298
322
  def errbar(dname, xi)
@@ -307,7 +331,6 @@ module Num4TstStatistic2Lib
307
331
  @hypothTest = Num4HypothTestLib::DecorrTestLib.new
308
332
  end
309
333
  # ピアソン相関係数
310
- # (相関係数の検定)
311
334
  #
312
335
  # @overload pearsoCorrelation(x, y, a)
313
336
  # @param [Array] x xのデータ(double[])
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: num4tststatistic2
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.1
4
+ version: 0.0.2
5
5
  platform: ruby
6
6
  authors:
7
7
  - siranovel
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-04-20 00:00:00.000000000 Z
11
+ date: 2024-04-22 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: num4tststatistic