num4tststatistic2 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (6) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +11 -0
  3. data/Gemfile +7 -0
  4. data/LICENSE +21 -0
  5. data/lib/num4tststatistic2.rb +366 -0
  6. metadata +86 -0
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA256:
3
+ metadata.gz: 985be5e18949d9700b7a090374a2b2f85ec1caa6551f9659e11156e8d3a02f21
4
+ data.tar.gz: 860c8e0145f0c045ef2fab8fe7bc84cbf3365ad026e6ccebcee3f092d9996048
5
+ SHA512:
6
+ metadata.gz: 3b39c6635a935546f966682151337005a240d53b8869190022b13a550cbfd5f06b04ba3d4202438a406258ba6d44f169fe9a0c336416cd2bf8e409bd7023f903
7
+ data.tar.gz: 4cb404897944e4aa2ed7a608b292316ce4f2ce38c0771116890f4e025908fddfb4908885f59c3368ca30201138fd6a846fe8afc2c0130f5285589d8da6d18e04
data/CHANGELOG.md ADDED
@@ -0,0 +1,11 @@
1
+ # Change Log
2
+
3
+ ## Unreleased
4
+
5
+ ## [0.0.1] - 2023-11-11
6
+
7
+ ### Fixed
8
+ - fix first fixed.
9
+
10
+
11
+
data/Gemfile ADDED
@@ -0,0 +1,7 @@
1
+ source "https://rubygems.org"
2
+
3
+ platforms :jruby do
4
+ gem "num4tststatistic"
5
+ gem "num4hypothtst"
6
+ end
7
+
data/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2022 siranovel
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,366 @@
1
+ require 'num4tststatistic'
2
+ require 'hypothTest3'
3
+
4
+ # 統計的仮説検定
5
+ module Num4TstStatistic2Lib
6
+ class ParametrixTestLib
7
+ def initialize(hypothTest3)
8
+ @hypothTest3 = hypothTest3
9
+ @paraTest = Num4TstStatisticLib::ParametrixTestLib.new
10
+ end
11
+ # 正規母集団の母平均の検定
12
+ #
13
+ # @overload populationMean(xi, m0, a)
14
+ # @param [Array] xi データ(double[])
15
+ # @param [double] m0 母平均
16
+ # @param [double] a 有意水準
17
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
18
+ # @example
19
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
20
+ # xi = [15.5, 15.7, 15.4, 15.4, 15.6, 15.4, 15.6, 15.5, 15.4]
21
+ # paraTest = Num4TstStatisticLib::ParametrixTestLib.new(hypothTest)
22
+ # paraTest.populationMean(xi, 15.4, 0.05)
23
+ # => true
24
+ def populationMean(xi, m0, a)
25
+ df = xi.size - 1
26
+ statistic = @paraTest.populationMean(xi, m0)
27
+ return @hypothTest3.tDistTest(statistic, df, a)
28
+ end
29
+ # 正規母集団の母分散の検定
30
+ #
31
+ # @overload populationVar(xi, sig0, a)
32
+ # @param [Array] xi データ(double[])
33
+ # @param [double] sig0 母分散
34
+ # @param [double] a 有意水準
35
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
36
+ # @example
37
+ # xi = [35.2, 34.5, 34.9, 35.2, 34.8, 35.1, 34.9, 35.2, 34.9, 34.8]
38
+ # sd = 0.4
39
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
40
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
41
+ # paraTest.populationVar(xi, sd*sd, 0.05)
42
+ # => true
43
+ def populationVar(xi, sig0, a)
44
+ df = xi.size - 1
45
+ statistic = @paraTest.populationVar(xi, sig0)
46
+ return @hypothTest3.chi2DistTest(statistic, df, a)
47
+ end
48
+ # 母比率の検定量
49
+ #
50
+ # @overload populationRatio(m, n, p0, a)
51
+ # @param [int] m m値
52
+ # @param [int] n N値
53
+ # @param [double] p0 母比率
54
+ # @param [double] a 有意水準
55
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
56
+ # @example
57
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
58
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
59
+ # paraTest.populationRatio(29, 346, 0.12, 0.05)
60
+ # => true
61
+ def populationRatio(m, n, p0, a)
62
+ statistic = @paraTest.populationRatio(m, n, p0)
63
+ return @hypothTest3.normDistTest(statistic, a)
64
+ end
65
+ # 2つの母平均の差の検定量
66
+ # (等分散性を仮定)
67
+ #
68
+ # @overload diffPopulationMean2EquVar(xi1, xi2, a)
69
+ # @param [Array] xi1 x1のデータ(double[])
70
+ # @param [Array] xi2 x2のデータ(double[])
71
+ # @param [double] a 有意水準
72
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
73
+ # @example
74
+ # xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
75
+ # xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
76
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
77
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
78
+ # paraTest.diffPopulationMean2EquVar(xi1, xi2, 0.05)
79
+ # => false
80
+ def diffPopulationMean2EquVar(xi1, xi2, a)
81
+ n1 = xi1.size
82
+ n2 = xi2.size
83
+ df = n1 + n2 - 2
84
+ statistic = @paraTest.diffPopulationMean2EquVar(xi1, xi2)
85
+ return @hypothTest3.tDistTest(statistic, df, a)
86
+ end
87
+ # 2つの母平均の差の検定量
88
+ # (不等分散性を仮定)
89
+ #
90
+ # @overload diffPopulationMean2UnEquVar(xi1, xi2, a)
91
+ # @param [Array] xi1 x1のデータ(double[])
92
+ # @param [Array] xi2 x2のデータ(double[])
93
+ # @param [double] a 有意水準
94
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
95
+ # @example
96
+ # xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
97
+ # xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
98
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
99
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
100
+ # paraTest.diffPopulationMean2UnEquVar(xi1, xi2, 0.05)
101
+ # => false
102
+ def diffPopulationMean2UnEquVar(xi1, xi2, a)
103
+ df = @paraTest.df4welch(xi1, xi2)
104
+ statistic = @paraTest.diffPopulationMean2UnEquVar(xi1, xi2)
105
+ return @hypothTest3.tDistTest(statistic, df, a)
106
+ end
107
+ # 対応のある2つの母平均の差の検定量
108
+ #
109
+ # @overload diffPopulationMean(xi1, xi2, a)
110
+ # @param [Array] xi1 x1のデータ(double[])
111
+ # @param [Array] xi2 x2のデータ(double[])
112
+ # @param [double] a 有意水準
113
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
114
+ # @example
115
+ # xi1 = [37.1, 36.2, 36.6, 37.4, 36.8, 36.7, 36.9, 37.4, 36.6, 36.7]
116
+ # xi2 = [36.8, 36.6, 36.5, 37.0, 36.0, 36.5, 36.6, 37.1, 36.4, 36.7]
117
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
118
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
119
+ # paraTest.diffPopulationMean(xi1, xi2, 0.05)
120
+ # => true
121
+ def diffPopulationMean(xi1, xi2, a)
122
+ n = xi1.size
123
+ df = n - 1
124
+ statistic = @paraTest.diffPopulationMean(xi1, xi2)
125
+ return @hypothTest3.tDistTest(statistic, df, a)
126
+ end
127
+ # 2つの母分散の差の検定量
128
+ #
129
+ # @overload diffPopulationVar(xi1, xi2, a)
130
+ # @param [Array] xi1 x1のデータ(double[])
131
+ # @param [Array] xi2 x2のデータ(double[])
132
+ # @param [double] a 有意水準
133
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
134
+ # @example
135
+ # xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
136
+ # xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
137
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
138
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
139
+ # paraTest.diffPopulationVar(xi1, xi2, 0.05)
140
+ # => false
141
+ def diffPopulationVar(xi1, xi2, a)
142
+ nf = xi1.size - 1
143
+ df = xi2.size - 1
144
+ statistic = @paraTest.diffPopulationVar(xi1, xi2)
145
+ return @hypothTest3.fDistTest(statistic, nf, df, a)
146
+ end
147
+ # 2つの母比率の差の検定量
148
+ #
149
+ # @overload diffPopulationRatio(m1, n1, m2, n2, a)
150
+ # @param [int] m1 m1値
151
+ # @param [int] n1 N1値
152
+ # @param [int] m2 m2値
153
+ # @param [int] n2 N2値
154
+ # @param [double] a 有意水準
155
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
156
+ # @example
157
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
158
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
159
+ # paraTest.diffPopulationRatio(469, 1200, 308, 900, 0.05)
160
+ # => true
161
+ def diffPopulationRatio(m1, n1, m2, n2, a)
162
+ statistic = @paraTest.diffPopulationRatio(m1, n1, m2, n2)
163
+ return @hypothTest3.normDistTest(statistic, a)
164
+ end
165
+ # 適合度の検定量
166
+ #
167
+ # @overload fidelity(fi, pi, a)
168
+ # @param [Array] fi 実測度数(double[])
169
+ # @param [Array] pi 比率(double[])
170
+ # @param [double] a 有意水準
171
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
172
+ # @example
173
+ # fi = [57, 33, 46, 14]
174
+ # pi = [0.4, 0.2, 0.3, 0.1]
175
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
176
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
177
+ # paraTest.fidelity(fi, pi, 0.05)
178
+ # => false
179
+ def fidelity(fi, pi, a)
180
+ df = fi.size - 1
181
+ statistic = @paraTest.fidelity(fi, pi)
182
+ return @hypothTest3.chi2DistTest(statistic, df, a)
183
+ end
184
+ # 独立性の検定量
185
+ #
186
+ # @overload independency(fij, a)
187
+ # @param [Array] fij 実測度数(double[][])
188
+ # @param [double] a 有意水準
189
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
190
+ # @example
191
+ # fij = [
192
+ # [57, 33, 46, 14],
193
+ # [89, 24, 75, 12],
194
+ # ]
195
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
196
+ # paraTest = Num4TstStatistic2Lib::ParametrixTestLib.new(hypothTest)
197
+ # paraTest.independency(fij, 0.05)
198
+ # => true
199
+ def independency(fij, a)
200
+ m = fij.size
201
+ n = fij[0].size
202
+ df = (m - 1) * (n - 1)
203
+ statistic = @paraTest.independency(fij)
204
+ return @hypothTest3.chi2DistTest(statistic, df, a)
205
+ end
206
+ end
207
+ class NonParametrixTestLib
208
+ def initialize(hypothTest3)
209
+ @hypothTest3 = hypothTest3
210
+ @nonParaTest = Num4TstStatisticLib::NonParametrixTestLib.new
211
+ end
212
+ # マン・ホイットニーのU検定
213
+ #
214
+ # @overload utest(x, y, a)
215
+ # @param [Array] x xのデータ(double[])
216
+ # @param [Array] y yのデータ(double[])
217
+ # @param [double] a 有意水準
218
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
219
+ # @example
220
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
221
+ # x = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
222
+ # y = [180, 180, 235, 270, 240, 285, 164, 152]
223
+ # nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
224
+ # nonParaTest.utest(x, y, 0.05)
225
+ # => true
226
+ def utest(x, y, a)
227
+ statistic = @nonParaTest.utest(x, y)
228
+ return @hypothTest3.normDistTest(statistic, a)
229
+ end
230
+ # ウィルコクス符号付き順位検定
231
+ #
232
+ # @overload wilcoxontest(x, y, a)
233
+ # @param [Array] x xのデータ(double[])
234
+ # @param [Array] y yのデータ(double[])
235
+ # @param [double] a 有意水準
236
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
237
+ # @example
238
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
239
+ # x = [37.1, 36.2, 36.6, 37.4, 36.8, 36.7, 36.9, 37.4, 36.6, 36.7]
240
+ # y = [36.8, 36.6, 36.5, 37.0, 36.0, 36.5, 36.6, 37.1, 36.4, 36.7]
241
+ # nonParaTest = Num4TstStatistic2Lib::NonParametrixTestLib.new(hypothTest)
242
+ # nonParaTest.wilcoxon(x, y, 0.05)
243
+ # => true
244
+ def wilcoxon(x, y, a)
245
+ statistic = @nonParaTest.wilcoxon(x, y)
246
+ return @hypothTest3.normDistTest(statistic, a)
247
+ end
248
+ # コルモゴルフ・スミルノフ検定(2標本)
249
+ #
250
+ # @overload ks2test(xi1, xi2, a)
251
+ # @param [Array] xi1 x1のデータ(double[])
252
+ # @param [Array] xi2 x2のデータ(double[])
253
+ # @param [double] a 有意水準
254
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
255
+ # @example
256
+ # hypothTest = Num4HypothTestLib::TwoSideTestLib.new
257
+ # xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
258
+ # xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
259
+ # nonParaTest = Num4TstStatisticLib::NonParametrixTestLib.new(hypothTest)
260
+ # nonParaTest.ks2test(xi1, xi2, 0.05)
261
+ # => false
262
+ def ks2test(xi1, xi2, a)
263
+ return @nonParaTest.ks2test(xi1, xi2, a)
264
+ end
265
+ end
266
+ class OutlierLib
267
+ def initialize
268
+ @outlier = Num4TstStatisticLib::OutlierLib.new
269
+ @hypothTest2 = Num4HypothTestLib::GrubbsTestLib.new
270
+ end
271
+ # グラプス・スミルノフの外れ値の検定量
272
+ #
273
+ # @overload grubbs(xi, xk, a)
274
+ # @param [Array] xi xiのデータ(double[])
275
+ # @param [double] xk 外れ値
276
+ # @return [double] 検定統計量
277
+ # @example
278
+ # xi = [3.4, 3.5, 3.3, 2.2, 3.3, 3.4, 3.6, 3.2]
279
+ # outlier = Num4TstStatisticLib::OutlierLib.new
280
+ # outlier.grubbs(xi, 2.2, 0.05)
281
+ # => true
282
+ def grubbs(xi, xk, a)
283
+ n = xi.size
284
+ statistic = @outlier.grubbs(xi, xk)
285
+ @hypothTest2.twoSideTest(statistic, n, a)
286
+ end
287
+ # エラーバー出力
288
+ #
289
+ # @overload errbar(dname, xi)
290
+ # @param [String] dname データ名
291
+ # @param [Array] xi xiのデータ(double[])
292
+ # @return [void] errbar.jpegファイルを出力
293
+ # @example
294
+ # xi = [3.4, 3.5, 3.3, 2.2, 3.3, 3.4, 3.6, 3.2]
295
+ # outlier = Num4TstStatisticLib::OutlierLib.new
296
+ # outlier.grubbs("LDH", xi)
297
+ # => errbar.jpeg
298
+ def errbar(dname, xi)
299
+ @outlier.errbar(dname, xi)
300
+ end
301
+ end
302
+ # 無相関の検定
303
+ class DecorrTestLib
304
+ def initialize
305
+ @paraTest = Num4TstStatisticLib::ParametrixTestLib.new
306
+ @nonParaTest = Num4TstStatisticLib::NonParametrixTestLib.new
307
+ @hypothTest = Num4HypothTestLib::DecorrTestLib.new
308
+ end
309
+ # ピアソン相関係数
310
+ # (相関係数の検定)
311
+ #
312
+ # @overload pearsoCorrelation(x, y, a)
313
+ # @param [Array] x xのデータ(double[])
314
+ # @param [Array] y yのデータ(double[])
315
+ # @param [double] a 有意水準
316
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
317
+ # @example
318
+ # x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
319
+ # y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
320
+ # paraTest = Num4TstStatistic2Lib::DecorrTestLib.new
321
+ # paraTest.pearsoCorrelation(x, y, 0.05)
322
+ # => true
323
+ def pearsoCorrelation(x, y, a)
324
+ df = x.size - 2
325
+ statistic = @paraTest.pearsoCorrelation(x, y)
326
+ return @hypothTest.twoSideTest(statistic, df, a)
327
+ end
328
+ # スピアマンの順位相関係数
329
+ #
330
+ # @overload spearmanscorr(x, y, a)
331
+ # @param [Array] x xのデータ(double[])
332
+ # @param [Array] y yのデータ(double[])
333
+ # @param [double] a 有意水準
334
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
335
+ # @example
336
+ # x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
337
+ # y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
338
+ # paraTest = Num4TstStatistic2Lib::DecorrTestLib.new
339
+ # paraTest.spearmanscorr(x, y, 0.05)
340
+ # => true
341
+ def spearmanscorr(x, y, a)
342
+ df = x.size - 2
343
+ statistic = @nonParaTest.spearmanscorr(x, y)
344
+ return @hypothTest.twoSideTest(statistic, df, a)
345
+ end
346
+ # ケンドールの順位相関係数
347
+ #
348
+ # @overload kendallscorr(x, y, a)
349
+ # @param [Array] x xのデータ(double[])
350
+ # @param [Array] y yのデータ(double[])
351
+ # @param [double] a 有意水準
352
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
353
+ # @example
354
+ # x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
355
+ # y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
356
+ # paraTest = Num4TstStatistic2Lib::DecorrTestLib.new
357
+ # paraTest.kendallscorr(x, y, 0.05)
358
+ # => false
359
+ def kendallscorr(x, y, a)
360
+ df = x.size - 2
361
+ statistic = @nonParaTest.kendallscorr(x, y)
362
+ return @hypothTest.twoSideTest(statistic, df, a)
363
+ end
364
+ end
365
+ end
366
+
metadata ADDED
@@ -0,0 +1,86 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: num4tststatistic2
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.0.1
5
+ platform: ruby
6
+ authors:
7
+ - siranovel
8
+ autorequire:
9
+ bindir: bin
10
+ cert_chain: []
11
+ date: 2024-04-20 00:00:00.000000000 Z
12
+ dependencies:
13
+ - !ruby/object:Gem::Dependency
14
+ name: num4tststatistic
15
+ requirement: !ruby/object:Gem::Requirement
16
+ requirements:
17
+ - - "~>"
18
+ - !ruby/object:Gem::Version
19
+ version: '0.2'
20
+ - - ">="
21
+ - !ruby/object:Gem::Version
22
+ version: 0.2.2
23
+ type: :development
24
+ prerelease: false
25
+ version_requirements: !ruby/object:Gem::Requirement
26
+ requirements:
27
+ - - "~>"
28
+ - !ruby/object:Gem::Version
29
+ version: '0.2'
30
+ - - ">="
31
+ - !ruby/object:Gem::Version
32
+ version: 0.2.2
33
+ - !ruby/object:Gem::Dependency
34
+ name: num4hypothtst
35
+ requirement: !ruby/object:Gem::Requirement
36
+ requirements:
37
+ - - "~>"
38
+ - !ruby/object:Gem::Version
39
+ version: '0.1'
40
+ - - ">="
41
+ - !ruby/object:Gem::Version
42
+ version: 0.1.1
43
+ type: :development
44
+ prerelease: false
45
+ version_requirements: !ruby/object:Gem::Requirement
46
+ requirements:
47
+ - - "~>"
48
+ - !ruby/object:Gem::Version
49
+ version: '0.1'
50
+ - - ">="
51
+ - !ruby/object:Gem::Version
52
+ version: 0.1.1
53
+ description: integration module of num4tststatistic and num4hypothtst
54
+ email: siranovel@gmail.com
55
+ executables: []
56
+ extensions: []
57
+ extra_rdoc_files: []
58
+ files:
59
+ - CHANGELOG.md
60
+ - Gemfile
61
+ - LICENSE
62
+ - lib/num4tststatistic2.rb
63
+ homepage: http://github.com/siranovel/num4tststatistic2
64
+ licenses:
65
+ - MIT
66
+ metadata: {}
67
+ post_install_message:
68
+ rdoc_options: []
69
+ require_paths:
70
+ - lib
71
+ required_ruby_version: !ruby/object:Gem::Requirement
72
+ requirements:
73
+ - - ">="
74
+ - !ruby/object:Gem::Version
75
+ version: '0'
76
+ required_rubygems_version: !ruby/object:Gem::Requirement
77
+ requirements:
78
+ - - ">="
79
+ - !ruby/object:Gem::Version
80
+ version: '0'
81
+ requirements: []
82
+ rubygems_version: 3.3.7
83
+ signing_key:
84
+ specification_version: 4
85
+ summary: statistical hypothesis verification!
86
+ test_files: []