num4regana 0.0.1-java → 0.0.2-java

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 616a5ce4aa14748f31750e7b1c2e69ca9af26295e7a173a8454ff9b3bc83cbfe
4
- data.tar.gz: 74b2370bb501a69ef6546840d3ed0b61315e13ef35f584d5dbe3f2f38725cbb2
3
+ metadata.gz: ad6fa72619eb7a02bdc561494b9aae197c37b6a8558fd21106bdf15210a9af81
4
+ data.tar.gz: c7a55ac44970c164dc7379a11955f29416392ceba4605118f8bcbba459724e94
5
5
  SHA512:
6
- metadata.gz: 7133ab852f61abbcb0e93bbc1be555bcfe16dfab0751ff1026be21dc8a46d829b3d03ba94313a7a196a0f385b7dbe01a6cb16d4678337bb063662e3faac88b43
7
- data.tar.gz: a9851b753e8bf686a1a5bccc5dc392dc229822e51e47a3b1b82c8f1f76dbaf8629c04ecc825679aee250ff1225a7cf9ab6ed2f774f61e927f32fcb58ba83e7ee
6
+ metadata.gz: dd9e09e45d35384a3bfa9eb50a0132f4b3b3e970c2f97d241264a18a08986c3a46753d2292caf10c0ae1fcab8ec4f45f6456c97fe14df2ee9334168cd429a60a
7
+ data.tar.gz: 1cf8a55a5444c5e1e1a151adbb4d142bceaa9344cde28a859848b5642ce36660b6b919410907f8964105ec35df991591670ba8722658a708822e0840d790ce23
data/CHANGELOG.md CHANGED
@@ -2,6 +2,11 @@
2
2
 
3
3
  ## Unreleased
4
4
 
5
+ ## [0.0.2] - 2024-08-08
6
+
7
+ ### fix
8
+ - add function of equal variances in OLSMultRegAnaLib
9
+
5
10
  ## [0.0.1] - 2024-06-27
6
11
 
7
12
  ### Fixed
@@ -0,0 +1,206 @@
1
+ import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression;
2
+ import org.apache.commons.math3.stat.regression.GLSMultipleLinearRegression;
3
+ import org.apache.commons.math3.stat.correlation.Covariance;
4
+ import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
5
+ import java.util.Arrays;
6
+ import org.apache.commons.math3.distribution.ChiSquaredDistribution;
7
+
8
+ public class MultRegAna {
9
+ private final double A = 0.05;
10
+ private static MultRegAna regana = new MultRegAna();
11
+ public static MultRegAna getInstance() {
12
+ return regana;
13
+ }
14
+ public LineReg lineRegAna(double[] yi, double xij[][]) {
15
+ double[][] data = createData(yi, xij);
16
+ LineRegAna line = createLineRegAna(data);
17
+
18
+ return line.lineRegAna(yi, xij);
19
+ }
20
+ public double getR2(double[] yi, double xij[][]) {
21
+ double[][] data = createData(yi, xij);
22
+ LineRegAna line = createLineRegAna(data);
23
+
24
+ return line.getR2(yi, xij);
25
+ }
26
+ public double getAdjR2(double[] yi, double xij[][]) {
27
+ double[][] data = createData(yi, xij);
28
+ LineRegAna line = createLineRegAna(data);
29
+
30
+ return line.getAdjR2(yi, xij);
31
+ }
32
+ private double[][] createData(double[] yi, double xij[][]) {
33
+ double[][] data = new double[yi.length][1 + xij[0].length];
34
+
35
+ for (int i = 0; i < yi.length; i++) {
36
+ data[i][0] = yi[i];
37
+ System.arraycopy(xij[i], 0, data[i], 1, xij[0].length);
38
+ }
39
+ return data;
40
+ }
41
+ private LineRegAna createLineRegAna(double data[][]) {
42
+ // 等分散性の検定
43
+ if (false == bartletTest(data)) { // 等分散性
44
+ return new OLSMultRegAna();
45
+ }
46
+ else { //
47
+ return new GLSMultRegAna(data);
48
+ }
49
+ }
50
+ private boolean bartletTest(double data[][]) {
51
+ OneWayAnovaTest anova = new BartletTest();
52
+ double statistic = anova.calcTestStatistic(data);
53
+
54
+ return anova.execute_test(statistic, A);
55
+ }
56
+ /*********************************/
57
+ /* interface define */
58
+ /*********************************/
59
+ private interface LineRegAna {
60
+ // 最小2乗法
61
+ LineReg lineRegAna(double[] yi, double xij[][]);
62
+ // 決定係数取得
63
+ double getR2(double[] yi, double xij[][]);
64
+ // 自由度調整済み決定係数
65
+ double getAdjR2(double[] yi, double xij[][]);
66
+ }
67
+ private interface OneWayAnovaTest {
68
+ double calcTestStatistic(double[][] xi);
69
+ boolean execute_test(double statistic, double a);
70
+ }
71
+ /*********************************/
72
+ /* class define */
73
+ /*********************************/
74
+ public class LineReg {
75
+ private double a = 0.0;
76
+ private double[] b = null;
77
+ public LineReg(double[] b) {
78
+ this.a = b[0];
79
+ this.b = new double[b.length - 1];
80
+ for (int i = 0; i < this.b.length; i++) {
81
+ this.b[i] = b[i + 1];
82
+ }
83
+ }
84
+ public double getIntercept() {
85
+ return a;
86
+ }
87
+ public double[] getSlope() {
88
+ return b;
89
+ }
90
+ }
91
+ // 等分散性検定
92
+ private class BartletTest implements OneWayAnovaTest {
93
+ private int n = 0;
94
+ public double calcTestStatistic(double[][] xi) {
95
+ n = xi.length;
96
+ double ln2L = logL(xi);
97
+
98
+ return calcB(ln2L, xi);
99
+ }
100
+ private double logL(double[][] xi) {
101
+ double[] si = new double[n];
102
+ DescriptiveStatistics stat = new DescriptiveStatistics();
103
+ double nisi2 = 0.0; // (Ni - 1)*si^2の合計
104
+ double nilogsi2 = 0.0; // (Ni - 1)*log(si^2)の合計
105
+ int sumN = 0;
106
+
107
+ for(int i = 0; i < n; i++) {
108
+ Arrays.stream(xi[i]).forEach(stat::addValue);
109
+ sumN += stat.getN();
110
+ si[i] = stat.getVariance();
111
+ nisi2 += (stat.getN() - 1) * si[i];
112
+ nilogsi2 += (stat.getN() - 1) * Math.log(si[i]);
113
+ stat.clear();
114
+ }
115
+ double sumNin = sumN - n;
116
+ return sumNin * (Math.log(nisi2 / sumNin) - nilogsi2 / sumNin);
117
+ }
118
+ private double calcB(double ln2L, double[][] xi) {
119
+ double invSumN = 0.0;
120
+ int sumN = 0;
121
+ DescriptiveStatistics stat = new DescriptiveStatistics();
122
+
123
+ for(int i = 0; i < n; i++) {
124
+ Arrays.stream(xi[i]).forEach(stat::addValue);
125
+ invSumN += 1.0 / (stat.getN() - 1.0);
126
+ sumN += stat.getN();
127
+ stat.clear();
128
+ }
129
+ double deno = 1 + 1.0 / (3 * (n - 1))
130
+ * (invSumN - 1.0 / (sumN - n));
131
+ return ln2L / deno;
132
+ }
133
+ public boolean execute_test(double statistic, double a) {
134
+ ChiSquaredDistribution chi2Dist = new ChiSquaredDistribution(n - 1);
135
+ double r_val = chi2Dist.inverseCumulativeProbability(1.0 - a);
136
+
137
+ return (r_val < statistic) ? true : false;
138
+ }
139
+ }
140
+
141
+ // 最小2乗法
142
+ private class OLSMultRegAna implements LineRegAna {
143
+ private OLSMultipleLinearRegression regression = null;
144
+ public OLSMultRegAna() {
145
+ regression = new OLSMultipleLinearRegression();
146
+ }
147
+ public LineReg lineRegAna(double[] yi, double xij[][]) {
148
+ regression.newSampleData(yi, xij);
149
+
150
+ double[] beta = regression.estimateRegressionParameters();
151
+
152
+ return new LineReg(beta);
153
+ }
154
+ // 決定係数取得
155
+ public double getR2(double[] yi, double xij[][]) {
156
+ regression.newSampleData(yi, xij);
157
+ return regression.calculateRSquared();
158
+ }
159
+ // 自由度調整済み決定係数
160
+ public double getAdjR2(double[] yi, double xij[][]) {
161
+ regression.newSampleData(yi, xij);
162
+ return regression.calculateAdjustedRSquared();
163
+ }
164
+
165
+ }
166
+ // 一般化最小2乗法
167
+ private class GLSMultRegAna implements LineRegAna {
168
+ private GLSMultipleLinearRegression regression = null;
169
+ private double[][] data = null;
170
+ public GLSMultRegAna(double data[][]) {
171
+ regression = new GLSMultipleLinearRegression();
172
+ this.data = data;
173
+ }
174
+ public LineReg lineRegAna(double[] yi, double xij[][]) {
175
+ double[][] omega = calcCovatrianceMatrix();
176
+ regression.newSampleData(yi, xij, omega);
177
+
178
+ double[] beta = regression.estimateRegressionParameters();
179
+ return new LineReg(beta);
180
+ }
181
+ // 決定係数取得
182
+ public double getR2(double[] yi, double xij[][]) {
183
+ return 0.0;
184
+ }
185
+ // 自由度調整済み決定係数
186
+ public double getAdjR2(double[] yi, double xij[][]) {
187
+ return 0.0;
188
+ }
189
+ private double[][] calcCovatrianceMatrix() {
190
+ Covariance corel = new Covariance();
191
+ double[][] omega = new double[data.length][data.length];
192
+
193
+ for(int i = 0; i < data.length; i++) {
194
+ for(int j = 0; j < data.length; j++) {
195
+ double[] xArray = data[i];
196
+ double[] yArray = data[j];
197
+
198
+ omega[i][j] = corel.covariance(xArray, yArray);
199
+ }
200
+ }
201
+ return omega;
202
+ }
203
+ }
204
+
205
+ }
206
+
data/lib/num4regana.rb CHANGED
@@ -3,7 +3,7 @@ require 'num4regana.jar'
3
3
  require 'commons-math3-3.6.1.jar'
4
4
 
5
5
  java_import 'SmplRegAna'
6
- java_import 'OLSMultRegAna'
6
+ java_import 'MultRegAna'
7
7
  # 回帰分析
8
8
  # (Apache commoms math3使用)
9
9
  module Num4RegAnaLib
@@ -67,10 +67,10 @@ module Num4RegAnaLib
67
67
  return @regana.getR(yi.to_java(Java::double), xi.to_java(Java::double))
68
68
  end
69
69
  end
70
- # 重回帰分析(最小2乗法)
70
+ # 重回帰分析(最小2乗法:等分散性checkあり)
71
71
  class OLSMultRegAnaLib
72
72
  def initialize
73
- @regana = OLSMultRegAna.getInstance()
73
+ @multana = MultRegAna.getInstance()
74
74
  end
75
75
  # 重回帰分析
76
76
  #
@@ -100,10 +100,11 @@ module Num4RegAnaLib
100
100
  # "slope": [3.47, 0.53], # 回帰係数
101
101
  # }
102
102
  def line_reg_ana(yi, xij)
103
- ret = @regana.lineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
103
+ multRet = @multana.lineRegAna(yi.to_java(Java::double), xij.to_java(Java::double[]))
104
+
104
105
  retRb = {
105
- "intercept": ret.getIntercept(), # 定数項
106
- "slope": ret.getSlope().to_a, # 回帰係数
106
+ "intercept": multRet.getIntercept(), # 定数項
107
+ "slope": multRet.getSlope().to_a, # 回帰係数
107
108
  }
108
109
  return retRb
109
110
  end
@@ -131,7 +132,7 @@ module Num4RegAnaLib
131
132
  # regana.getr2(yi, xi)
132
133
  # => 0.858
133
134
  def getr2(yi, xij)
134
- return @regana.getR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
135
+ return @multana.getR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
135
136
  end
136
137
  # 自由度調整済み決定係数
137
138
  #
@@ -157,7 +158,7 @@ module Num4RegAnaLib
157
158
  # regana.getadjr2(yi, xij)
158
159
  # => 0.8176
159
160
  def getadjr2(yi, xij)
160
- return @regana.getAdjR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
161
+ return @multana.getAdjR2(yi.to_java(Java::double), xij.to_java(Java::double[]))
161
162
  end
162
163
 
163
164
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: num4regana
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.1
4
+ version: 0.0.2
5
5
  platform: java
6
6
  authors:
7
7
  - siranovel
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-06-27 00:00:00.000000000 Z
11
+ date: 2024-08-08 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: rake
@@ -61,7 +61,7 @@ files:
61
61
  - Gemfile
62
62
  - LICENSE
63
63
  - Rakefile
64
- - ext/num4regana/OLSMultRegAna.java
64
+ - ext/num4regana/MultRegAna.java
65
65
  - ext/num4regana/SmplRegAna.java
66
66
  - lib/commons-math3-3.6.1.jar
67
67
  - lib/num4regana.rb
@@ -1,75 +0,0 @@
1
- import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression;
2
-
3
- public class OLSMultRegAna {
4
- private static OLSMultRegAna regana = new OLSMultRegAna();
5
- public static OLSMultRegAna getInstance() {
6
- return regana;
7
- }
8
- public LineReg lineRegAna(double[] yi, double xij[][]) {
9
- LineRegAna line = new LineRegAna();
10
-
11
- return line.lineRegAna(yi, xij);
12
- }
13
- public double getR2(double[] yi, double xij[][]) {
14
- LineRegAna line = new LineRegAna();
15
-
16
- return line.getR2(yi, xij);
17
- }
18
- public double getAdjR2(double[] yi, double xij[][]) {
19
- LineRegAna line = new LineRegAna();
20
-
21
- return line.getAdjR2(yi, xij);
22
- }
23
- /*********************************/
24
- /* interface define */
25
- /*********************************/
26
- /*********************************/
27
- /* class define */
28
- /*********************************/
29
- public class LineReg {
30
- private double a = 0.0;
31
- private double[] b = null;
32
- public LineReg(double[] b) {
33
- this.a = b[0];
34
- this.b = new double[b.length - 1];
35
- for (int i = 0; i < this.b.length; i++) {
36
- this.b[i] = b[i + 1];
37
- }
38
- }
39
- public double getIntercept() {
40
- return a;
41
- }
42
- public double[] getSlope() {
43
- return b;
44
- }
45
- }
46
- private class LineRegAna {
47
- // 最小2乗法
48
- public LineReg lineRegAna(double[] yi, double xij[][]) {
49
- OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
50
-
51
- regression.newSampleData(yi, xij);
52
-
53
- double[] beta = regression.estimateRegressionParameters();
54
-
55
- LineReg ret = new LineReg(beta);
56
- return ret;
57
- }
58
- // 決定係数取得
59
- public double getR2(double[] yi, double xij[][]) {
60
- OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
61
-
62
- regression.newSampleData(yi, xij);
63
- return regression.calculateRSquared();
64
- }
65
- // 自由度調整済み決定係数
66
- public double getAdjR2(double[] yi, double xij[][]) {
67
- OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
68
-
69
- regression.newSampleData(yi, xij);
70
- return regression.calculateAdjustedRSquared();
71
- }
72
-
73
- }
74
- }
75
-