num4tststatistic2 0.0.1 → 0.0.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 985be5e18949d9700b7a090374a2b2f85ec1caa6551f9659e11156e8d3a02f21
4
- data.tar.gz: 860c8e0145f0c045ef2fab8fe7bc84cbf3365ad026e6ccebcee3f092d9996048
3
+ metadata.gz: 1cde00758d2f1f56ba425ce885da276d76272564848fd176dc78ab7e271ffdc5
4
+ data.tar.gz: c0631d73f042ab0bc7be1be74f408cc298cf0237a6ad56c7b9342edfbf8ef807
5
5
  SHA512:
6
- metadata.gz: 3b39c6635a935546f966682151337005a240d53b8869190022b13a550cbfd5f06b04ba3d4202438a406258ba6d44f169fe9a0c336416cd2bf8e409bd7023f903
7
- data.tar.gz: 4cb404897944e4aa2ed7a608b292316ce4f2ce38c0771116890f4e025908fddfb4908885f59c3368ca30201138fd6a846fe8afc2c0130f5285589d8da6d18e04
6
+ metadata.gz: 80815f8945e899f8699bb3d06a27abc41c8b00967ab9f2b6b0badb2540c19a13f123f8a376c05358f277cc10c6947e6c4b028a5738d91b3f38002f6f614fd410
7
+ data.tar.gz: bd512533a00f76c4e6ed738c25bfb6cc61af2c634d5b28dac6236844e03e15088e5a846acead538b4dd8e1e4e38d99b258b5bc945fe68912f96999a519842374
data/CHANGELOG.md CHANGED
@@ -2,7 +2,13 @@
2
2
 
3
3
  ## Unreleased
4
4
 
5
- ## [0.0.1] - 2023-11-11
5
+ ## [0.0.2] - 2024-04-22
6
+
7
+ ### add
8
+ - add version in Gemfile.
9
+ - add raise function.
10
+
11
+ ## [0.0.1] - 2024-04-20
6
12
 
7
13
  ### Fixed
8
14
  - fix first fixed.
data/Gemfile CHANGED
@@ -1,7 +1,8 @@
1
1
  source "https://rubygems.org"
2
2
 
3
3
  platforms :jruby do
4
- gem "num4tststatistic"
5
- gem "num4hypothtst"
4
+ gem "rake-compiler", ">= 1.2.5"
5
+ gem "num4tststatistic", ">= 0.2.2"
6
+ gem "num4hypothtst" , ">= 0.1.1"
6
7
  end
7
8
 
@@ -16,12 +16,14 @@ module Num4TstStatistic2Lib
16
16
  # @param [double] a 有意水準
17
17
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
18
18
  # @example
19
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
20
19
  # xi = [15.5, 15.7, 15.4, 15.4, 15.6, 15.4, 15.6, 15.5, 15.4]
21
- # paraTest = Num4TstStatisticLib::ParametrixTestLib.new(hypothTest)
20
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
21
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
22
22
  # paraTest.populationMean(xi, 15.4, 0.05)
23
23
  # => true
24
24
  def populationMean(xi, m0, a)
25
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
26
+
25
27
  df = xi.size - 1
26
28
  statistic = @paraTest.populationMean(xi, m0)
27
29
  return @hypothTest3.tDistTest(statistic, df, a)
@@ -41,11 +43,13 @@ module Num4TstStatistic2Lib
41
43
  # paraTest.populationVar(xi, sd*sd, 0.05)
42
44
  # => true
43
45
  def populationVar(xi, sig0, a)
46
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
47
+
44
48
  df = xi.size - 1
45
49
  statistic = @paraTest.populationVar(xi, sig0)
46
50
  return @hypothTest3.chi2DistTest(statistic, df, a)
47
51
  end
48
- # 母比率の検定量
52
+ # 母比率の検定
49
53
  #
50
54
  # @overload populationRatio(m, n, p0, a)
51
55
  # @param [int] m m値
@@ -59,11 +63,12 @@ module Num4TstStatistic2Lib
59
63
  # paraTest.populationRatio(29, 346, 0.12, 0.05)
60
64
  # => true
61
65
  def populationRatio(m, n, p0, a)
66
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
67
+
62
68
  statistic = @paraTest.populationRatio(m, n, p0)
63
69
  return @hypothTest3.normDistTest(statistic, a)
64
70
  end
65
- # 2つの母平均の差の検定量
66
- # (等分散性を仮定)
71
+ # 2つの母平均の差の検定(等分散性を仮定)
67
72
  #
68
73
  # @overload diffPopulationMean2EquVar(xi1, xi2, a)
69
74
  # @param [Array] xi1 x1のデータ(double[])
@@ -78,14 +83,15 @@ module Num4TstStatistic2Lib
78
83
  # paraTest.diffPopulationMean2EquVar(xi1, xi2, 0.05)
79
84
  # => false
80
85
  def diffPopulationMean2EquVar(xi1, xi2, a)
86
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
87
+
81
88
  n1 = xi1.size
82
89
  n2 = xi2.size
83
90
  df = n1 + n2 - 2
84
91
  statistic = @paraTest.diffPopulationMean2EquVar(xi1, xi2)
85
92
  return @hypothTest3.tDistTest(statistic, df, a)
86
93
  end
87
- # 2つの母平均の差の検定量
88
- # (不等分散性を仮定)
94
+ # 2つの母平均の差の検定(不等分散性を仮定)
89
95
  #
90
96
  # @overload diffPopulationMean2UnEquVar(xi1, xi2, a)
91
97
  # @param [Array] xi1 x1のデータ(double[])
@@ -100,6 +106,8 @@ module Num4TstStatistic2Lib
100
106
  # paraTest.diffPopulationMean2UnEquVar(xi1, xi2, 0.05)
101
107
  # => false
102
108
  def diffPopulationMean2UnEquVar(xi1, xi2, a)
109
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
110
+
103
111
  df = @paraTest.df4welch(xi1, xi2)
104
112
  statistic = @paraTest.diffPopulationMean2UnEquVar(xi1, xi2)
105
113
  return @hypothTest3.tDistTest(statistic, df, a)
@@ -119,12 +127,14 @@ module Num4TstStatistic2Lib
119
127
  # paraTest.diffPopulationMean(xi1, xi2, 0.05)
120
128
  # => true
121
129
  def diffPopulationMean(xi1, xi2, a)
130
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
131
+
122
132
  n = xi1.size
123
133
  df = n - 1
124
134
  statistic = @paraTest.diffPopulationMean(xi1, xi2)
125
135
  return @hypothTest3.tDistTest(statistic, df, a)
126
136
  end
127
- # 2つの母分散の差の検定量
137
+ # 2つの母分散の差の検定
128
138
  #
129
139
  # @overload diffPopulationVar(xi1, xi2, a)
130
140
  # @param [Array] xi1 x1のデータ(double[])
@@ -139,12 +149,14 @@ module Num4TstStatistic2Lib
139
149
  # paraTest.diffPopulationVar(xi1, xi2, 0.05)
140
150
  # => false
141
151
  def diffPopulationVar(xi1, xi2, a)
152
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
153
+
142
154
  nf = xi1.size - 1
143
155
  df = xi2.size - 1
144
156
  statistic = @paraTest.diffPopulationVar(xi1, xi2)
145
157
  return @hypothTest3.fDistTest(statistic, nf, df, a)
146
158
  end
147
- # 2つの母比率の差の検定量
159
+ # 2つの母比率の差の検定
148
160
  #
149
161
  # @overload diffPopulationRatio(m1, n1, m2, n2, a)
150
162
  # @param [int] m1 m1値
@@ -159,10 +171,12 @@ module Num4TstStatistic2Lib
159
171
  # paraTest.diffPopulationRatio(469, 1200, 308, 900, 0.05)
160
172
  # => true
161
173
  def diffPopulationRatio(m1, n1, m2, n2, a)
174
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
175
+
162
176
  statistic = @paraTest.diffPopulationRatio(m1, n1, m2, n2)
163
177
  return @hypothTest3.normDistTest(statistic, a)
164
178
  end
165
- # 適合度の検定量
179
+ # 適合度の検定
166
180
  #
167
181
  # @overload fidelity(fi, pi, a)
168
182
  # @param [Array] fi 実測度数(double[])
@@ -177,11 +191,13 @@ module Num4TstStatistic2Lib
177
191
  # paraTest.fidelity(fi, pi, 0.05)
178
192
  # => false
179
193
  def fidelity(fi, pi, a)
194
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
195
+
180
196
  df = fi.size - 1
181
197
  statistic = @paraTest.fidelity(fi, pi)
182
198
  return @hypothTest3.chi2DistTest(statistic, df, a)
183
199
  end
184
- # 独立性の検定量
200
+ # 独立性の検定
185
201
  #
186
202
  # @overload independency(fij, a)
187
203
  # @param [Array] fij 実測度数(double[][])
@@ -197,6 +213,8 @@ module Num4TstStatistic2Lib
197
213
  # paraTest.independency(fij, 0.05)
198
214
  # => true
199
215
  def independency(fij, a)
216
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
217
+
200
218
  m = fij.size
201
219
  n = fij[0].size
202
220
  df = (m - 1) * (n - 1)
@@ -217,13 +235,15 @@ module Num4TstStatistic2Lib
217
235
  # @param [double] a 有意水準
218
236
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
219
237
  # @example
220
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
221
238
  # x = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
222
239
  # y = [180, 180, 235, 270, 240, 285, 164, 152]
240
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
223
241
  # nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
224
242
  # nonParaTest.utest(x, y, 0.05)
225
243
  # => true
226
244
  def utest(x, y, a)
245
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
246
+
227
247
  statistic = @nonParaTest.utest(x, y)
228
248
  return @hypothTest3.normDistTest(statistic, a)
229
249
  end
@@ -235,13 +255,15 @@ module Num4TstStatistic2Lib
235
255
  # @param [double] a 有意水準
236
256
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
237
257
  # @example
238
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
239
258
  # x = [37.1, 36.2, 36.6, 37.4, 36.8, 36.7, 36.9, 37.4, 36.6, 36.7]
240
259
  # y = [36.8, 36.6, 36.5, 37.0, 36.0, 36.5, 36.6, 37.1, 36.4, 36.7]
260
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
241
261
  # nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
242
262
  # nonParaTest.wilcoxon(x, y, 0.05)
243
263
  # => true
244
264
  def wilcoxon(x, y, a)
265
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
266
+
245
267
  statistic = @nonParaTest.wilcoxon(x, y)
246
268
  return @hypothTest3.normDistTest(statistic, a)
247
269
  end
@@ -253,13 +275,15 @@ module Num4TstStatistic2Lib
253
275
  # @param [double] a 有意水準
254
276
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
255
277
  # @example
256
- # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
257
278
  # xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
258
279
  # xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
259
- # nonParaTest = Num4TstStatisticLib::NonParametrixTestLib.new(hypothTest)
280
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
281
+ # nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
260
282
  # nonParaTest.ks2test(xi1, xi2, 0.05)
261
283
  # => false
262
284
  def ks2test(xi1, xi2, a)
285
+ raise TypeError unless @hypothTest3.kind_of?(HypothTest3IF)
286
+
263
287
  return @nonParaTest.ks2test(xi1, xi2, a)
264
288
  end
265
289
  end
@@ -268,7 +292,7 @@ module Num4TstStatistic2Lib
268
292
  @outlier = Num4TstStatisticLib::OutlierLib.new
269
293
  @hypothTest2 = Num4HypothTestLib::GrubbsTestLib.new
270
294
  end
271
- # グラプス・スミルノフの外れ値の検定量
295
+ # グラプス・スミルノフの外れ値の検定
272
296
  #
273
297
  # @overload grubbs(xi, xk, a)
274
298
  # @param [Array] xi xiのデータ(double[])
@@ -276,7 +300,7 @@ module Num4TstStatistic2Lib
276
300
  # @return [double] 検定統計量
277
301
  # @example
278
302
  # xi = [3.4, 3.5, 3.3, 2.2, 3.3, 3.4, 3.6, 3.2]
279
- # outlier = Num4TstStatisticLib::OutlierLib.new
303
+ # outlier = Num4TstStatistic2Lib::OutlierLib.new
280
304
  # outlier.grubbs(xi, 2.2, 0.05)
281
305
  # => true
282
306
  def grubbs(xi, xk, a)
@@ -292,7 +316,7 @@ module Num4TstStatistic2Lib
292
316
  # @return [void] errbar.jpegファイルを出力
293
317
  # @example
294
318
  # xi = [3.4, 3.5, 3.3, 2.2, 3.3, 3.4, 3.6, 3.2]
295
- # outlier = Num4TstStatisticLib::OutlierLib.new
319
+ # outlier = Num4TstStatistic2Lib::OutlierLib.new
296
320
  # outlier.grubbs("LDH", xi)
297
321
  # => errbar.jpeg
298
322
  def errbar(dname, xi)
@@ -307,7 +331,6 @@ module Num4TstStatistic2Lib
307
331
  @hypothTest = Num4HypothTestLib::DecorrTestLib.new
308
332
  end
309
333
  # ピアソン相関係数
310
- # (相関係数の検定)
311
334
  #
312
335
  # @overload pearsoCorrelation(x, y, a)
313
336
  # @param [Array] x xのデータ(double[])
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: num4tststatistic2
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.1
4
+ version: 0.0.2
5
5
  platform: ruby
6
6
  authors:
7
7
  - siranovel
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-04-20 00:00:00.000000000 Z
11
+ date: 2024-04-22 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: num4tststatistic