num4inte 0.0.1 → 0.1.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +16 -0
- data/ext/num4inte/CNum4Inte.c +120 -20
- data/ext/num4inte/CNum4Inte.h +32 -7
- data/ext/num4inte/Rakefile +1 -1
- data/lib/num4inte.rb +37 -13
- metadata +4 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 1f3bd51f9372806b1b4251367e31852d5fa1ceab2a154b96481d8c193867e1ba
|
4
|
+
data.tar.gz: 0b40e2490195c0b39c71fd39d64c6c63f375ffc585376dc2727255d0297accc5
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 983873e08341371a05526319aaede30562dac9c1a3ba29ea42538aedfdffd4c2f00300df688c745fb971bee89172ea22d56832fd343d44167ba751a9acb6d3f0
|
7
|
+
data.tar.gz: cf9f75b196b7c711084b63d0fad68ade85866073c609ca6c8cfe50b68d137c2dc8af43c4d4aca6b2db52ce331a172b2859644c958c2570277fbdf9bd1e021a1a
|
data/CHANGELOG.md
CHANGED
@@ -2,6 +2,22 @@
|
|
2
2
|
|
3
3
|
## Unreleased
|
4
4
|
|
5
|
+
## [0.1.2] - 2023-05-24
|
6
|
+
|
7
|
+
### Added
|
8
|
+
- add function of gaussLegendreRule.
|
9
|
+
|
10
|
+
## [0.1.1] - 2023-04-27
|
11
|
+
|
12
|
+
### Added
|
13
|
+
- add function of simpsonRule.
|
14
|
+
- add assert(a < b);
|
15
|
+
|
16
|
+
### Fixed
|
17
|
+
- change from leftReimannSumMetod to leftReimannSumMethod.
|
18
|
+
- change from rigtReimannSumMetod to rigtReimannSumMethod.
|
19
|
+
- change from newtonMetod to trapezioidalRule.
|
20
|
+
|
5
21
|
## [0.0.1] - 2023-04-25
|
6
22
|
|
7
23
|
### Fixed
|
data/ext/num4inte/CNum4Inte.c
CHANGED
@@ -3,13 +3,50 @@
|
|
3
3
|
#include <assert.h>
|
4
4
|
#include "CNum4Inte.h"
|
5
5
|
|
6
|
-
static double
|
6
|
+
static double CNum4Inte_doLeftReimannSumMethod(double a, double b, double h, Func func);
|
7
7
|
static double CNum4Inte_doRigtReimannSumMetod(double a, double b, double h, Func func);
|
8
|
-
static double
|
8
|
+
static double CNum4Inte_doTrapezioidalRule(double a, double b, double h, Func func);
|
9
|
+
static double CNum4Inte_doSimpsonRule(double a, double b, double h, Func func);
|
10
|
+
static double CNum4Inte_doGaussLegendreRule(int n, double a, double b, double h, Func func);
|
9
11
|
static CNum4Inte _cNum4Inte = {
|
10
|
-
.
|
11
|
-
|
12
|
-
|
12
|
+
.reimann = {
|
13
|
+
.FP_leftReimannSumMethod = CNum4Inte_doLeftReimannSumMethod,
|
14
|
+
.FP_rigtReimannSumMethod = CNum4Inte_doRigtReimannSumMetod,
|
15
|
+
},
|
16
|
+
.newton = {
|
17
|
+
.FP_trapezioidalRule = CNum4Inte_doTrapezioidalRule,
|
18
|
+
.FP_simpsonRule = CNum4Inte_doSimpsonRule,
|
19
|
+
},
|
20
|
+
.gauss = {
|
21
|
+
.FP_gaussLegendreRule = CNum4Inte_doGaussLegendreRule,
|
22
|
+
},
|
23
|
+
};
|
24
|
+
// ガウス・テーブル
|
25
|
+
// n = 1
|
26
|
+
// xi = 0 wi = 2
|
27
|
+
// n = 2
|
28
|
+
// xi = ±1/sqrt(3)=0.577350 wi = 1
|
29
|
+
// n = 3
|
30
|
+
// xi = 0 wi = 8/9
|
31
|
+
// xi = ±sqrt(3/5)=0.774597 wi = 5/9
|
32
|
+
// n = 4
|
33
|
+
// xi = ±sqrt(3/7-2/7sqrt(6/5))=0.339981 wi = (18+sqrt(30))/36=0.652145
|
34
|
+
// xi = ±sqrt(3/7+2/7sqrt(6/5))=0.861136 wi = (18-sqrt(30))/36=0.347855
|
35
|
+
// n = 5
|
36
|
+
// xi = 0 wi = 128/225
|
37
|
+
// xi = 1/3*sqrt(5-2sqrt(10/7))=0.538469 wi = (322+13sqrt(70))/900:0.478629
|
38
|
+
// xi = 1/3*sqrt(5+2sqrt(10/7))=0.906180 wi = (322-13sqrt(70))/900:0.236927
|
39
|
+
static GaussTbl gaussTbl[] = {
|
40
|
+
[0] = {.xi = {[0] = 0.0},
|
41
|
+
.wi = {[0] = 2.0}},
|
42
|
+
[1] = {.xi = {[0] = -0.577350, [1] = 0.577350},
|
43
|
+
.wi = {[0] = 1.0, [1] = 1.0}},
|
44
|
+
[2] = {.xi = {[0] = 0.0, [1] = -0.774597, [2] = 0.774597},
|
45
|
+
.wi = {[0] = 0.888889, [1] = 0.555556, [2] = 0.555556}},
|
46
|
+
[3] = {.xi = {[0] = -0.339981, [1] = 0.339981, [2] = -0.861136, [3] = 0.861136},
|
47
|
+
.wi = {[0] = 0.652145, [1] = 0.652145, [2] = 0.347855, [3] = 0.347855}},
|
48
|
+
[4] = {.xi = {[0] = 0.0, [1] = -0.538469, [2] = 0.538469, [3] = -0.906180, [4] = 0.906180},
|
49
|
+
.wi = {[0] = 0.568889, [1] = 0.478629, [2] = 0.478629, [3] = 0.236927, [4] = 0.236927}},
|
13
50
|
};
|
14
51
|
/**************************************/
|
15
52
|
/* InterFface部 */
|
@@ -17,23 +54,41 @@ static CNum4Inte _cNum4Inte = {
|
|
17
54
|
/**************************************/
|
18
55
|
/* Class部 */
|
19
56
|
/**************************************/
|
20
|
-
double
|
57
|
+
double CNum4Inte_reimann_leftReimannSumMethod(double a, double b, double h, Func func)
|
58
|
+
{
|
59
|
+
assert(func != 0);
|
60
|
+
assert(a < b);
|
61
|
+
|
62
|
+
return _cNum4Inte.reimann.FP_leftReimannSumMethod(a, b, h, func);
|
63
|
+
}
|
64
|
+
double CNum4Inte_reimann_rigtReimannSumMethod(double a, double b, double h, Func func)
|
65
|
+
{
|
66
|
+
assert(func != 0);
|
67
|
+
assert(a < b);
|
68
|
+
|
69
|
+
return _cNum4Inte.reimann.FP_rigtReimannSumMethod(a, b, h, func);
|
70
|
+
}
|
71
|
+
double CNum4Inte_rewton_trapezioidalRule(double a, double b, double h, Func func)
|
21
72
|
{
|
22
73
|
assert(func != 0);
|
74
|
+
assert(a < b);
|
23
75
|
|
24
|
-
return _cNum4Inte.
|
76
|
+
return _cNum4Inte.newton.FP_trapezioidalRule(a, b, h, func);
|
25
77
|
}
|
26
|
-
double
|
78
|
+
double CNum4Inte_rewton_simpsonRule(double a, double b, double h, Func func)
|
27
79
|
{
|
28
80
|
assert(func != 0);
|
81
|
+
assert(a < b);
|
29
82
|
|
30
|
-
return _cNum4Inte.
|
83
|
+
return _cNum4Inte.newton.FP_simpsonRule(a, b, h, func);
|
31
84
|
}
|
32
|
-
double
|
85
|
+
double CNum4Inte_gauss_gaussLegendreRule(int n, double a, double b, double h, Func func)
|
33
86
|
{
|
34
87
|
assert(func != 0);
|
88
|
+
assert(a < b);
|
89
|
+
assert((1 <= n) && (n <= 5));
|
35
90
|
|
36
|
-
return _cNum4Inte.
|
91
|
+
return _cNum4Inte.gauss.FP_gaussLegendreRule(n, a, b, h, func);
|
37
92
|
}
|
38
93
|
/**************************************/
|
39
94
|
/* 処理実行部 */
|
@@ -41,10 +96,10 @@ double CNum4Inte_newtonMethod(double a, double b, double h, Func func)
|
|
41
96
|
/*
|
42
97
|
* 左リーマン和法
|
43
98
|
*/
|
44
|
-
static double
|
99
|
+
static double CNum4Inte_doLeftReimannSumMethod(double a, double b, double h, Func func)
|
45
100
|
{
|
46
101
|
double rimann = 0.0;
|
47
|
-
double x
|
102
|
+
double x;
|
48
103
|
|
49
104
|
for (x = a; x < b; x += h) {
|
50
105
|
rimann += func(x);
|
@@ -57,7 +112,7 @@ static double CNum4Inte_doLeftReimannSumMetod(double a, double b, double h, Func
|
|
57
112
|
static double CNum4Inte_doRigtReimannSumMetod(double a, double b, double h, Func func)
|
58
113
|
{
|
59
114
|
double rimann = 0.0;
|
60
|
-
double x
|
115
|
+
double x;
|
61
116
|
|
62
117
|
for (x = a; x < b; x += h) {
|
63
118
|
rimann += func(x + h);
|
@@ -65,21 +120,66 @@ static double CNum4Inte_doRigtReimannSumMetod(double a, double b, double h, Func
|
|
65
120
|
return rimann * h;
|
66
121
|
}
|
67
122
|
/*
|
68
|
-
*
|
123
|
+
* 台形公式
|
69
124
|
*/
|
70
|
-
static double
|
125
|
+
static double CNum4Inte_doTrapezioidalRule(double a, double b, double h, Func func)
|
71
126
|
{
|
72
|
-
double
|
73
|
-
double x = 0.0;
|
127
|
+
double trapezoidal = 0.0;
|
74
128
|
double fx = func(a);
|
75
129
|
double fxh = 0.0;
|
130
|
+
double x;
|
76
131
|
|
77
132
|
for (x = a; x < b; x += h) {
|
78
133
|
fxh = func(x + h);
|
79
|
-
|
134
|
+
trapezoidal += (fx + fxh);
|
80
135
|
fx = fxh;
|
81
136
|
}
|
82
|
-
return
|
137
|
+
return trapezoidal * h / 2.0;
|
138
|
+
}
|
139
|
+
/*
|
140
|
+
* シンプソンの公式
|
141
|
+
*/
|
142
|
+
static double CNum4Inte_doSimpsonRule(double a, double b, double h, Func func)
|
143
|
+
{
|
144
|
+
double simpson = 0.0;
|
145
|
+
double fx = func(a);
|
146
|
+
double fxh = 0.0;
|
147
|
+
double h2 = h / 2.0;
|
148
|
+
double x;
|
149
|
+
|
150
|
+
for (x = a; x < b; x += h) {
|
151
|
+
double fxh2 = func(x + h2);
|
152
|
+
double fxh = func(x + h);
|
153
|
+
|
154
|
+
simpson += (fx + fxh + 4 * fxh2);
|
155
|
+
fx = fxh2;
|
156
|
+
}
|
157
|
+
return simpson * h / 6.0;
|
158
|
+
|
159
|
+
}
|
160
|
+
/*
|
161
|
+
* ガウス・ルジャンドルの公式
|
162
|
+
*/
|
163
|
+
static double CNum4Inte_doGaussLegendreRule(int n, double a, double b, double h, Func func)
|
164
|
+
{
|
165
|
+
double x;
|
166
|
+
double gauss = 0.0;
|
167
|
+
GaussTbl *pt = &gaussTbl[n - 1];
|
168
|
+
|
169
|
+
for (x = a; x < b; x += h) {
|
170
|
+
int i;
|
171
|
+
double xa = x;
|
172
|
+
double xb = x + h;
|
173
|
+
double bMa = (xb - xa) / 2.0;
|
174
|
+
double aPb = (xa + xb) / 2.0;
|
175
|
+
double wifi = 0.0;
|
176
|
+
|
177
|
+
for (i = 0; i < n; i++) {
|
178
|
+
wifi += pt->wi[i] * func(bMa * pt->xi[i] + aPb);
|
179
|
+
}
|
180
|
+
gauss += bMa * wifi;
|
181
|
+
}
|
182
|
+
return gauss;
|
83
183
|
}
|
84
184
|
|
85
185
|
|
data/ext/num4inte/CNum4Inte.h
CHANGED
@@ -5,21 +5,46 @@
|
|
5
5
|
/* 構造体宣言 */
|
6
6
|
/**************************************/
|
7
7
|
typedef struct _CNum4Inte CNum4Inte;
|
8
|
+
typedef struct _CReimann CReimann;
|
9
|
+
typedef struct _CNewton CNewton;
|
10
|
+
typedef struct _CGauss CGauss;
|
8
11
|
typedef double (*Func)(double x);
|
12
|
+
typedef struct _GaussTbl GaussTbl;
|
9
13
|
|
14
|
+
struct _CReimann
|
15
|
+
{
|
16
|
+
double (*FP_leftReimannSumMethod)(double a, double b, double h, Func func);
|
17
|
+
double (*FP_rigtReimannSumMethod)(double a, double b, double h, Func func);
|
18
|
+
};
|
19
|
+
struct _CNewton
|
20
|
+
{
|
21
|
+
double (*FP_trapezioidalRule)(double a, double b, double h, Func func);
|
22
|
+
double (*FP_simpsonRule)(double a, double b, double h, Func func);
|
23
|
+
};
|
24
|
+
struct _CGauss
|
25
|
+
{
|
26
|
+
double (*FP_gaussLegendreRule)(int n, double a, double b, double h, Func func);
|
27
|
+
};
|
10
28
|
struct _CNum4Inte
|
11
29
|
{
|
12
|
-
|
13
|
-
|
14
|
-
|
30
|
+
CReimann reimann;
|
31
|
+
CNewton newton;
|
32
|
+
CGauss gauss;
|
33
|
+
};
|
34
|
+
struct _GaussTbl
|
35
|
+
{
|
36
|
+
double xi[5];
|
37
|
+
double wi[5];
|
15
38
|
};
|
16
39
|
/**************************************/
|
17
40
|
/* define宣言 */
|
18
41
|
/**************************************/
|
19
42
|
/**************************************/
|
20
|
-
/* プロトタイプ宣言
|
43
|
+
/* プロトタイプ宣言 */
|
21
44
|
/**************************************/
|
22
|
-
double
|
23
|
-
double
|
24
|
-
double
|
45
|
+
double CNum4Inte_reimann_leftReimannSumMethod(double a, double b, double h, Func func);
|
46
|
+
double CNum4Inte_reimann_rigtReimannSumMethod(double a, double b, double h, Func func);
|
47
|
+
double CNum4Inte_rewton_trapezioidalRule(double a, double b, double h, Func func);
|
48
|
+
double CNum4Inte_rewton_simpsonRule(double a, double b, double h, Func func);
|
49
|
+
double CNum4Inte_gauss_gaussLegendreRule(int n, double a, double b, double h, Func func);
|
25
50
|
#endif
|
data/ext/num4inte/Rakefile
CHANGED
data/lib/num4inte.rb
CHANGED
@@ -17,39 +17,63 @@ module Num4InteLib
|
|
17
17
|
|
18
18
|
#
|
19
19
|
# 左リーマン和法
|
20
|
-
# @overload
|
21
|
-
# y =
|
20
|
+
# @overload leftReimannSumMethod(a, b, h, func)
|
21
|
+
# y = leftReimannSumMethod(a, b, h, func)
|
22
22
|
# @param [double] a aの値
|
23
23
|
# @param [double] b bの値
|
24
24
|
# @param [double] h 刻み幅
|
25
25
|
# @param [callback] func xiに対する傾きを計算する関数
|
26
26
|
# @return [double] [a,b]の間の積分値
|
27
27
|
#
|
28
|
-
attach_function :
|
29
|
-
:
|
28
|
+
attach_function :leftReimannSumMethod,
|
29
|
+
:CNum4Inte_reimann_leftReimannSumMethod, [:double, :double, :double, :f], :double
|
30
30
|
#
|
31
31
|
# 右リーマン和法
|
32
|
-
# @overload
|
33
|
-
# y =
|
32
|
+
# @overload rigtReimannSumMethod(a, b, h, func)
|
33
|
+
# y = rigtReimannSumMethod(a, b, h, func)
|
34
34
|
# @param [double] a aの値
|
35
35
|
# @param [double] b bの値
|
36
36
|
# @param [double] h 刻み幅
|
37
37
|
# @param [callback] func xiに対する傾きを計算する関数
|
38
38
|
# @return [double] [a,b]の間の積分値
|
39
39
|
#
|
40
|
-
attach_function :
|
41
|
-
:
|
40
|
+
attach_function :rigtReimannSumMethod,
|
41
|
+
:CNum4Inte_reimann_rigtReimannSumMethod, [:double, :double, :double, :f], :double
|
42
42
|
#
|
43
|
-
#
|
44
|
-
# @overload
|
45
|
-
# y =
|
43
|
+
# ニュートン・コーツ法(1次:台形公式)
|
44
|
+
# @overload trapezioidalRule(a, b, h, func)
|
45
|
+
# y = trapezioidalRule(a, b, h, func)
|
46
46
|
# @param [double] a aの値
|
47
47
|
# @param [double] b bの値
|
48
48
|
# @param [double] h 刻み幅
|
49
49
|
# @param [callback] func xiに対する傾きを計算する関数
|
50
50
|
# @return [double] [a,b]の間の積分値
|
51
51
|
#
|
52
|
-
attach_function :
|
53
|
-
:
|
52
|
+
attach_function :trapezioidalRule,
|
53
|
+
:CNum4Inte_rewton_trapezioidalRule, [:double, :double, :double, :f], :double
|
54
|
+
#
|
55
|
+
# ニュートン・コーツ法(2次:シンプソンの公式)
|
56
|
+
# @overload simpsonRule(a, b, h, func)
|
57
|
+
# y = simpsonRule(a, b, h, func)
|
58
|
+
# @param [double] a aの値
|
59
|
+
# @param [double] b bの値
|
60
|
+
# @param [double] h 刻み幅
|
61
|
+
# @param [callback] func xiに対する傾きを計算する関数
|
62
|
+
# @return [double] [a,b]の間の積分値
|
63
|
+
#
|
64
|
+
attach_function :simpsonRule,
|
65
|
+
:CNum4Inte_rewton_simpsonRule, [:double, :double, :double, :f], :double
|
66
|
+
#
|
67
|
+
# ガウス求積法
|
68
|
+
# @overload gaussLegendreRule(n, a, b, h, func)
|
69
|
+
# y = gaussLegendreRule(n, a, b, h, func)
|
70
|
+
# @param [int] n 分割数
|
71
|
+
# @param [double] a aの値
|
72
|
+
# @param [double] b bの値
|
73
|
+
# @param [double] h 刻み幅
|
74
|
+
# @param [callback] func xiに対する傾きを計算する関数
|
75
|
+
# @return [double] [a,b]の間の積分値
|
76
|
+
attach_function :gaussLegendreRule,
|
77
|
+
:CNum4Inte_gauss_gaussLegendreRule, [:int, :double, :double, :double, :f], :double
|
54
78
|
end
|
55
79
|
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4inte
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.1.2
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-
|
11
|
+
date: 2023-05-24 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: ffi-compiler
|
@@ -69,8 +69,9 @@ licenses:
|
|
69
69
|
- MIT
|
70
70
|
metadata:
|
71
71
|
changelog_uri: http://github.com/siranovel/num4integral/blob/main/CHANGELOG.md
|
72
|
-
documentation_uri: https://rubydoc.info/gems/num4inte/0.
|
72
|
+
documentation_uri: https://rubydoc.info/gems/num4inte/0.1.2
|
73
73
|
homepage_uri: http://github.com/siranovel/num4integral
|
74
|
+
wiki_uri: https://github.com/siranovel/mydocs/tree/main/num4integral
|
74
75
|
post_install_message:
|
75
76
|
rdoc_options: []
|
76
77
|
require_paths:
|