num4tststatistic 0.0.1-java
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/CHANGELOG.md +11 -0
- data/Gemfile +3 -0
- data/LICENSE +21 -0
- data/Rakefile +7 -0
- data/ext/num4tststatistic/TstStatistic.java +135 -0
- data/lib/commons-math3-3.6.1.jar +0 -0
- data/lib/num4tststatistic.rb +200 -0
- metadata +90 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: a8b0c9145ecc7379e5619ad7f8ffb33b61d5560bf92c594e42f53e5c0e288a1b
|
4
|
+
data.tar.gz: e8b836c2974645183f78e3e9c6533b105b3d364f2405c10c68ab18372f06e685
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 20fa87418cb04465c0c62d33dd64016e67a57ad9f0c0dccddf2572b8f6aa6618ddbc76ff6111c12baa414103e24cc8dc74abcec87dfac38768e28a3ae80233f5
|
7
|
+
data.tar.gz: a01a432d8a7530b3be8f568e047faed5a42d9d79dde68f60426bcda8a751c166212e772495bd74e7b4277d3e7045e9443a5993c19a5af36b451306486dce528f
|
data/CHANGELOG.md
ADDED
data/Gemfile
ADDED
data/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2023 siranovel
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
data/Rakefile
ADDED
@@ -0,0 +1,135 @@
|
|
1
|
+
import java.util.Arrays;
|
2
|
+
|
3
|
+
import org.apache.commons.math3.stat.descriptive.SummaryStatistics;
|
4
|
+
import org.apache.commons.math3.stat.correlation.PearsonsCorrelation;
|
5
|
+
|
6
|
+
public class TstStatistic {
|
7
|
+
public static double populationMean(double[] xi, double m0) {
|
8
|
+
int n = xi.length;
|
9
|
+
SummaryStatistics stat = new SummaryStatistics();
|
10
|
+
|
11
|
+
Arrays.stream(xi).forEach(stat::addValue);
|
12
|
+
double m = stat.getMean(); // 平均
|
13
|
+
double s2 = stat.getVariance();// 分散
|
14
|
+
return (m - m0) / Math.sqrt(s2 / n);
|
15
|
+
}
|
16
|
+
public static double populationVar(double[] xi, double sig0) {
|
17
|
+
int n = xi.length;
|
18
|
+
SummaryStatistics stat = new SummaryStatistics();
|
19
|
+
Arrays.stream(xi).forEach(stat::addValue);
|
20
|
+
double s2 = stat.getVariance();// 分散
|
21
|
+
|
22
|
+
return (n - 1) * s2 / sig0;
|
23
|
+
}
|
24
|
+
public static double populationRatio(int m, int n, double p0) {
|
25
|
+
double p = (double)m / (double)n;
|
26
|
+
|
27
|
+
return (p - p0) / Math.sqrt(p0 * (1-p0) / n);
|
28
|
+
}
|
29
|
+
public static double diffPopulationMean2EquVar(double[] xi1, double[] xi2) {
|
30
|
+
int n1 = xi1.length;
|
31
|
+
int n2 = xi2.length;
|
32
|
+
SummaryStatistics stat1 = new SummaryStatistics();
|
33
|
+
SummaryStatistics stat2 = new SummaryStatistics();
|
34
|
+
Arrays.stream(xi1).forEach(stat1::addValue);
|
35
|
+
Arrays.stream(xi2).forEach(stat2::addValue);
|
36
|
+
|
37
|
+
double m1 = stat1.getMean();
|
38
|
+
double m2 = stat2.getMean();
|
39
|
+
double s12 = stat1.getVariance();// 分散
|
40
|
+
double s22 = stat2.getVariance();// 分散
|
41
|
+
double s2 = ((n1 - 1) * s12 + (n2 - 1) * s22) / (n1 + n2 - 2);
|
42
|
+
|
43
|
+
return (m1 - m2) / Math.sqrt((1.0 / n1 + 1.0 / n2) * s2);
|
44
|
+
}
|
45
|
+
public static double diffPopulationMean2UnEquVar(double[] xi1, double[] xi2) {
|
46
|
+
int n1 = xi1.length;
|
47
|
+
int n2 = xi2.length;
|
48
|
+
SummaryStatistics stat1 = new SummaryStatistics();
|
49
|
+
SummaryStatistics stat2 = new SummaryStatistics();
|
50
|
+
Arrays.stream(xi1).forEach(stat1::addValue);
|
51
|
+
Arrays.stream(xi2).forEach(stat2::addValue);
|
52
|
+
|
53
|
+
double m1 = stat1.getMean();
|
54
|
+
double m2 = stat2.getMean();
|
55
|
+
double s12 = stat1.getVariance();// 分散
|
56
|
+
double s22 = stat2.getVariance();// 分散
|
57
|
+
|
58
|
+
return (m1 - m2) / Math.sqrt(s12 / n1 + s22 / n2);
|
59
|
+
}
|
60
|
+
public static int df4welch(double[] xi1, double[] xi2) {
|
61
|
+
int n1 = xi1.length;
|
62
|
+
int n2 = xi2.length;
|
63
|
+
SummaryStatistics stat1 = new SummaryStatistics();
|
64
|
+
SummaryStatistics stat2 = new SummaryStatistics();
|
65
|
+
Arrays.stream(xi1).forEach(stat1::addValue);
|
66
|
+
Arrays.stream(xi2).forEach(stat2::addValue);
|
67
|
+
|
68
|
+
double s12 = stat1.getVariance();// 分散
|
69
|
+
double s22 = stat2.getVariance();// 分散
|
70
|
+
double s14 = s12 * s12;
|
71
|
+
double s24 = s22 * s22;
|
72
|
+
int n12 = n1 * n1;
|
73
|
+
int n22 = n2 * n2;
|
74
|
+
double ns = (s12 / n1) + (s22 / n2);
|
75
|
+
|
76
|
+
return (int)
|
77
|
+
(
|
78
|
+
(ns * ns) /
|
79
|
+
(
|
80
|
+
s14 / (n12 * (n1 - 1)) + s24 / (n22 * (n2 - 1))
|
81
|
+
)
|
82
|
+
);
|
83
|
+
}
|
84
|
+
public static double diffPopulationMean(double[] xi1, double[] xi2) {
|
85
|
+
int n = xi1.length;
|
86
|
+
SummaryStatistics stat = new SummaryStatistics();
|
87
|
+
|
88
|
+
for(int i = 0; i < n; i++) {
|
89
|
+
stat.addValue(xi1[i] - xi2[i]);
|
90
|
+
}
|
91
|
+
double m = stat.getMean();
|
92
|
+
double s2 = stat.getVariance();// 分散
|
93
|
+
|
94
|
+
return (m - 0) / Math.sqrt(s2/n);
|
95
|
+
}
|
96
|
+
public static double diffPopulationVar(double[] xi1, double[] xi2) {
|
97
|
+
SummaryStatistics stat1 = new SummaryStatistics();
|
98
|
+
SummaryStatistics stat2 = new SummaryStatistics();
|
99
|
+
Arrays.stream(xi1).forEach(stat1::addValue);
|
100
|
+
Arrays.stream(xi2).forEach(stat2::addValue);
|
101
|
+
|
102
|
+
double s12 = stat1.getVariance();// 分散
|
103
|
+
double s22 = stat2.getVariance();// 分散
|
104
|
+
return s12 / s22;
|
105
|
+
}
|
106
|
+
public static double diffPopulationRatio(int m1, int n1, int m2, int n2) {
|
107
|
+
double p1 = (double)m1 / (double)n1;
|
108
|
+
double p2 = (double)m2 / (double)n2;
|
109
|
+
double p = (double)(m1 + m2) / (double)(n1 + n2);
|
110
|
+
|
111
|
+
return (p1 - p2) / Math.sqrt(p * (1 - p) * (1.0 / n1 + 1.0 / n2));
|
112
|
+
}
|
113
|
+
public static double unCorrelation(double[] x, double[] y) {
|
114
|
+
int n = x.length;
|
115
|
+
PearsonsCorrelation corel = new PearsonsCorrelation();
|
116
|
+
|
117
|
+
double r = corel.correlation(x, y);
|
118
|
+
|
119
|
+
return r * Math.sqrt(n - 2.0) / Math.sqrt(1.0 - r * r);
|
120
|
+
}
|
121
|
+
public static double populationCorre(double[] x, double[] y, double rth0) {
|
122
|
+
int n = x.length;
|
123
|
+
PearsonsCorrelation corel = new PearsonsCorrelation();
|
124
|
+
|
125
|
+
double r = corel.correlation(x, y);
|
126
|
+
|
127
|
+
return Math.sqrt(n-3.0) *
|
128
|
+
(
|
129
|
+
0.5 * Math.log((1.0 + r) / (1.0 - r))
|
130
|
+
- 0.5 * Math.log((1.0 + rth0) / (1.0 - rth0))
|
131
|
+
);
|
132
|
+
}
|
133
|
+
}
|
134
|
+
|
135
|
+
|
Binary file
|
@@ -0,0 +1,200 @@
|
|
1
|
+
require 'java'
|
2
|
+
require 'num4tststatistic.jar'
|
3
|
+
require 'commons-math3-3.6.1.jar'
|
4
|
+
|
5
|
+
java_import 'TstStatistic'
|
6
|
+
|
7
|
+
# 検定統計量を計算
|
8
|
+
# (Apache commoms math3使用)
|
9
|
+
module Num4TstStatisticLib
|
10
|
+
class << self
|
11
|
+
# 正規母集団の母平均の検定量
|
12
|
+
#
|
13
|
+
# @overload populationMean(xi, m0)
|
14
|
+
# @param [Array] xi データ(double[])
|
15
|
+
# @param [double] m0 母平均
|
16
|
+
# @return [double] 検定統計量
|
17
|
+
# @example
|
18
|
+
# xi = [15.5, 15.7, 15.4, 15.4, 15.6, 15.4, 15.6, 15.5, 15.4]
|
19
|
+
# Num4TstStatisticLib.populationMean(xi, 15.4)
|
20
|
+
# => 2.683
|
21
|
+
# @note
|
22
|
+
# 自由度(N-1)のt分布に従う
|
23
|
+
def populationMean(xi, m0)
|
24
|
+
return TstStatistic.populationMean(xi.to_java(Java::double), m0)
|
25
|
+
end
|
26
|
+
# 正規母集団の母分散の検定量
|
27
|
+
#
|
28
|
+
# @overload populationVar(xi, sig0)
|
29
|
+
# @param [Array] xi データ(double[])
|
30
|
+
# @param [double] sig0 母分散
|
31
|
+
# @return [double] 検定統計量
|
32
|
+
# @example
|
33
|
+
# xi = xi = [35.2, 34.5, 34.9, 35.2, 34.8, 35.1, 34.9, 35.2, 34.9, 34.8]
|
34
|
+
# sd = 0.4
|
35
|
+
# Num4TstStatisticLib.populationVar(xi, sd*sd)
|
36
|
+
# => 2.906
|
37
|
+
# @note
|
38
|
+
# 自由度(N-1)の階2乗分布に従う
|
39
|
+
def populationVar(xi, sig0)
|
40
|
+
return TstStatistic.populationVar(xi.to_java(Java::double), sig0)
|
41
|
+
end
|
42
|
+
# 母比率の検定量
|
43
|
+
# @overload populationRatio(m, n, p0)
|
44
|
+
# @param [int] m m値
|
45
|
+
# @param [int] n N値
|
46
|
+
# @param [double] p0 母比率
|
47
|
+
# @return [double] 検定統計量
|
48
|
+
# @example
|
49
|
+
# Num4TstStatisticLib.populationRatio(29, 346, 0.12)
|
50
|
+
# => -2.071
|
51
|
+
# @note
|
52
|
+
# 標準正規分布 N(0,1*1)に従う
|
53
|
+
def populationRatio(m, n, p0)
|
54
|
+
return TstStatistic.populationRatio(m, n, p0)
|
55
|
+
end
|
56
|
+
# 2つの母平均の差の検定量
|
57
|
+
# (等分散性を仮定)
|
58
|
+
#
|
59
|
+
# @overload diffPopulationMean2EquVar(xi1, xi2)
|
60
|
+
# @param [Array] xi1 x1のデータ(double[])
|
61
|
+
# @param [Array] xi2 x2のデータ)double[])
|
62
|
+
# @return [double] 検定統計量
|
63
|
+
# @example
|
64
|
+
# xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
|
65
|
+
# xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
|
66
|
+
# Num4TstStatisticLib.diffPopulationMean2EquVar(xi1, xi2)
|
67
|
+
# => -1.765
|
68
|
+
# @note
|
69
|
+
# N1+N2-2のt分布に従う
|
70
|
+
def diffPopulationMean2EquVar(xi1, xi2)
|
71
|
+
return TstStatistic.diffPopulationMean2EquVar(
|
72
|
+
xi1.to_java(Java::double), xi2.to_java(Java::double)
|
73
|
+
)
|
74
|
+
end
|
75
|
+
# 2つの母平均の差の検定量
|
76
|
+
# (不等分散性を仮定)
|
77
|
+
#
|
78
|
+
# @overload diffPopulationMean2UnEquVar(xi1, xi2)
|
79
|
+
# @param [Array] xi1 x1のデータ(double[])
|
80
|
+
# @param [Array] xi2 x2のデータ)double[])
|
81
|
+
# @return [double] 検定統計量
|
82
|
+
# @example
|
83
|
+
# xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
|
84
|
+
# xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
|
85
|
+
# Num4TstStatisticLib.diffPopulationMean2UnEquVar(xi1, xi2)
|
86
|
+
# => -1.636
|
87
|
+
# @note
|
88
|
+
# df4welch関数で求めた自由度のt分布に従う
|
89
|
+
def diffPopulationMean2UnEquVar(xi1, xi2)
|
90
|
+
return TstStatistic.diffPopulationMean2UnEquVar(
|
91
|
+
xi1.to_java(Java::double), xi2.to_java(Java::double)
|
92
|
+
)
|
93
|
+
end
|
94
|
+
# ウェルチ検定の為の自由度
|
95
|
+
# @overload df4welch(xi1, xi2)
|
96
|
+
# @param [Array] xi1 x1のデータ(double[])
|
97
|
+
# @param [Array] xi2 x2のデータ)double[])
|
98
|
+
# @return [int] 自由度
|
99
|
+
# @example
|
100
|
+
# xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
|
101
|
+
# xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
|
102
|
+
# Num4TstStatisticLib.df4welch(xi1, xi2)
|
103
|
+
# => 11
|
104
|
+
def df4welch(xi1, xi2)
|
105
|
+
return TstStatistic.df4welch(
|
106
|
+
xi1.to_java(Java::double), xi2.to_java(Java::double)
|
107
|
+
)
|
108
|
+
end
|
109
|
+
# 対応のある2つの母平均の差の検定量
|
110
|
+
#
|
111
|
+
# @overload diffPopulationMean(xi1, xi2)
|
112
|
+
# @param [Array] xi1 x1のデータ(double[])
|
113
|
+
# @param [Array] xi2 x2のデータ)double[])
|
114
|
+
# @return [double] 検定統計量
|
115
|
+
# @example
|
116
|
+
# xi1 = [37.1, 36.2, 36.6, 37.4, 36.8, 36.7, 36.9, 37.4, 36.6, 36.7]
|
117
|
+
# xi2 = [36.8, 36.6, 36.5, 37.0, 36.0, 36.5, 36.6, 37.1, 36.4, 36.7]
|
118
|
+
# Num4TstStatisticLib.diffPopulationMean(xi1, xi2)
|
119
|
+
# => 2.283
|
120
|
+
# @note
|
121
|
+
# 自由度(N-1)のt分布に従う
|
122
|
+
def diffPopulationMean(xi1, xi2)
|
123
|
+
return TstStatistic.diffPopulationMean(
|
124
|
+
xi1.to_java(Java::double), xi2.to_java(Java::double)
|
125
|
+
)
|
126
|
+
end
|
127
|
+
# 2つの母分散の差の検定量
|
128
|
+
#
|
129
|
+
# @oerload diffPopulationVar(xi1, xi2)
|
130
|
+
# @param [Array] xi1 x1のデータ(double[])
|
131
|
+
# @param [Array] xi2 x2のデータ)double[])
|
132
|
+
# @return [double] 検定統計量
|
133
|
+
# @example
|
134
|
+
# xi1 = [165, 130, 182, 178, 194, 206, 160, 122, 212, 165, 247, 195]
|
135
|
+
# xi2 = [180, 180, 235, 270, 240, 285, 164, 152]
|
136
|
+
# Num4TstStatisticLib.diffPopulationVar(xi1, xi2)
|
137
|
+
# => 0.4727
|
138
|
+
# @note
|
139
|
+
# 自由度(N1-1,N2-1)のF分布に従う
|
140
|
+
def diffPopulationVar(xi1, xi2)
|
141
|
+
return TstStatistic.diffPopulationVar(
|
142
|
+
xi1.to_java(Java::double), xi2.to_java(Java::double)
|
143
|
+
)
|
144
|
+
end
|
145
|
+
# 2つの母比率の差の検定量
|
146
|
+
#
|
147
|
+
# @overload diffPopulationRatio(m1, n1, m2, n2)
|
148
|
+
# @param [int] m1 m1値
|
149
|
+
# @param [int] n1 N1値
|
150
|
+
# @param [int] m2 m2値
|
151
|
+
# @param [int] n2 N2値
|
152
|
+
# @return [double] 検定統計量
|
153
|
+
# @example
|
154
|
+
# Num4TstStatisticLib.diffPopulationRatio(469, 1200, 308, 900)
|
155
|
+
# => 2.283
|
156
|
+
# @note
|
157
|
+
# 標準正規分布 N(0,1*1)に従う
|
158
|
+
def diffPopulationRatio(m1, n1, m2, n2)
|
159
|
+
return TstStatistic.diffPopulationRatio(m1, n1, m2, n2)
|
160
|
+
end
|
161
|
+
# 無相関の検定量
|
162
|
+
#
|
163
|
+
# @overload unCorrelation(x, y)
|
164
|
+
# @param [Array] x xのデータ(double[])
|
165
|
+
# @param [Array] y yのデータ)double[])
|
166
|
+
# @return [double] 検定統計量
|
167
|
+
# @example
|
168
|
+
# x = [113, 64, 16, 45, 28, 19, 30, 82, 76]
|
169
|
+
# y = [31, 5, 2, 17, 18, 2, 9, 25, 13]
|
170
|
+
# Num4TstStatisticLib.unCorrelation(x, y)
|
171
|
+
# => 3.1035
|
172
|
+
# @note
|
173
|
+
# 自由度(N-2)t分布に従う
|
174
|
+
def unCorrelation(x, y)
|
175
|
+
return TstStatistic.unCorrelation(
|
176
|
+
x.to_java(Java::double), y.to_java(Java::double)
|
177
|
+
)
|
178
|
+
end
|
179
|
+
# 母相関係数の検定量
|
180
|
+
#
|
181
|
+
# @overload populationCorre(x, y, rth0)
|
182
|
+
# @param [Array] x xのデータ(double[])
|
183
|
+
# @param [Array] y yのデータ)double[])
|
184
|
+
# @param [double] rth0 母相関係数
|
185
|
+
# @return [double] 検定統計量
|
186
|
+
# @example
|
187
|
+
# x = [2750, 2956, 2675, 3198, 1816, 2233, 2375, 2288, 1932, 2036, 2183, 2882]
|
188
|
+
# y = [249, 713, 1136, 575, 5654, 2107, 915, 4193, 7225, 3730, 472, 291]
|
189
|
+
# Num4TstStatisticLib.populationCorre(x, y, -0.3)
|
190
|
+
# => -2.107168
|
191
|
+
# @note
|
192
|
+
# 標準正規分布 N(0,1*1)に従う
|
193
|
+
def populationCorre(x, y, rth0)
|
194
|
+
return TstStatistic.populationCorre(
|
195
|
+
x.to_java(Java::double), y.to_java(Java::double), rth0
|
196
|
+
)
|
197
|
+
end
|
198
|
+
end
|
199
|
+
end
|
200
|
+
|
metadata
ADDED
@@ -0,0 +1,90 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: num4tststatistic
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.0.1
|
5
|
+
platform: java
|
6
|
+
authors:
|
7
|
+
- siranovel
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2023-11-11 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: rake
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '12.3'
|
20
|
+
- - ">="
|
21
|
+
- !ruby/object:Gem::Version
|
22
|
+
version: 12.3.3
|
23
|
+
type: :development
|
24
|
+
prerelease: false
|
25
|
+
version_requirements: !ruby/object:Gem::Requirement
|
26
|
+
requirements:
|
27
|
+
- - "~>"
|
28
|
+
- !ruby/object:Gem::Version
|
29
|
+
version: '12.3'
|
30
|
+
- - ">="
|
31
|
+
- !ruby/object:Gem::Version
|
32
|
+
version: 12.3.3
|
33
|
+
- !ruby/object:Gem::Dependency
|
34
|
+
name: rake-compiler
|
35
|
+
requirement: !ruby/object:Gem::Requirement
|
36
|
+
requirements:
|
37
|
+
- - "~>"
|
38
|
+
- !ruby/object:Gem::Version
|
39
|
+
version: '1.2'
|
40
|
+
- - ">="
|
41
|
+
- !ruby/object:Gem::Version
|
42
|
+
version: 1.2.5
|
43
|
+
type: :development
|
44
|
+
prerelease: false
|
45
|
+
version_requirements: !ruby/object:Gem::Requirement
|
46
|
+
requirements:
|
47
|
+
- - "~>"
|
48
|
+
- !ruby/object:Gem::Version
|
49
|
+
version: '1.2'
|
50
|
+
- - ">="
|
51
|
+
- !ruby/object:Gem::Version
|
52
|
+
version: 1.2.5
|
53
|
+
description: numerical solution for test statistic
|
54
|
+
email: siranovel@gmail.com
|
55
|
+
executables: []
|
56
|
+
extensions:
|
57
|
+
- Rakefile
|
58
|
+
extra_rdoc_files: []
|
59
|
+
files:
|
60
|
+
- CHANGELOG.md
|
61
|
+
- Gemfile
|
62
|
+
- LICENSE
|
63
|
+
- Rakefile
|
64
|
+
- ext/num4tststatistic/TstStatistic.java
|
65
|
+
- lib/commons-math3-3.6.1.jar
|
66
|
+
- lib/num4tststatistic.rb
|
67
|
+
homepage: http://github.com/siranovel/num4tststatistic
|
68
|
+
licenses:
|
69
|
+
- MIT
|
70
|
+
metadata: {}
|
71
|
+
post_install_message:
|
72
|
+
rdoc_options: []
|
73
|
+
require_paths:
|
74
|
+
- lib
|
75
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
76
|
+
requirements:
|
77
|
+
- - ">="
|
78
|
+
- !ruby/object:Gem::Version
|
79
|
+
version: '0'
|
80
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
81
|
+
requirements:
|
82
|
+
- - ">="
|
83
|
+
- !ruby/object:Gem::Version
|
84
|
+
version: '0'
|
85
|
+
requirements: []
|
86
|
+
rubygems_version: 3.3.7
|
87
|
+
signing_key:
|
88
|
+
specification_version: 4
|
89
|
+
summary: num for test statistic!
|
90
|
+
test_files: []
|