num4regana 0.0.1-java → 0.0.3-java
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +12 -0
- data/ext/num4regana/LogitRegAna.java +82 -0
- data/ext/num4regana/MultRegAna.java +205 -0
- data/ext/num4regana/PoissonRegAna.java +82 -0
- data/lib/num4glmregana.rb +100 -0
- data/lib/num4lineregana.rb +165 -0
- data/lib/num4regana.rb +5 -161
- metadata +7 -3
- data/ext/num4regana/OLSMultRegAna.java +0 -75
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: e3b63549f4e9c8d1779a21f7247bae8c034c4066e9907b53c76281c84c18c114
|
4
|
+
data.tar.gz: 19bd91c1939a3055b03a5bf35b516e09f31360cdeb227baab648c5277f843de9
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: ed0417b5fd2374d6ce4b3253484f532c40675fdf920e0bd7f10ec65e1c14ff7d1cf8be8fc748d9c68fe173613e67c4bcfa97235c43dbd4a9a65533a7a5fa38f1
|
7
|
+
data.tar.gz: a630e9d0ea9b931542b439617f9b28b38f1b0ac6e857ae95538cb04da60407af0882bf2654ec444abcbe150109c5e40bfcaf372d8514f5f621eb9af23cdb13fc
|
data/CHANGELOG.md
CHANGED
@@ -2,6 +2,18 @@
|
|
2
2
|
|
3
3
|
## Unreleased
|
4
4
|
|
5
|
+
## [0.0.3] - 2024-09-05
|
6
|
+
|
7
|
+
### add
|
8
|
+
- add GLM
|
9
|
+
logistic regression analystis
|
10
|
+
poisson regression analystis
|
11
|
+
|
12
|
+
## [0.0.2] - 2024-08-08
|
13
|
+
|
14
|
+
### fix
|
15
|
+
- add function of equal variances in OLSMultRegAnaLib
|
16
|
+
|
5
17
|
## [0.0.1] - 2024-06-27
|
6
18
|
|
7
19
|
### Fixed
|
@@ -0,0 +1,82 @@
|
|
1
|
+
public class LogitRegAna {
|
2
|
+
private static LogitRegAna regana = new LogitRegAna();
|
3
|
+
public static LogitRegAna getInstance() {
|
4
|
+
return regana;
|
5
|
+
}
|
6
|
+
public LineReg nonLineRegAna(double[] yi, double xij[][]) {
|
7
|
+
NonLineRegAna line = new NonLineRegAna();
|
8
|
+
|
9
|
+
return line.nonLineRegAna(yi, xij);
|
10
|
+
}
|
11
|
+
/*********************************/
|
12
|
+
/* interface define */
|
13
|
+
/*********************************/
|
14
|
+
/*********************************/
|
15
|
+
/* class define */
|
16
|
+
/*********************************/
|
17
|
+
public class LineReg {
|
18
|
+
private double a = 0.0;
|
19
|
+
private double[] b = null;
|
20
|
+
public LineReg(double[] b) {
|
21
|
+
this.a = b[0];
|
22
|
+
this.b = new double[b.length - 1];
|
23
|
+
for (int i = 0; i < this.b.length; i++) {
|
24
|
+
this.b[i] = b[i + 1];
|
25
|
+
}
|
26
|
+
}
|
27
|
+
public double getIntercept() {
|
28
|
+
return a;
|
29
|
+
}
|
30
|
+
public double[] getSlope() {
|
31
|
+
return b;
|
32
|
+
}
|
33
|
+
}
|
34
|
+
private class NonLineRegAna {
|
35
|
+
private final double eta = 0.001;
|
36
|
+
private final int num = 10000;
|
37
|
+
public LineReg nonLineRegAna(double[] yi, double[][] xij) {
|
38
|
+
double[] b = new double[1 + xij[0].length];
|
39
|
+
|
40
|
+
for(int i = 0; i < b.length; i++) {
|
41
|
+
b[i] = 0.0;
|
42
|
+
}
|
43
|
+
for (int i = 0; i < num; i++) {
|
44
|
+
b = grand_metod(yi, b, xij);
|
45
|
+
}
|
46
|
+
return new LineReg(b);
|
47
|
+
}
|
48
|
+
// q = b0 + b1 * x0
|
49
|
+
private double rereion(double[] b, double[] xi) {
|
50
|
+
double ret = b[0];
|
51
|
+
|
52
|
+
for(int i = 0; i < xi.length; i++) {
|
53
|
+
ret += b[i + 1] * xi[i];
|
54
|
+
}
|
55
|
+
return ret;
|
56
|
+
}
|
57
|
+
// p = 1 / (1 + exp( -q))
|
58
|
+
private double sigmoid(double q) {
|
59
|
+
return 1.0 / (1.0 + Math.exp(-1.0 * q));
|
60
|
+
}
|
61
|
+
private double[] grand_metod(double[] yi, double[] b, double[][] xij) {
|
62
|
+
double e0 = 0.0;
|
63
|
+
double[] en = new double[xij[0].length];
|
64
|
+
|
65
|
+
for(int i = 0; i < yi.length; i++) {
|
66
|
+
double q = rereion(b, xij[i]);
|
67
|
+
double p = sigmoid(q);
|
68
|
+
|
69
|
+
e0 += (yi[i] - p);
|
70
|
+
for(int j = 0; j < en.length; j++) {
|
71
|
+
en[j] += (yi[i] - p) * xij[i][j];
|
72
|
+
}
|
73
|
+
}
|
74
|
+
b[0] = b[0] + eta * e0;
|
75
|
+
for(int j = 0; j < en.length; j++) {
|
76
|
+
b[1 + j] += eta * en[j];
|
77
|
+
}
|
78
|
+
return b;
|
79
|
+
}
|
80
|
+
}
|
81
|
+
}
|
82
|
+
|
@@ -0,0 +1,205 @@
|
|
1
|
+
import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression;
|
2
|
+
import org.apache.commons.math3.stat.regression.GLSMultipleLinearRegression;
|
3
|
+
import org.apache.commons.math3.stat.correlation.Covariance;
|
4
|
+
import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
|
5
|
+
import java.util.Arrays;
|
6
|
+
import org.apache.commons.math3.distribution.ChiSquaredDistribution;
|
7
|
+
|
8
|
+
public class MultRegAna {
|
9
|
+
private final double A = 0.05;
|
10
|
+
private static MultRegAna regana = new MultRegAna();
|
11
|
+
public static MultRegAna getInstance() {
|
12
|
+
return regana;
|
13
|
+
}
|
14
|
+
public LineReg lineRegAna(double[] yi, double xij[][]) {
|
15
|
+
LineRegAna line = createLineRegAna(yi, xij);
|
16
|
+
|
17
|
+
return line.lineRegAna(yi, xij);
|
18
|
+
}
|
19
|
+
public double getR2(double[] yi, double xij[][]) {
|
20
|
+
LineRegAna line = createLineRegAna(yi, xij);
|
21
|
+
|
22
|
+
return line.getR2(yi, xij);
|
23
|
+
}
|
24
|
+
public double getAdjR2(double[] yi, double xij[][]) {
|
25
|
+
LineRegAna line = createLineRegAna(yi, xij);
|
26
|
+
|
27
|
+
return line.getAdjR2(yi, xij);
|
28
|
+
}
|
29
|
+
private LineRegAna createLineRegAna(double[] yi, double xij[][]) {
|
30
|
+
double[][] data = createData(yi, xij);
|
31
|
+
|
32
|
+
// 等分散性の検定
|
33
|
+
if (false == bartletTest(data)) { // 等分散性
|
34
|
+
return new OLSMultRegAna();
|
35
|
+
}
|
36
|
+
else { //
|
37
|
+
return new GLSMultRegAna(data);
|
38
|
+
}
|
39
|
+
}
|
40
|
+
private double[][] createData(double[] yi, double xij[][]) {
|
41
|
+
double[][] data = new double[yi.length][1 + xij[0].length];
|
42
|
+
|
43
|
+
for (int i = 0; i < yi.length; i++) {
|
44
|
+
data[i][0] = yi[i];
|
45
|
+
System.arraycopy(xij[i], 0, data[i], 1, xij[0].length);
|
46
|
+
}
|
47
|
+
return data;
|
48
|
+
}
|
49
|
+
private boolean bartletTest(double data[][]) {
|
50
|
+
OneWayAnovaTest anova = new BartletTest();
|
51
|
+
double statistic = anova.calcTestStatistic(data);
|
52
|
+
|
53
|
+
return anova.execute_test(statistic, A);
|
54
|
+
}
|
55
|
+
/*********************************/
|
56
|
+
/* interface define */
|
57
|
+
/*********************************/
|
58
|
+
private interface LineRegAna {
|
59
|
+
// 最小2乗法
|
60
|
+
LineReg lineRegAna(double[] yi, double xij[][]);
|
61
|
+
// 決定係数取得
|
62
|
+
double getR2(double[] yi, double xij[][]);
|
63
|
+
// 自由度調整済み決定係数
|
64
|
+
double getAdjR2(double[] yi, double xij[][]);
|
65
|
+
}
|
66
|
+
private interface OneWayAnovaTest {
|
67
|
+
double calcTestStatistic(double[][] xi);
|
68
|
+
boolean execute_test(double statistic, double a);
|
69
|
+
}
|
70
|
+
/*********************************/
|
71
|
+
/* class define */
|
72
|
+
/*********************************/
|
73
|
+
public class LineReg {
|
74
|
+
private double a = 0.0;
|
75
|
+
private double[] b = null;
|
76
|
+
public LineReg(double[] b) {
|
77
|
+
this.a = b[0];
|
78
|
+
this.b = new double[b.length - 1];
|
79
|
+
for (int i = 0; i < this.b.length; i++) {
|
80
|
+
this.b[i] = b[i + 1];
|
81
|
+
}
|
82
|
+
}
|
83
|
+
public double getIntercept() {
|
84
|
+
return a;
|
85
|
+
}
|
86
|
+
public double[] getSlope() {
|
87
|
+
return b;
|
88
|
+
}
|
89
|
+
}
|
90
|
+
// 等分散性検定
|
91
|
+
private class BartletTest implements OneWayAnovaTest {
|
92
|
+
private int n = 0;
|
93
|
+
public double calcTestStatistic(double[][] xi) {
|
94
|
+
n = xi.length;
|
95
|
+
double ln2L = logL(xi);
|
96
|
+
|
97
|
+
return calcB(ln2L, xi);
|
98
|
+
}
|
99
|
+
private double logL(double[][] xi) {
|
100
|
+
double[] si = new double[n];
|
101
|
+
DescriptiveStatistics stat = new DescriptiveStatistics();
|
102
|
+
double nisi2 = 0.0; // (Ni - 1)*si^2の合計
|
103
|
+
double nilogsi2 = 0.0; // (Ni - 1)*log(si^2)の合計
|
104
|
+
int sumN = 0;
|
105
|
+
|
106
|
+
for(int i = 0; i < n; i++) {
|
107
|
+
Arrays.stream(xi[i]).forEach(stat::addValue);
|
108
|
+
sumN += stat.getN();
|
109
|
+
si[i] = stat.getVariance();
|
110
|
+
nisi2 += (stat.getN() - 1) * si[i];
|
111
|
+
nilogsi2 += (stat.getN() - 1) * Math.log(si[i]);
|
112
|
+
stat.clear();
|
113
|
+
}
|
114
|
+
double sumNin = sumN - n;
|
115
|
+
return sumNin * (Math.log(nisi2 / sumNin) - nilogsi2 / sumNin);
|
116
|
+
}
|
117
|
+
private double calcB(double ln2L, double[][] xi) {
|
118
|
+
double invSumN = 0.0;
|
119
|
+
int sumN = 0;
|
120
|
+
DescriptiveStatistics stat = new DescriptiveStatistics();
|
121
|
+
|
122
|
+
for(int i = 0; i < n; i++) {
|
123
|
+
Arrays.stream(xi[i]).forEach(stat::addValue);
|
124
|
+
invSumN += 1.0 / (stat.getN() - 1.0);
|
125
|
+
sumN += stat.getN();
|
126
|
+
stat.clear();
|
127
|
+
}
|
128
|
+
double deno = 1 + 1.0 / (3 * (n - 1))
|
129
|
+
* (invSumN - 1.0 / (sumN - n));
|
130
|
+
return ln2L / deno;
|
131
|
+
}
|
132
|
+
public boolean execute_test(double statistic, double a) {
|
133
|
+
ChiSquaredDistribution chi2Dist = new ChiSquaredDistribution(n - 1);
|
134
|
+
double r_val = chi2Dist.inverseCumulativeProbability(1.0 - a);
|
135
|
+
|
136
|
+
return (r_val < statistic) ? true : false;
|
137
|
+
}
|
138
|
+
}
|
139
|
+
|
140
|
+
// 最小2乗法
|
141
|
+
private class OLSMultRegAna implements LineRegAna {
|
142
|
+
private OLSMultipleLinearRegression regression = null;
|
143
|
+
public OLSMultRegAna() {
|
144
|
+
regression = new OLSMultipleLinearRegression();
|
145
|
+
}
|
146
|
+
public LineReg lineRegAna(double[] yi, double xij[][]) {
|
147
|
+
regression.newSampleData(yi, xij);
|
148
|
+
|
149
|
+
double[] beta = regression.estimateRegressionParameters();
|
150
|
+
|
151
|
+
return new LineReg(beta);
|
152
|
+
}
|
153
|
+
// 決定係数取得
|
154
|
+
public double getR2(double[] yi, double xij[][]) {
|
155
|
+
regression.newSampleData(yi, xij);
|
156
|
+
return regression.calculateRSquared();
|
157
|
+
}
|
158
|
+
// 自由度調整済み決定係数
|
159
|
+
public double getAdjR2(double[] yi, double xij[][]) {
|
160
|
+
regression.newSampleData(yi, xij);
|
161
|
+
return regression.calculateAdjustedRSquared();
|
162
|
+
}
|
163
|
+
|
164
|
+
}
|
165
|
+
// 一般化最小2乗法
|
166
|
+
private class GLSMultRegAna implements LineRegAna {
|
167
|
+
private GLSMultipleLinearRegression regression = null;
|
168
|
+
private double[][] data = null;
|
169
|
+
public GLSMultRegAna(double data[][]) {
|
170
|
+
regression = new GLSMultipleLinearRegression();
|
171
|
+
this.data = data;
|
172
|
+
}
|
173
|
+
public LineReg lineRegAna(double[] yi, double xij[][]) {
|
174
|
+
double[][] omega = calcCovatrianceMatrix();
|
175
|
+
regression.newSampleData(yi, xij, omega);
|
176
|
+
|
177
|
+
double[] beta = regression.estimateRegressionParameters();
|
178
|
+
return new LineReg(beta);
|
179
|
+
}
|
180
|
+
// 決定係数取得
|
181
|
+
public double getR2(double[] yi, double xij[][]) {
|
182
|
+
return 0.0;
|
183
|
+
}
|
184
|
+
// 自由度調整済み決定係数
|
185
|
+
public double getAdjR2(double[] yi, double xij[][]) {
|
186
|
+
return 0.0;
|
187
|
+
}
|
188
|
+
private double[][] calcCovatrianceMatrix() {
|
189
|
+
Covariance corel = new Covariance();
|
190
|
+
double[][] omega = new double[data.length][data.length];
|
191
|
+
|
192
|
+
for(int i = 0; i < data.length; i++) {
|
193
|
+
for(int j = 0; j < data.length; j++) {
|
194
|
+
double[] xArray = data[i];
|
195
|
+
double[] yArray = data[j];
|
196
|
+
|
197
|
+
omega[i][j] = corel.covariance(xArray, yArray);
|
198
|
+
}
|
199
|
+
}
|
200
|
+
return omega;
|
201
|
+
}
|
202
|
+
}
|
203
|
+
|
204
|
+
}
|
205
|
+
|
@@ -0,0 +1,82 @@
|
|
1
|
+
public class PoissonRegAna {
|
2
|
+
private static PoissonRegAna regana = new PoissonRegAna();
|
3
|
+
public static PoissonRegAna getInstance() {
|
4
|
+
return regana;
|
5
|
+
}
|
6
|
+
public LineReg nonLineRegAna(double[] yi, double[][] xij) {
|
7
|
+
NonLineRegAna line = new NonLineRegAna();
|
8
|
+
|
9
|
+
return line.nonLineRegAna(yi, xij);
|
10
|
+
}
|
11
|
+
/*********************************/
|
12
|
+
/* interface define */
|
13
|
+
/*********************************/
|
14
|
+
/*********************************/
|
15
|
+
/* class define */
|
16
|
+
/*********************************/
|
17
|
+
public class LineReg {
|
18
|
+
private double a = 0.0;
|
19
|
+
private double[] b = null;
|
20
|
+
public LineReg(double[] b) {
|
21
|
+
this.a = b[0];
|
22
|
+
this.b = new double[b.length - 1];
|
23
|
+
for (int i = 0; i < this.b.length; i++) {
|
24
|
+
this.b[i] = b[i + 1];
|
25
|
+
}
|
26
|
+
}
|
27
|
+
public double getIntercept() {
|
28
|
+
return a;
|
29
|
+
}
|
30
|
+
public double[] getSlope() {
|
31
|
+
return b;
|
32
|
+
}
|
33
|
+
}
|
34
|
+
private class NonLineRegAna {
|
35
|
+
private final double eta = 0.005;
|
36
|
+
private final int num = 1000;
|
37
|
+
public LineReg nonLineRegAna(double[] yi, double[][] xij) {
|
38
|
+
double[] b = new double[1 + xij[0].length];
|
39
|
+
|
40
|
+
for(int i = 0; i < b.length; i++) {
|
41
|
+
b[i] = 0.0;
|
42
|
+
}
|
43
|
+
for (int i = 0; i < num; i++) {
|
44
|
+
b = grand_metod(yi, b, xij);
|
45
|
+
}
|
46
|
+
|
47
|
+
return new LineReg(b);
|
48
|
+
}
|
49
|
+
// q = b0 + b1 * x0
|
50
|
+
private double rereion(double[] b, double[] xi) {
|
51
|
+
double ret = b[0];
|
52
|
+
|
53
|
+
for(int i = 0; i < xi.length; i++) {
|
54
|
+
ret += b[i + 1] * xi[i];
|
55
|
+
}
|
56
|
+
return ret;
|
57
|
+
}
|
58
|
+
private double linkFunc(double q) {
|
59
|
+
return Math.exp(q);
|
60
|
+
}
|
61
|
+
private double[] grand_metod(double[] yi, double[] b, double[][] xij) {
|
62
|
+
double e0 = 0.0;
|
63
|
+
double[] en = new double[xij[0].length];
|
64
|
+
|
65
|
+
for(int i = 0; i < yi.length; i++) {
|
66
|
+
double q = rereion(b, xij[i]);
|
67
|
+
double p = linkFunc(q);
|
68
|
+
|
69
|
+
e0 += (yi[i] - p);
|
70
|
+
for(int j = 0; j < en.length; j++) {
|
71
|
+
en[j] += (yi[i] - p) * xij[i][j];
|
72
|
+
}
|
73
|
+
}
|
74
|
+
b[0] += eta * e0;
|
75
|
+
for(int j = 0; j < en.length; j++) {
|
76
|
+
b[1 + j] += eta * en[j];
|
77
|
+
}
|
78
|
+
return b;
|
79
|
+
}
|
80
|
+
}
|
81
|
+
}
|
82
|
+
|
@@ -0,0 +1,100 @@
|
|
1
|
+
require 'java'
|
2
|
+
require 'num4regana.jar'
|
3
|
+
require 'commons-math3-3.6.1.jar'
|
4
|
+
|
5
|
+
java_import 'LogitRegAna'
|
6
|
+
java_import 'PoissonRegAna'
|
7
|
+
|
8
|
+
# 一般化線形回帰分析
|
9
|
+
# (Apache commoms math3使用)
|
10
|
+
module Num4GLMRegAnaLib
|
11
|
+
# (2項)ロジスティック回帰分析
|
12
|
+
class LogitRegAnaLib
|
13
|
+
def initialize
|
14
|
+
@multana = LogitRegAna.getInstance()
|
15
|
+
end
|
16
|
+
# (2項)ロジスティック回帰分析
|
17
|
+
#
|
18
|
+
# @overload non_line_reg_ana(yi, xij)
|
19
|
+
# @param [Array] yi yの値(double[])
|
20
|
+
# @param [Array] xij xの値(double[][])
|
21
|
+
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
22
|
+
# @example
|
23
|
+
# glsyi = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
24
|
+
# glsxij = [
|
25
|
+
# [95],
|
26
|
+
# [90],
|
27
|
+
# [85],
|
28
|
+
# [80],
|
29
|
+
# [80],
|
30
|
+
# [75],
|
31
|
+
# [70],
|
32
|
+
# [70],
|
33
|
+
# [65],
|
34
|
+
# [50],
|
35
|
+
# [60],
|
36
|
+
# [55],
|
37
|
+
# [45],
|
38
|
+
# [65],
|
39
|
+
# [40],
|
40
|
+
# [35],
|
41
|
+
# [55],
|
42
|
+
# [50],
|
43
|
+
# [50],
|
44
|
+
# [45],
|
45
|
+
# ]
|
46
|
+
# regana = Num4RegAnaLib::LogitRegAnaLib.new
|
47
|
+
# regana.non_line_reg_ana(glsyi, glsxij)
|
48
|
+
# =>
|
49
|
+
# {
|
50
|
+
# "intercept": -17.81, # 定数項
|
51
|
+
# "slope": [0.16], # 回帰係数
|
52
|
+
# }
|
53
|
+
def non_line_reg_ana(yi, xij)
|
54
|
+
multRet = @multana.nonLineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
55
|
+
retRb = {
|
56
|
+
"intercept": multRet.getIntercept(), # 定数項
|
57
|
+
"slope": multRet.getSlope().to_a, # 回帰係数
|
58
|
+
}
|
59
|
+
return retRb
|
60
|
+
end
|
61
|
+
end
|
62
|
+
# ポアソン回帰分析
|
63
|
+
class PoissonRegAnaLib
|
64
|
+
def initialize
|
65
|
+
@multana = PoissonRegAna.getInstance()
|
66
|
+
end
|
67
|
+
# ポアソン回帰分析
|
68
|
+
#
|
69
|
+
# @overload non_line_reg_ana(yi, xij)
|
70
|
+
# @param [Array] yi yの値(double[])
|
71
|
+
# @param [Array] xij xの値(double[][])
|
72
|
+
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
73
|
+
# @example
|
74
|
+
# glsyi = [4, 10, 7, 14]
|
75
|
+
# glsxij = [
|
76
|
+
# [1],
|
77
|
+
# [2],
|
78
|
+
# [3],
|
79
|
+
# [4],
|
80
|
+
# ]
|
81
|
+
# regana = Num4RegAnaLib::PoissonRegAnaLib.new
|
82
|
+
# regana.non_line_reg_ana(glsyi, glsxij)
|
83
|
+
# =>
|
84
|
+
# {
|
85
|
+
# "intercept": 1.3138, # 定数項
|
86
|
+
# "slope": [0.3173], # 回帰係数
|
87
|
+
# }
|
88
|
+
def non_line_reg_ana(yi, xij)
|
89
|
+
multRet = @multana.nonLineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
90
|
+
retRb = {
|
91
|
+
"intercept": multRet.getIntercept(), # 定数項
|
92
|
+
"slope": multRet.getSlope().to_a, # 回帰係数
|
93
|
+
}
|
94
|
+
return retRb
|
95
|
+
end
|
96
|
+
end
|
97
|
+
end
|
98
|
+
|
99
|
+
|
100
|
+
|
@@ -0,0 +1,165 @@
|
|
1
|
+
require 'java'
|
2
|
+
require 'num4regana.jar'
|
3
|
+
require 'commons-math3-3.6.1.jar'
|
4
|
+
|
5
|
+
java_import 'SmplRegAna'
|
6
|
+
java_import 'MultRegAna'
|
7
|
+
# 線形回帰分析
|
8
|
+
# (Apache commoms math3使用)
|
9
|
+
module Num4LineRegAnaLib
|
10
|
+
# 単回帰分析
|
11
|
+
class SmplRegAnaLib
|
12
|
+
def initialize
|
13
|
+
@regana = SmplRegAna.getInstance()
|
14
|
+
end
|
15
|
+
# 単回帰分析
|
16
|
+
#
|
17
|
+
# @overload line_reg_ana(yi, xi)
|
18
|
+
# @param [Array] yi yの値(double[])
|
19
|
+
# @param [Array] xi xの値(double[])
|
20
|
+
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
21
|
+
# @example
|
22
|
+
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
23
|
+
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
24
|
+
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
25
|
+
# regana.line_reg_ana(yi, xi)
|
26
|
+
# =>
|
27
|
+
# {
|
28
|
+
# "intercept": 99.075, # 定数項
|
29
|
+
# "slope": 2.145, # 回帰係数
|
30
|
+
# }
|
31
|
+
def line_reg_ana(yi, xi)
|
32
|
+
ret = @regana.lineRegAna(yi.to_java(Java::double), xi.to_java(Java::double))
|
33
|
+
retRb = {
|
34
|
+
"intercept": ret.getIntercept(), # 定数項
|
35
|
+
"slope": ret.getSlope(), # 回帰係数
|
36
|
+
}
|
37
|
+
return retRb
|
38
|
+
end
|
39
|
+
# 決定係数
|
40
|
+
#
|
41
|
+
# @overload getr2(yi, xi)
|
42
|
+
# @param [Array] yi yの値(double[])
|
43
|
+
# @param [Array] xi xの値(double[])
|
44
|
+
# @return [double] 決定係数
|
45
|
+
# @example
|
46
|
+
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
47
|
+
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
48
|
+
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
49
|
+
# regana.getr2(yi, xi)
|
50
|
+
# => 0.893
|
51
|
+
def getr2(yi, xi)
|
52
|
+
return @regana.getR2(yi.to_java(Java::double), xi.to_java(Java::double))
|
53
|
+
end
|
54
|
+
# 相関係数
|
55
|
+
#
|
56
|
+
# @overload getr(yi, xi)
|
57
|
+
# @param [Array] yi yの値(double[])
|
58
|
+
# @param [Array] xi xの値(double[])
|
59
|
+
# @return [double] 決定係数
|
60
|
+
# @example
|
61
|
+
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
62
|
+
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
63
|
+
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
64
|
+
# regana.getr(yi, xi)
|
65
|
+
# => 0.945
|
66
|
+
def getr(yi, xi)
|
67
|
+
return @regana.getR(yi.to_java(Java::double), xi.to_java(Java::double))
|
68
|
+
end
|
69
|
+
end
|
70
|
+
# 重回帰分析(最小2乗法:等分散性checkあり)
|
71
|
+
class OLSMultRegAnaLib
|
72
|
+
def initialize
|
73
|
+
@multana = MultRegAna.getInstance()
|
74
|
+
end
|
75
|
+
# 重回帰分析
|
76
|
+
#
|
77
|
+
# @overload line_reg_ana(yi, xij)
|
78
|
+
# @param [Array] yi yの値(double[])
|
79
|
+
# @param [Array] xij xの値(double[][])
|
80
|
+
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
81
|
+
# @example
|
82
|
+
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
83
|
+
# olsxij = [
|
84
|
+
# [17.5, 30],
|
85
|
+
# [17.0, 25],
|
86
|
+
# [18.5, 20],
|
87
|
+
# [16.0, 30],
|
88
|
+
# [19.0, 45],
|
89
|
+
# [19.5, 35],
|
90
|
+
# [16.0, 25],
|
91
|
+
# [18.0, 35],
|
92
|
+
# [19.0, 35],
|
93
|
+
# [19.5, 40],
|
94
|
+
# ]
|
95
|
+
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
96
|
+
# regana.line_reg_ana(olsyi, olsxij)
|
97
|
+
# =>
|
98
|
+
# {
|
99
|
+
# "intercept": -34.71, # 定数項
|
100
|
+
# "slope": [3.47, 0.53], # 回帰係数
|
101
|
+
# }
|
102
|
+
def line_reg_ana(yi, xij)
|
103
|
+
multRet = @multana.lineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
104
|
+
|
105
|
+
retRb = {
|
106
|
+
"intercept": multRet.getIntercept(), # 定数項
|
107
|
+
"slope": multRet.getSlope().to_a, # 回帰係数
|
108
|
+
}
|
109
|
+
return retRb
|
110
|
+
end
|
111
|
+
# 決定係数
|
112
|
+
#
|
113
|
+
# @overload getr2(yi, xij)
|
114
|
+
# @param [Array] yi yの値(double[])
|
115
|
+
# @param [Array] xij xの値(double[][])
|
116
|
+
# @return [double] 決定係数
|
117
|
+
# @example
|
118
|
+
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
119
|
+
# olsxij = [
|
120
|
+
# [17.5, 30],
|
121
|
+
# [17.0, 25],
|
122
|
+
# [18.5, 20],
|
123
|
+
# [16.0, 30],
|
124
|
+
# [19.0, 45],
|
125
|
+
# [19.5, 35],
|
126
|
+
# [16.0, 25],
|
127
|
+
# [18.0, 35],
|
128
|
+
# [19.0, 35],
|
129
|
+
# [19.5, 40],
|
130
|
+
# ]
|
131
|
+
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
132
|
+
# regana.getr2(yi, xi)
|
133
|
+
# => 0.858
|
134
|
+
def getr2(yi, xij)
|
135
|
+
return @multana.getR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
136
|
+
end
|
137
|
+
# 自由度調整済み決定係数
|
138
|
+
#
|
139
|
+
# @overload getadjr2(yi, xij)
|
140
|
+
# @param [Array] yi yの値(double[])
|
141
|
+
# @param [Array] xij xの値(double[][])
|
142
|
+
# @return [double] 決定係数
|
143
|
+
# @example
|
144
|
+
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
145
|
+
# olsxij = [
|
146
|
+
# [17.5, 30],
|
147
|
+
# [17.0, 25],
|
148
|
+
# [18.5, 20],
|
149
|
+
# [16.0, 30],
|
150
|
+
# [19.0, 45],
|
151
|
+
# [19.5, 35],
|
152
|
+
# [16.0, 25],
|
153
|
+
# [18.0, 35],
|
154
|
+
# [19.0, 35],
|
155
|
+
# [19.5, 40],
|
156
|
+
# ]
|
157
|
+
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
158
|
+
# regana.getadjr2(yi, xij)
|
159
|
+
# => 0.8176
|
160
|
+
def getadjr2(yi, xij)
|
161
|
+
return @multana.getAdjR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
162
|
+
end
|
163
|
+
end
|
164
|
+
end
|
165
|
+
|
data/lib/num4regana.rb
CHANGED
@@ -1,165 +1,9 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
require 'commons-math3-3.6.1.jar'
|
1
|
+
require_relative('num4lineregana')
|
2
|
+
require_relative('num4glmregana')
|
4
3
|
|
5
|
-
java_import 'SmplRegAna'
|
6
|
-
java_import 'OLSMultRegAna'
|
7
|
-
# 回帰分析
|
8
|
-
# (Apache commoms math3使用)
|
9
4
|
module Num4RegAnaLib
|
10
|
-
|
11
|
-
|
12
|
-
def initialize
|
13
|
-
@regana = SmplRegAna.getInstance()
|
14
|
-
end
|
15
|
-
# 単回帰分析
|
16
|
-
#
|
17
|
-
# @overload line_reg_ana(yi, xi)
|
18
|
-
# @param [Array] yi yの値(double[])
|
19
|
-
# @param [Array] xi xの値(double[])
|
20
|
-
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
21
|
-
# @example
|
22
|
-
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
23
|
-
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
24
|
-
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
25
|
-
# regana.line_reg_ana(yi, xi)
|
26
|
-
# =>
|
27
|
-
# {
|
28
|
-
# "intercept": 99.075, # 定数項
|
29
|
-
# "slope": 2.145, # 回帰係数
|
30
|
-
# }
|
31
|
-
def line_reg_ana(yi, xi)
|
32
|
-
ret = @regana.lineRegAna(yi.to_java(Java::double), xi.to_java(Java::double))
|
33
|
-
retRb = {
|
34
|
-
"intercept": ret.getIntercept(), # 定数項
|
35
|
-
"slope": ret.getSlope(), # 回帰係数
|
36
|
-
}
|
37
|
-
return retRb
|
38
|
-
end
|
39
|
-
# 決定係数
|
40
|
-
#
|
41
|
-
# @overload getr2(yi, xi)
|
42
|
-
# @param [Array] yi yの値(double[])
|
43
|
-
# @param [Array] xi xの値(double[])
|
44
|
-
# @return [double] 決定係数
|
45
|
-
# @example
|
46
|
-
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
47
|
-
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
48
|
-
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
49
|
-
# regana.getr2(yi, xi)
|
50
|
-
# => 0.893
|
51
|
-
def getr2(yi, xi)
|
52
|
-
return @regana.getR2(yi.to_java(Java::double), xi.to_java(Java::double))
|
53
|
-
end
|
54
|
-
# 相関係数
|
55
|
-
#
|
56
|
-
# @overload getr(yi, xi)
|
57
|
-
# @param [Array] yi yの値(double[])
|
58
|
-
# @param [Array] xi xの値(double[])
|
59
|
-
# @return [double] 決定係数
|
60
|
-
# @example
|
61
|
-
# yi = [286, 851, 589, 389, 158, 1037, 463, 563, 372, 1020]
|
62
|
-
# xi = [107, 336, 233, 82, 61, 378, 129, 313, 142, 428]
|
63
|
-
# regana = Num4RegAnaLib::SmplRegAnaLib.new
|
64
|
-
# regana.getr(yi, xi)
|
65
|
-
# => 0.945
|
66
|
-
def getr(yi, xi)
|
67
|
-
return @regana.getR(yi.to_java(Java::double), xi.to_java(Java::double))
|
68
|
-
end
|
69
|
-
end
|
70
|
-
# 重回帰分析(最小2乗法)
|
71
|
-
class OLSMultRegAnaLib
|
72
|
-
def initialize
|
73
|
-
@regana = OLSMultRegAna.getInstance()
|
74
|
-
end
|
75
|
-
# 重回帰分析
|
76
|
-
#
|
77
|
-
# @overload line_reg_ana(yi, xij)
|
78
|
-
# @param [Array] yi yの値(double[])
|
79
|
-
# @param [Array] xij xの値(double[][])
|
80
|
-
# @return [Hash] (intercept:定数項 slope:回帰係数)
|
81
|
-
# @example
|
82
|
-
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
83
|
-
# olsxij = [
|
84
|
-
# [17.5, 30],
|
85
|
-
# [17.0, 25],
|
86
|
-
# [18.5, 20],
|
87
|
-
# [16.0, 30],
|
88
|
-
# [19.0, 45],
|
89
|
-
# [19.5, 35],
|
90
|
-
# [16.0, 25],
|
91
|
-
# [18.0, 35],
|
92
|
-
# [19.0, 35],
|
93
|
-
# [19.5, 40],
|
94
|
-
# ]
|
95
|
-
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
96
|
-
# regana.line_reg_ana(olsyi, olsxij)
|
97
|
-
# =>
|
98
|
-
# {
|
99
|
-
# "intercept": -34.71, # 定数項
|
100
|
-
# "slope": [3.47, 0.53], # 回帰係数
|
101
|
-
# }
|
102
|
-
def line_reg_ana(yi, xij)
|
103
|
-
ret = @regana.lineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
104
|
-
retRb = {
|
105
|
-
"intercept": ret.getIntercept(), # 定数項
|
106
|
-
"slope": ret.getSlope().to_a, # 回帰係数
|
107
|
-
}
|
108
|
-
return retRb
|
109
|
-
end
|
110
|
-
# 決定係数
|
111
|
-
#
|
112
|
-
# @overload getr2(yi, xij)
|
113
|
-
# @param [Array] yi yの値(double[])
|
114
|
-
# @param [Array] xij xの値(double[][])
|
115
|
-
# @return [double] 決定係数
|
116
|
-
# @example
|
117
|
-
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
118
|
-
# olsxij = [
|
119
|
-
# [17.5, 30],
|
120
|
-
# [17.0, 25],
|
121
|
-
# [18.5, 20],
|
122
|
-
# [16.0, 30],
|
123
|
-
# [19.0, 45],
|
124
|
-
# [19.5, 35],
|
125
|
-
# [16.0, 25],
|
126
|
-
# [18.0, 35],
|
127
|
-
# [19.0, 35],
|
128
|
-
# [19.5, 40],
|
129
|
-
# ]
|
130
|
-
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
131
|
-
# regana.getr2(yi, xi)
|
132
|
-
# => 0.858
|
133
|
-
def getr2(yi, xij)
|
134
|
-
return @regana.getR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
135
|
-
end
|
136
|
-
# 自由度調整済み決定係数
|
137
|
-
#
|
138
|
-
# @overload getadjr2(yi, xij)
|
139
|
-
# @param [Array] yi yの値(double[])
|
140
|
-
# @param [Array] xij xの値(double[][])
|
141
|
-
# @return [double] 決定係数
|
142
|
-
# @example
|
143
|
-
# olsyi = [45, 38, 41, 34, 59, 47, 35, 43, 54, 52]
|
144
|
-
# olsxij = [
|
145
|
-
# [17.5, 30],
|
146
|
-
# [17.0, 25],
|
147
|
-
# [18.5, 20],
|
148
|
-
# [16.0, 30],
|
149
|
-
# [19.0, 45],
|
150
|
-
# [19.5, 35],
|
151
|
-
# [16.0, 25],
|
152
|
-
# [18.0, 35],
|
153
|
-
# [19.0, 35],
|
154
|
-
# [19.5, 40],
|
155
|
-
# ]
|
156
|
-
# regana = Num4RegAnaLib::OLSMultRegAnaLib.new
|
157
|
-
# regana.getadjr2(yi, xij)
|
158
|
-
# => 0.8176
|
159
|
-
def getadjr2(yi, xij)
|
160
|
-
return @regana.getAdjR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
|
161
|
-
end
|
162
|
-
|
163
|
-
end
|
5
|
+
include Num4LineRegAnaLib
|
6
|
+
include Num4GLMRegAnaLib
|
164
7
|
end
|
165
8
|
|
9
|
+
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4regana
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.3
|
5
5
|
platform: java
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-09-05 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|
@@ -61,9 +61,13 @@ files:
|
|
61
61
|
- Gemfile
|
62
62
|
- LICENSE
|
63
63
|
- Rakefile
|
64
|
-
- ext/num4regana/
|
64
|
+
- ext/num4regana/LogitRegAna.java
|
65
|
+
- ext/num4regana/MultRegAna.java
|
66
|
+
- ext/num4regana/PoissonRegAna.java
|
65
67
|
- ext/num4regana/SmplRegAna.java
|
66
68
|
- lib/commons-math3-3.6.1.jar
|
69
|
+
- lib/num4glmregana.rb
|
70
|
+
- lib/num4lineregana.rb
|
67
71
|
- lib/num4regana.rb
|
68
72
|
homepage: http://github.com/siranovel/num4regana
|
69
73
|
licenses:
|
@@ -1,75 +0,0 @@
|
|
1
|
-
import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression;
|
2
|
-
|
3
|
-
public class OLSMultRegAna {
|
4
|
-
private static OLSMultRegAna regana = new OLSMultRegAna();
|
5
|
-
public static OLSMultRegAna getInstance() {
|
6
|
-
return regana;
|
7
|
-
}
|
8
|
-
public LineReg lineRegAna(double[] yi, double xij[][]) {
|
9
|
-
LineRegAna line = new LineRegAna();
|
10
|
-
|
11
|
-
return line.lineRegAna(yi, xij);
|
12
|
-
}
|
13
|
-
public double getR2(double[] yi, double xij[][]) {
|
14
|
-
LineRegAna line = new LineRegAna();
|
15
|
-
|
16
|
-
return line.getR2(yi, xij);
|
17
|
-
}
|
18
|
-
public double getAdjR2(double[] yi, double xij[][]) {
|
19
|
-
LineRegAna line = new LineRegAna();
|
20
|
-
|
21
|
-
return line.getAdjR2(yi, xij);
|
22
|
-
}
|
23
|
-
/*********************************/
|
24
|
-
/* interface define */
|
25
|
-
/*********************************/
|
26
|
-
/*********************************/
|
27
|
-
/* class define */
|
28
|
-
/*********************************/
|
29
|
-
public class LineReg {
|
30
|
-
private double a = 0.0;
|
31
|
-
private double[] b = null;
|
32
|
-
public LineReg(double[] b) {
|
33
|
-
this.a = b[0];
|
34
|
-
this.b = new double[b.length - 1];
|
35
|
-
for (int i = 0; i < this.b.length; i++) {
|
36
|
-
this.b[i] = b[i + 1];
|
37
|
-
}
|
38
|
-
}
|
39
|
-
public double getIntercept() {
|
40
|
-
return a;
|
41
|
-
}
|
42
|
-
public double[] getSlope() {
|
43
|
-
return b;
|
44
|
-
}
|
45
|
-
}
|
46
|
-
private class LineRegAna {
|
47
|
-
// 最小2乗法
|
48
|
-
public LineReg lineRegAna(double[] yi, double xij[][]) {
|
49
|
-
OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
|
50
|
-
|
51
|
-
regression.newSampleData(yi, xij);
|
52
|
-
|
53
|
-
double[] beta = regression.estimateRegressionParameters();
|
54
|
-
|
55
|
-
LineReg ret = new LineReg(beta);
|
56
|
-
return ret;
|
57
|
-
}
|
58
|
-
// 決定係数取得
|
59
|
-
public double getR2(double[] yi, double xij[][]) {
|
60
|
-
OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
|
61
|
-
|
62
|
-
regression.newSampleData(yi, xij);
|
63
|
-
return regression.calculateRSquared();
|
64
|
-
}
|
65
|
-
// 自由度調整済み決定係数
|
66
|
-
public double getAdjR2(double[] yi, double xij[][]) {
|
67
|
-
OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
|
68
|
-
|
69
|
-
regression.newSampleData(yi, xij);
|
70
|
-
return regression.calculateAdjustedRSquared();
|
71
|
-
}
|
72
|
-
|
73
|
-
}
|
74
|
-
}
|
75
|
-
|