num4tststatistic 0.0.1-java
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +11 -0
- data/Gemfile +3 -0
- data/LICENSE +21 -0
- data/Rakefile +7 -0
- data/ext/num4tststatistic/TstStatistic.java +135 -0
- data/lib/commons-math3-3.6.1.jar +0 -0
- data/lib/num4tststatistic.rb +200 -0
- metadata +90 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: a8b0c9145ecc7379e5619ad7f8ffb33b61d5560bf92c594e42f53e5c0e288a1b
|
4
|
+
data.tar.gz: e8b836c2974645183f78e3e9c6533b105b3d364f2405c10c68ab18372f06e685
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 20fa87418cb04465c0c62d33dd64016e67a57ad9f0c0dccddf2572b8f6aa6618ddbc76ff6111c12baa414103e24cc8dc74abcec87dfac38768e28a3ae80233f5
|
7
|
+
data.tar.gz: a01a432d8a7530b3be8f568e047faed5a42d9d79dde68f60426bcda8a751c166212e772495bd74e7b4277d3e7045e9443a5993c19a5af36b451306486dce528f
|
data/CHANGELOG.md
ADDED
data/Gemfile
ADDED
data/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2023 siranovel
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
data/Rakefile
ADDED
@@ -0,0 +1,135 @@
|
|
1
|
+
import java.util.Arrays;
|
2
|
+
|
3
|
+
import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
|
4
|
+
import org.apache.commons.math3.stat.correlation.PearsonsCorrelation;
|
5
|
+
|
6
|
+
public class TstStatistic {
|
7
|
+
public static double populationMean(double[] xi, double m0) {
|
8
|
+
int n = xi.length;
|
9
|
+
SummaryStatistics stat = new SummaryStatistics();
|
10
|
+
|
11
|
+
Arrays.stream(xi).forEach(stat::addValue);
|
12
|
+
double m = stat.getMean(); // 平均
|
13
|
+
double s2 = stat.getVariance();// 分散
|
14
|
+
return (m - m0) / Math.sqrt(s2 / n);
|
15
|
+
}
|
16
|
+
public static double populationVar(double[] xi, double sig0) {
|
17
|
+
int n = xi.length;
|
18
|
+
SummaryStatistics stat = new SummaryStatistics();
|
19
|
+
Arrays.stream(xi).forEach(stat::addValue);
|
20
|
+
double s2 = stat.getVariance();// 分散
|
21
|
+
|
22
|
+
return (n - 1) * s2 / sig0;
|
23
|
+
}
|
24
|
+
public static double populationRatio(int m, int n, double p0) {
|
25
|
+
double p = (double)m / (double)n;
|
26
|
+
|
27
|
+
return (p - p0) / Math.sqrt(p0 * (1-p0) / n);
|
28
|
+
}
|
29
|
+
public static double diffPopulationMean2EquVar(double[] xi1, double[] xi2) {
|
30
|
+
int n1 = xi1.length;
|
31
|
+
int n2 = xi2.length;
|
32
|
+
SummaryStatistics stat1 = new SummaryStatistics();
|
33
|
+
SummaryStatistics stat2 = new SummaryStatistics();
|
34
|
+
Arrays.stream(xi1).forEach(stat1::addValue);
|
35
|
+
Arrays.stream(xi2).forEach(stat2::addValue);
|
36
|
+
|
37
|
+
double m1 = stat1.getMean();
|
38
|
+
double m2 = stat2.getMean();
|
39
|
+
double s12 = stat1.getVariance();// 分散
|
40
|
+
double s22 = stat2.getVariance();// 分散
|
41
|
+
double s2 = ((n1 - 1) * s12 + (n2 - 1) * s22) / (n1 + n2 - 2);
|
42
|
+
|
43
|
+
return (m1 - m2) / Math.sqrt((1.0 / n1 + 1.0 / n2) * s2);
|
44
|
+
}
|
45
|
+
public static double diffPopulationMean2UnEquVar(double[] xi1, double[] xi2) {
|
46
|
+
int n1 = xi1.length;
|
47
|
+
int n2 = xi2.length;
|
48
|
+
SummaryStatistics stat1 = new SummaryStatistics();
|
49
|
+
SummaryStatistics stat2 = new SummaryStatistics();
|
50
|
+
Arrays.stream(xi1).forEach(stat1::addValue);
|
51
|
+
Arrays.stream(xi2).forEach(stat2::addValue);
|
52
|
+
|
53
|
+
double m1 = stat1.getMean();
|
54
|
+
double m2 = stat2.getMean();
|
55
|
+
double s12 = stat1.getVariance();// 分散
|
56
|
+
double s22 = stat2.getVariance();// 分散
|
57
|
+
|
58
|
+
return (m1 - m2) / Math.sqrt(s12 / n1 + s22 / n2);
|
59
|
+
}
|
60
|
+
public static int df4welch(double[] xi1, double[] xi2) {
|
61
|
+
int n1 = xi1.length;
|
62
|
+
int n2 = xi2.length;
|
63
|
+
SummaryStatistics stat1 = new SummaryStatistics();
|
64
|
+
SummaryStatistics stat2 = new SummaryStatistics();
|
65
|
+
Arrays.stream(xi1).forEach(stat1::addValue);
|
66
|
+
Arrays.stream(xi2).forEach(stat2::addValue);
|
67
|
+
|
68
|
+
double s12 = stat1.getVariance();// 分散
|
69
|
+
double s22 = stat2.getVariance();// 分散
|
70
|
+
double s14 = s12 * s12;
|
71
|
+
double s24 = s22 * s22;
|
72
|
+
int n12 = n1 * n1;
|
73
|
+
int n22 = n2 * n2;
|
74
|
+
double ns = (s12 / n1) + (s22 / n2);
|
75
|
+
|
76
|
+
return (int)
|
77
|
+
(
|
78
|
+
(ns * ns) /
|
79
|
+
(
|
80
|
+
s14 / (n12 * (n1 - 1)) + s24 / (n22 * (n2 - 1))
|
81
|
+
)
|
82
|
+
);
|
83
|
+
}
|
84
|
+
public static double diffPopulationMean(double[] xi1, double[] xi2) {
|
85
|
+
int n = xi1.length;
|
86
|
+
SummaryStatistics stat = new SummaryStatistics();
|
87
|
+
|
88
|
+
for(int i = 0; i < n; i++) {
|
89
|
+
stat.addValue(xi1[i] - xi2[i]);
|
90
|
+
}
|
91
|
+
double m = stat.getMean();
|
92
|
+
double s2 = stat.getVariance();// 分散
|
93
|
+
|
94
|
+
return (m - 0) / Math.sqrt(s2/n);
|
95
|
+
}
|
96
|
+
public static double diffPopulationVar(double[] xi1, double[] xi2) {
|
97
|
+
SummaryStatistics stat1 = new SummaryStatistics();
|
98
|
+
SummaryStatistics stat2 = new SummaryStatistics();
|
99
|
+
Arrays.stream(xi1).forEach(stat1::addValue);
|
100
|
+
Arrays.stream(xi2).forEach(stat2::addValue);
|
101
|
+
|
102
|
+
double s12 = stat1.getVariance();// 分散
|
103
|
+
double s22 = stat2.getVariance();// 分散
|
104
|
+
return s12 / s22;
|
105
|
+
}
|
106
|
+
public static double diffPopulationRatio(int m1, int n1, int m2, int n2) {
|
107
|
+
double p1 = (double)m1 / (double)n1;
|
108
|
+
double p2 = (double)m2 / (double)n2;
|
109
|
+
double p = (double)(m1 + m2) / (double)(n1 + n2);
|
110
|
+
|
111
|
+
return (p1 - p2) / Math.sqrt(p * (1 - p) * (1.0 / n1 + 1.0 / n2));
|
112
|
+
}
|
113
|
+
public static double unCorrelation(double[] x, double[] y) {
|
114
|
+
int n = x.length;
|
115
|
+
PearsonsCorrelation corel = new PearsonsCorrelation();
|
116
|
+
|
117
|
+
double r = corel.correlation(x, y);
|
118
|
+
|
119
|
+
return r * Math.sqrt(n - 2.0) / Math.sqrt(1.0 - r * r);
|
120
|
+
}
|
121
|
+
public static double populationCorre(double[] x, double[] y, double rth0) {
|
122
|
+
int n = x.length;
|
123
|
+
PearsonsCorrelation corel = new PearsonsCorrelation();
|
124
|
+
|
125
|
+
double r = corel.correlation(x, y);
|
126
|
+
|
127
|
+
return Math.sqrt(n-3.0) *
|
128
|
+
(
|
129
|
+
0.5 * Math.log((1.0 + r) / (1.0 - r))
|
130
|
+
- 0.5 * Math.log((1.0 + rth0) / (1.0 - rth0))
|
131
|
+
);
|
132
|
+
}
|
133
|
+
}
|
134
|
+
|
135
|
+
|
Binary file
|
@@ -0,0 +1,200 @@
|
|
1
|
+
require 'java'
|
2
|
+
require 'num4tststatistic.jar'
|
3
|
+
require 'commons-math3-3.6.1.jar'
|
4
|
+
|
5
|
+
java_import 'TstStatistic'
|
6
|
+
|
7
|
+
# 検定統計量を計算
|
8
|
+
# (Apache commoms math3使用)
|
9
|
+
module Num4TstStatisticLib
|
10
|
+
class << self
|
11
|
+
# 正規母集団の母平均の検定量
|
12
|
+
#
|
13
|
+
# @overload populationMean(xi, m0)
|
14
|
+
# @param [Array] xi データ(double[])
|
15
|
+
# @param [double] m0 母平均
|
16
|
+
# @return [double] 検定統計量
|
17
|
+
# @example
|
18
|
+
# xi = [15.5, 15.7, 15.4, 15.4, 15.6, 15.4, 15.6, 15.5, 15.4]
|
19
|
+
# Num4TstStatisticLib.populationMean(xi, 15.4)
|
20
|
+
# => 2.683
|
21
|
+
# @note
|
22
|
+
# 自由度(N-1)のt分布に従う
|
23
|
+
def populationMean(xi, m0)
|
24
|
+
return TstStatistic.populationMean(xi.to_java(Java::double), m0)
|
25
|
+
end
|
26
|
+
# 正規母集団の母分散の検定量
|
27
|
+
#
|
28
|
+
# @overload populationVar(xi, sig0)
|
29
|
+
# @param [Array] xi データ(double[])
|
30
|
+
# @param [double] sig0 母分散
|
31
|
+
# @return [double] 検定統計量
|
32
|
+
# @example
|
33
|
+
# xi = xi = [35.2, 34.5, 34.9, 35.2, 34.8, 35.1, 34.9, 35.2, 34.9, 34.8]
|
34
|
+
# sd = 0.4
|
35
|
+
# Num4TstStatisticLib.populationVar(xi, sd*sd)
|
36
|
+
# => 2.906
|
37
|
+
# @note
|
38
|
+
# 自由度(N-1)の階2乗分布に従う
|
39
|
+
def populationVar(xi, sig0)
|
40
|
+
return TstStatistic.populationVar(xi.to_java(Java::double), sig0)
|
41
|
+
end
|
42
|
+
# 母比率の検定量
|
43
|
+
# @overload populationRatio(m, n, p0)
|
44
|
+
# @param [int] m m値
|
45
|
+
# @param [int] n N値
|
46
|
+
# @param [double] p0 母比率
|
47
|
+
# @return [double] 検定統計量
|
48
|
+
# @example
|
49
|
+
# Num4TstStatisticLib.populationRatio(29, 346, 0.12)
|
50
|
+
# => -2.071
|
51
|
+
# @note
|
52
|
+
# 標準正規分布 N(0,1*1)に従う
|
53
|
+
def populationRatio(m, n, p0)
|
54
|
+
return TstStatistic.populationRatio(m, n, p0)
|
55
|
+
end
|
56
|
+
# 2つの母平均の差の検定量
|
57
|
+
# (等分散性を仮定)
|
58
|
+
#
|
59
|
+
# @overload diffPopulationMean2EquVar(xi1, xi2)
|
60
|
+
# @param [Array] xi1 x1のデータ(double[])
|
61
|
+
# @param [Array] xi2 x2のデータ)double[])
|
62
|
+
# @return [double] 検定統計量
|
63
|
+
# @example
|
64
|
+
# xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
|
65
|
+
# xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
|
66
|
+
# Num4TstStatisticLib.diffPopulationMean2EquVar(xi1, xi2)
|
67
|
+
# => -1.765
|
68
|
+
# @note
|
69
|
+
# N1+N2-2のt分布に従う
|
70
|
+
def diffPopulationMean2EquVar(xi1, xi2)
|
71
|
+
return TstStatistic.diffPopulationMean2EquVar(
|
72
|
+
xi1.to_java(Java::double), xi2.to_java(Java::double)
|
73
|
+
)
|
74
|
+
end
|
75
|
+
# 2つの母平均の差の検定量
|
76
|
+
# (不等分散性を仮定)
|
77
|
+
#
|
78
|
+
# @overload diffPopulationMean2UnEquVar(xi1, xi2)
|
79
|
+
# @param [Array] xi1 x1のデータ(double[])
|
80
|
+
# @param [Array] xi2 x2のデータ)double[])
|
81
|
+
# @return [double] 検定統計量
|
82
|
+
# @example
|
83
|
+
# xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
|
84
|
+
# xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
|
85
|
+
# Num4TstStatisticLib.diffPopulationMean2UnEquVar(xi1, xi2)
|
86
|
+
# => -1.636
|
87
|
+
# @note
|
88
|
+
# df4welch関数で求めた自由度のt分布に従う
|
89
|
+
def diffPopulationMean2UnEquVar(xi1, xi2)
|
90
|
+
return TstStatistic.diffPopulationMean2UnEquVar(
|
91
|
+
xi1.to_java(Java::double), xi2.to_java(Java::double)
|
92
|
+
)
|
93
|
+
end
|
94
|
+
# ウェルチ検定の為の自由度
|
95
|
+
# @overload df4welch(xi1, xi2)
|
96
|
+
# @param [Array] xi1 x1のデータ(double[])
|
97
|
+
# @param [Array] xi2 x2のデータ)double[])
|
98
|
+
# @return [int] 自由度
|
99
|
+
# @example
|
100
|
+
# xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
|
101
|
+
# xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
|
102
|
+
# Num4TstStatisticLib.df4welch(xi1, xi2)
|
103
|
+
# => 11
|
104
|
+
def df4welch(xi1, xi2)
|
105
|
+
return TstStatistic.df4welch(
|
106
|
+
xi1.to_java(Java::double), xi2.to_java(Java::double)
|
107
|
+
)
|
108
|
+
end
|
109
|
+
# 対応のある2つの母平均の差の検定量
|
110
|
+
#
|
111
|
+
# @overload diffPopulationMean(xi1, xi2)
|
112
|
+
# @param [Array] xi1 x1のデータ(double[])
|
113
|
+
# @param [Array] xi2 x2のデータ)double[])
|
114
|
+
# @return [double] 検定統計量
|
115
|
+
# @example
|
116
|
+
# xi1 = [37.1, 36.2, 36.6, 37.4, 36.8, 36.7, 36.9, 37.4, 36.6, 36.7]
|
117
|
+
# xi2 = [36.8, 36.6, 36.5, 37.0, 36.0, 36.5, 36.6, 37.1, 36.4, 36.7]
|
118
|
+
# Num4TstStatisticLib.diffPopulationMean(xi1, xi2)
|
119
|
+
# => 2.283
|
120
|
+
# @note
|
121
|
+
# 自由度(N-1)のt分布に従う
|
122
|
+
def diffPopulationMean(xi1, xi2)
|
123
|
+
return TstStatistic.diffPopulationMean(
|
124
|
+
xi1.to_java(Java::double), xi2.to_java(Java::double)
|
125
|
+
)
|
126
|
+
end
|
127
|
+
# 2つの母分散の差の検定量
|
128
|
+
#
|
129
|
+
# @oerload diffPopulationVar(xi1, xi2)
|
130
|
+
# @param [Array] xi1 x1のデータ(double[])
|
131
|
+
# @param [Array] xi2 x2のデータ)double[])
|
132
|
+
# @return [double] 検定統計量
|
133
|
+
# @example
|
134
|
+
# xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
|
135
|
+
# xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
|
136
|
+
# Num4TstStatisticLib.diffPopulationVar(xi1, xi2)
|
137
|
+
# => 0.4727
|
138
|
+
# @note
|
139
|
+
# 自由度(N1-1,N2-1)のF分布に従う
|
140
|
+
def diffPopulationVar(xi1, xi2)
|
141
|
+
return TstStatistic.diffPopulationVar(
|
142
|
+
xi1.to_java(Java::double), xi2.to_java(Java::double)
|
143
|
+
)
|
144
|
+
end
|
145
|
+
# 2つの母比率の差の検定量
|
146
|
+
#
|
147
|
+
# @overload diffPopulationRatio(m1, n1, m2, n2)
|
148
|
+
# @param [int] m1 m1値
|
149
|
+
# @param [int] n1 N1値
|
150
|
+
# @param [int] m2 m2値
|
151
|
+
# @param [int] n2 N2値
|
152
|
+
# @return [double] 検定統計量
|
153
|
+
# @example
|
154
|
+
# Num4TstStatisticLib.diffPopulationRatio(469, 1200, 308, 900)
|
155
|
+
# => 2.283
|
156
|
+
# @note
|
157
|
+
# 標準正規分布 N(0,1*1)に従う
|
158
|
+
def diffPopulationRatio(m1, n1, m2, n2)
|
159
|
+
return TstStatistic.diffPopulationRatio(m1, n1, m2, n2)
|
160
|
+
end
|
161
|
+
# 無相関の検定量
|
162
|
+
#
|
163
|
+
# @overload unCorrelation(x, y)
|
164
|
+
# @param [Array] x xのデータ(double[])
|
165
|
+
# @param [Array] y yのデータ)double[])
|
166
|
+
# @return [double] 検定統計量
|
167
|
+
# @example
|
168
|
+
# x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
|
169
|
+
# y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
|
170
|
+
# Num4TstStatisticLib.unCorrelation(x, y)
|
171
|
+
# => 3.1035
|
172
|
+
# @note
|
173
|
+
# 自由度(N-2)t分布に従う
|
174
|
+
def unCorrelation(x, y)
|
175
|
+
return TstStatistic.unCorrelation(
|
176
|
+
x.to_java(Java::double), y.to_java(Java::double)
|
177
|
+
)
|
178
|
+
end
|
179
|
+
# 母相関係数の検定量
|
180
|
+
#
|
181
|
+
# @overload populationCorre(x, y, rth0)
|
182
|
+
# @param [Array] x xのデータ(double[])
|
183
|
+
# @param [Array] y yのデータ)double[])
|
184
|
+
# @param [double] rth0 母相関係数
|
185
|
+
# @return [double] 検定統計量
|
186
|
+
# @example
|
187
|
+
# x = [2750, 2956, 2675, 3198, 1816, 2233, 2375, 2288, 1932, 2036, 2183, 2882]
|
188
|
+
# y = [249, 713, 1136, 575, 5654, 2107, 915, 4193, 7225, 3730, 472, 291]
|
189
|
+
# Num4TstStatisticLib.populationCorre(x, y, -0.3)
|
190
|
+
# => -2.107168
|
191
|
+
# @note
|
192
|
+
# 標準正規分布 N(0,1*1)に従う
|
193
|
+
def populationCorre(x, y, rth0)
|
194
|
+
return TstStatistic.populationCorre(
|
195
|
+
x.to_java(Java::double), y.to_java(Java::double), rth0
|
196
|
+
)
|
197
|
+
end
|
198
|
+
end
|
199
|
+
end
|
200
|
+
|
metadata
ADDED
@@ -0,0 +1,90 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: num4tststatistic
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.0.1
|
5
|
+
platform: java
|
6
|
+
authors:
|
7
|
+
- siranovel
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2023-11-11 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: rake
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '12.3'
|
20
|
+
- - ">="
|
21
|
+
- !ruby/object:Gem::Version
|
22
|
+
version: 12.3.3
|
23
|
+
type: :development
|
24
|
+
prerelease: false
|
25
|
+
version_requirements: !ruby/object:Gem::Requirement
|
26
|
+
requirements:
|
27
|
+
- - "~>"
|
28
|
+
- !ruby/object:Gem::Version
|
29
|
+
version: '12.3'
|
30
|
+
- - ">="
|
31
|
+
- !ruby/object:Gem::Version
|
32
|
+
version: 12.3.3
|
33
|
+
- !ruby/object:Gem::Dependency
|
34
|
+
name: rake-compiler
|
35
|
+
requirement: !ruby/object:Gem::Requirement
|
36
|
+
requirements:
|
37
|
+
- - "~>"
|
38
|
+
- !ruby/object:Gem::Version
|
39
|
+
version: '1.2'
|
40
|
+
- - ">="
|
41
|
+
- !ruby/object:Gem::Version
|
42
|
+
version: 1.2.5
|
43
|
+
type: :development
|
44
|
+
prerelease: false
|
45
|
+
version_requirements: !ruby/object:Gem::Requirement
|
46
|
+
requirements:
|
47
|
+
- - "~>"
|
48
|
+
- !ruby/object:Gem::Version
|
49
|
+
version: '1.2'
|
50
|
+
- - ">="
|
51
|
+
- !ruby/object:Gem::Version
|
52
|
+
version: 1.2.5
|
53
|
+
description: numerical solution for test statistic
|
54
|
+
email: siranovel@gmail.com
|
55
|
+
executables: []
|
56
|
+
extensions:
|
57
|
+
- Rakefile
|
58
|
+
extra_rdoc_files: []
|
59
|
+
files:
|
60
|
+
- CHANGELOG.md
|
61
|
+
- Gemfile
|
62
|
+
- LICENSE
|
63
|
+
- Rakefile
|
64
|
+
- ext/num4tststatistic/TstStatistic.java
|
65
|
+
- lib/commons-math3-3.6.1.jar
|
66
|
+
- lib/num4tststatistic.rb
|
67
|
+
homepage: http://github.com/siranovel/num4tststatistic
|
68
|
+
licenses:
|
69
|
+
- MIT
|
70
|
+
metadata: {}
|
71
|
+
post_install_message:
|
72
|
+
rdoc_options: []
|
73
|
+
require_paths:
|
74
|
+
- lib
|
75
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
76
|
+
requirements:
|
77
|
+
- - ">="
|
78
|
+
- !ruby/object:Gem::Version
|
79
|
+
version: '0'
|
80
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
81
|
+
requirements:
|
82
|
+
- - ">="
|
83
|
+
- !ruby/object:Gem::Version
|
84
|
+
version: '0'
|
85
|
+
requirements: []
|
86
|
+
rubygems_version: 3.3.7
|
87
|
+
signing_key:
|
88
|
+
specification_version: 4
|
89
|
+
summary: num for test statistic!
|
90
|
+
test_files: []
|