num4anova 0.1.3-java → 0.2.1-java
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/ext/num4anova/Ancova.java +125 -125
- data/lib/num4anova.rb +72 -80
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: cee991016acc5e70a9d573a3c854a4c59e0f7d743e68873fe17b0a7e9fd105b3
|
4
|
+
data.tar.gz: f1c465691191a15cc751956129a4bc8470ecec63a14d7cea8bd04faf47df61e6
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: f8608fc8d57d8a1da8fa90b54463d0e7a8b8a43cf2f2fe020b7584649a397d952b2d441730af24c9dbcfebae90c73b0953be29934055eca70f408b1e11cec0d0
|
7
|
+
data.tar.gz: d164367e6427c6339b89a6be3ad8e9b43cd7ea6c1a42c8c3c6b3eea0fbe971e723761f7904abe386e9437396a19b3030bcd3d1f60e6abda276ff0e1c8d1e2d88
|
data/CHANGELOG.md
CHANGED
data/ext/num4anova/Ancova.java
CHANGED
@@ -6,38 +6,38 @@ public class Ancova {
|
|
6
6
|
public static Ancova getInstance() {
|
7
7
|
return ancova;
|
8
8
|
}
|
9
|
-
public boolean parallelTest(double[][][] xi, double a) {
|
9
|
+
public boolean parallelTest(double yi[][], double[][] xi, double a) {
|
10
10
|
HypothesisTest hypoth = new Parallettest();
|
11
11
|
|
12
|
-
double statistic = hypoth.calcTestStatistic(xi);
|
12
|
+
double statistic = hypoth.calcTestStatistic(yi, xi);
|
13
13
|
return hypoth.executeTest(statistic, a);
|
14
14
|
}
|
15
|
-
public boolean significanceTest(double[][][] xi, double a) {
|
15
|
+
public boolean significanceTest(double yi[][], double[][] xi, double a) {
|
16
16
|
HypothesisTest hypoth = new SignificanceTest();
|
17
17
|
|
18
|
-
double statistic = hypoth.calcTestStatistic(xi);
|
18
|
+
double statistic = hypoth.calcTestStatistic(yi, xi);
|
19
19
|
return hypoth.executeTest(statistic, a);
|
20
20
|
}
|
21
|
-
public boolean differenceTest(double[][][] xi, double a) {
|
21
|
+
public boolean differenceTest(double yi[][], double[][] xi, double a) {
|
22
22
|
HypothesisTest hypoth = new DifferenceTest();
|
23
23
|
|
24
|
-
double statistic = hypoth.calcTestStatistic(xi);
|
24
|
+
double statistic = hypoth.calcTestStatistic(yi, xi);
|
25
25
|
return hypoth.executeTest(statistic, a);
|
26
26
|
}
|
27
|
-
public Interval[] intervalEstim(double[][][] xi, double a) {
|
27
|
+
public Interval[] intervalEstim(double yi[][], double[][] xi, double a) {
|
28
28
|
Estim estim = new IntervalEstim();
|
29
29
|
|
30
|
-
return estim.calcInterval(xi, a);
|
30
|
+
return estim.calcInterval(yi, xi, a);
|
31
31
|
}
|
32
32
|
/*********************************/
|
33
33
|
/* interface define */
|
34
34
|
/*********************************/
|
35
35
|
private interface HypothesisTest {
|
36
|
-
double calcTestStatistic(double[][][] xi);
|
36
|
+
double calcTestStatistic(double yi[][], double[][] xi);
|
37
37
|
boolean executeTest(double statistic, double a);
|
38
38
|
}
|
39
39
|
private interface Estim {
|
40
|
-
Interval[] calcInterval(double[][][] xi, double a);
|
40
|
+
Interval[] calcInterval(double yi[][], double[][] xi, double a);
|
41
41
|
}
|
42
42
|
/*********************************/
|
43
43
|
/* class define */
|
@@ -53,7 +53,7 @@ public class Ancova {
|
|
53
53
|
public double getMax() { return this.max; }
|
54
54
|
}
|
55
55
|
private class RegressionLine {
|
56
|
-
protected int calcSumn(double[][]
|
56
|
+
protected int calcSumn(double[][] xi) {
|
57
57
|
int sum = 0;
|
58
58
|
|
59
59
|
for(int i = 0; i < xi.length; i++) {
|
@@ -62,69 +62,69 @@ public class Ancova {
|
|
62
62
|
return sum;
|
63
63
|
}
|
64
64
|
// 全変動
|
65
|
-
private double calcSty(double[][]
|
66
|
-
double sumy2 = calcSumy2(
|
67
|
-
double sumy = calcSumy(
|
65
|
+
private double calcSty(double yi[][], int sumn) {
|
66
|
+
double sumy2 = calcSumy2(yi);
|
67
|
+
double sumy = calcSumy(yi);
|
68
68
|
|
69
69
|
return sumy2 - sumy*sumy / sumn;
|
70
70
|
}
|
71
|
-
private double calcStx(double[][]
|
71
|
+
private double calcStx(double[][] xi, int sumn) {
|
72
72
|
double sumx2 = calcSumx2(xi);
|
73
73
|
double sumx = calcSumx(xi);
|
74
74
|
|
75
75
|
return sumx2 - sumx*sumx / sumn;
|
76
76
|
}
|
77
|
-
private double calcStyx(double[][][] xi, int sumn) {
|
77
|
+
private double calcStyx(double yi[][], double[][] xi, int sumn) {
|
78
78
|
double sumx = calcSumx(xi);
|
79
|
-
double sumy = calcSumy(
|
80
|
-
double sumyx = calcSumyx(xi);
|
79
|
+
double sumy = calcSumy(yi);
|
80
|
+
double sumyx = calcSumyx(yi, xi);
|
81
81
|
|
82
82
|
return sumyx - sumy*sumx / sumn;
|
83
83
|
}
|
84
84
|
// 水準間変動
|
85
|
-
private double calcSay(double[][]
|
86
|
-
double sumy = calcSumy(
|
85
|
+
private double calcSay(double yi[][], int sumn) {
|
86
|
+
double sumy = calcSumy(yi);
|
87
87
|
|
88
|
-
return calcSumay(
|
88
|
+
return calcSumay(yi) - sumy*sumy / sumn;
|
89
89
|
}
|
90
|
-
private double calcSax(double[][]
|
90
|
+
private double calcSax(double[][] xi, int sumn) {
|
91
91
|
double sumx = calcSumx(xi);
|
92
92
|
|
93
93
|
return calcSumax(xi) - sumx*sumx / sumn;
|
94
94
|
}
|
95
|
-
private double calcSayx(double[][][] xi, int sumn) {
|
95
|
+
private double calcSayx(double yi[][], double[][] xi, int sumn) {
|
96
96
|
double sumx = calcSumx(xi);
|
97
|
-
double sumy = calcSumy(
|
97
|
+
double sumy = calcSumy(yi);
|
98
98
|
|
99
|
-
return calcSumayx(xi) - sumy*sumx / sumn;
|
99
|
+
return calcSumayx(yi, xi) - sumy*sumx / sumn;
|
100
100
|
}
|
101
101
|
// 水準内変動
|
102
|
-
protected double calcSex(double[][]
|
102
|
+
protected double calcSex(double[][] xi, int sumn) {
|
103
103
|
return calcStx(xi, sumn) - calcSax(xi, sumn);
|
104
104
|
}
|
105
|
-
protected double calcSey(double[][]
|
106
|
-
return calcSty(
|
105
|
+
protected double calcSey(double yi[][], int sumn) {
|
106
|
+
return calcSty(yi, sumn) - calcSay(yi, sumn);
|
107
107
|
}
|
108
|
-
protected double calcSeyx(double[][][] xi, int sumn) {
|
109
|
-
return calcStyx(xi, sumn) - calcSayx(xi, sumn);
|
108
|
+
protected double calcSeyx(double yi[][], double[][] xi, int sumn) {
|
109
|
+
return calcStyx(yi, xi, sumn) - calcSayx(yi, xi, sumn);
|
110
110
|
}
|
111
111
|
|
112
112
|
// 平行性の検定
|
113
|
-
protected double calcbx(double[][][] xi) {
|
113
|
+
protected double calcbx(double yi[][], double[][] xi) {
|
114
114
|
double sum = 0.0;
|
115
115
|
|
116
|
-
for (int i = 0; i <
|
117
|
-
int n =
|
116
|
+
for (int i = 0; i < yi.length; i++) {
|
117
|
+
int n = yi[i].length;
|
118
118
|
double sumx = 0.0;
|
119
119
|
double sumy = 0.0;
|
120
120
|
double sumyx = 0.0;
|
121
121
|
double sumx2 = 0.0;
|
122
122
|
for (int j = 0; j < n; j++) {
|
123
|
-
sumx += xi[i][j]
|
124
|
-
sumy +=
|
125
|
-
sumyx += xi[i][j]
|
123
|
+
sumx += xi[i][j];
|
124
|
+
sumy += yi[i][j];
|
125
|
+
sumyx += xi[i][j] * yi[i][j];
|
126
126
|
|
127
|
-
sumx2 += xi[i][j]
|
127
|
+
sumx2 += xi[i][j] * xi[i][j];
|
128
128
|
|
129
129
|
}
|
130
130
|
double wki = n * sumyx - sumy * sumx;
|
@@ -135,12 +135,12 @@ public class Ancova {
|
|
135
135
|
return sum;
|
136
136
|
}
|
137
137
|
// 差の検定
|
138
|
-
protected double calcSa(double[][][] xi, int sumn) {
|
139
|
-
double sumty = calcSty(
|
140
|
-
double sumtyx = calcStyx(xi, sumn);
|
138
|
+
protected double calcSa(double yi[][], double[][] xi, int sumn) {
|
139
|
+
double sumty = calcSty(yi, sumn);
|
140
|
+
double sumtyx = calcStyx(yi, xi, sumn);
|
141
141
|
double sumtx = calcStx(xi, sumn);
|
142
|
-
double sumey = calcSey(
|
143
|
-
double sumeyx = calcSeyx(xi, sumn);
|
142
|
+
double sumey = calcSey(yi, sumn);
|
143
|
+
double sumeyx = calcSeyx(yi, xi, sumn);
|
144
144
|
double sumex = calcSex(xi, sumn);
|
145
145
|
|
146
146
|
return (sumty - sumtyx * sumtyx / sumtx)
|
@@ -148,90 +148,90 @@ public class Ancova {
|
|
148
148
|
}
|
149
149
|
|
150
150
|
// ETC
|
151
|
-
private double calcSumay(double[][]
|
151
|
+
private double calcSumay(double yi[][]) {
|
152
152
|
double sum = 0.0;
|
153
153
|
|
154
|
-
for (int i = 0; i <
|
154
|
+
for (int i = 0; i < yi.length; i++) {
|
155
155
|
double sumyi = 0.0;
|
156
|
-
for (int j = 0; j <
|
157
|
-
sumyi +=
|
156
|
+
for (int j = 0; j < yi[i].length; j++) {
|
157
|
+
sumyi += yi[i][j];
|
158
158
|
}
|
159
|
-
sum += sumyi * sumyi /
|
159
|
+
sum += sumyi * sumyi / yi[i].length;
|
160
160
|
}
|
161
161
|
return sum;
|
162
162
|
}
|
163
|
-
private double calcSumy2(double[][]
|
163
|
+
private double calcSumy2(double yi[][]) {
|
164
164
|
double sum = 0.0;
|
165
165
|
|
166
|
-
for (int i = 0; i <
|
167
|
-
for (int j = 0; j <
|
168
|
-
sum +=
|
166
|
+
for (int i = 0; i < yi.length; i++) {
|
167
|
+
for (int j = 0; j < yi[i].length; j++) {
|
168
|
+
sum += yi[i][j] * yi[i][j];
|
169
169
|
}
|
170
170
|
}
|
171
171
|
return sum;
|
172
172
|
}
|
173
|
-
private double calcSumx(double[][]
|
173
|
+
private double calcSumx(double[][] xi) {
|
174
174
|
double sum = 0.0;
|
175
175
|
|
176
176
|
for (int i = 0; i < xi.length; i++) {
|
177
177
|
for (int j = 0; j < xi[i].length; j++) {
|
178
|
-
sum += xi[i][j]
|
178
|
+
sum += xi[i][j];
|
179
179
|
}
|
180
180
|
}
|
181
181
|
return sum;
|
182
182
|
}
|
183
|
-
protected double calcSumx2(double[][]
|
183
|
+
protected double calcSumx2(double[][] xi) {
|
184
184
|
double sum = 0.0;
|
185
185
|
|
186
186
|
for (int i = 0; i < xi.length; i++) {
|
187
187
|
for (int j = 0; j < xi[i].length; j++) {
|
188
|
-
sum += xi[i][j]
|
188
|
+
sum += xi[i][j] * xi[i][j];
|
189
189
|
}
|
190
190
|
}
|
191
191
|
return sum;
|
192
192
|
}
|
193
|
-
protected double calcSumyx(double[][][] xi) {
|
193
|
+
protected double calcSumyx(double yi[][], double[][] xi) {
|
194
194
|
double sum = 0.0;
|
195
195
|
|
196
|
-
for (int i = 0; i <
|
197
|
-
for (int j = 0; j <
|
198
|
-
sum +=
|
196
|
+
for (int i = 0; i < yi.length; i++) {
|
197
|
+
for (int j = 0; j < yi[i].length; j++) {
|
198
|
+
sum += yi[i][j] * xi[i][j];
|
199
199
|
}
|
200
200
|
}
|
201
201
|
return sum;
|
202
202
|
}
|
203
|
-
private double calcSumayx(double[][][] xi) {
|
203
|
+
private double calcSumayx(double yi[][], double[][] xi) {
|
204
204
|
double sum = 0.0;
|
205
205
|
|
206
|
-
for (int i = 0; i <
|
206
|
+
for (int i = 0; i < yi.length; i++) {
|
207
207
|
double sumxi = 0.0;
|
208
208
|
double sumyi = 0.0;
|
209
|
-
for (int j = 0; j <
|
210
|
-
sumxi += xi[i][j]
|
211
|
-
sumyi +=
|
209
|
+
for (int j = 0; j < yi[i].length; j++) {
|
210
|
+
sumxi += xi[i][j];
|
211
|
+
sumyi += yi[i][j];
|
212
212
|
}
|
213
213
|
sum += sumxi * sumyi / xi[i].length;
|
214
214
|
}
|
215
215
|
return sum;
|
216
216
|
}
|
217
|
-
private double calcSumax(double[][]
|
217
|
+
private double calcSumax(double[][] xi) {
|
218
218
|
double sum = 0.0;
|
219
219
|
|
220
220
|
for (int i = 0; i < xi.length; i++) {
|
221
221
|
double sumxi = 0.0;
|
222
222
|
for (int j = 0; j < xi[i].length; j++) {
|
223
|
-
sumxi += xi[i][j]
|
223
|
+
sumxi += xi[i][j];
|
224
224
|
}
|
225
225
|
sum += sumxi * sumxi / xi[i].length;
|
226
226
|
}
|
227
227
|
return sum;
|
228
228
|
}
|
229
|
-
private double calcSumy(double[][]
|
229
|
+
private double calcSumy(double yi[][]) {
|
230
230
|
double sum = 0.0;
|
231
231
|
|
232
|
-
for (int i = 0; i <
|
233
|
-
for (int j = 0; j <
|
234
|
-
sum +=
|
232
|
+
for (int i = 0; i < yi.length; i++) {
|
233
|
+
for (int j = 0; j < yi[i].length; j++) {
|
234
|
+
sum += yi[i][j];
|
235
235
|
}
|
236
236
|
}
|
237
237
|
return sum;
|
@@ -242,32 +242,32 @@ public class Ancova {
|
|
242
242
|
private class Parallettest extends RegressionLine implements HypothesisTest {
|
243
243
|
private int n = 0;
|
244
244
|
private int m = 0;
|
245
|
-
public double calcTestStatistic(double[][][] xi) {
|
245
|
+
public double calcTestStatistic(double yi[][], double[][] xi) {
|
246
246
|
int sumn = calcSumn(xi);
|
247
|
-
n =
|
248
|
-
m = sumn - 2 *
|
247
|
+
n = yi.length - 1;
|
248
|
+
m = sumn - 2 * yi.length;
|
249
249
|
|
250
|
-
double vnp = calcVnp(xi, sumn);
|
251
|
-
double ve2 = calcVe2(xi, sumn);
|
250
|
+
double vnp = calcVnp(yi, xi, sumn);
|
251
|
+
double ve2 = calcVe2(yi, xi, sumn);
|
252
252
|
|
253
253
|
return vnp / ve2;
|
254
254
|
}
|
255
|
-
private double calcVnp(double[][][] xi, int sumn){
|
256
|
-
return calcSnp(xi, sumn) / n;
|
255
|
+
private double calcVnp(double yi[][], double[][] xi, int sumn){
|
256
|
+
return calcSnp(yi, xi, sumn) / n;
|
257
257
|
}
|
258
|
-
private double calcSnp(double[][][] xi, int sumn) {
|
259
|
-
double sumbx = calcbx(xi);
|
260
|
-
double sumeyx = calcSeyx(xi, sumn);
|
258
|
+
private double calcSnp(double yi[][], double[][] xi, int sumn) {
|
259
|
+
double sumbx = calcbx(yi, xi);
|
260
|
+
double sumeyx = calcSeyx(yi, xi, sumn);
|
261
261
|
double sumex = calcSex(xi, sumn);
|
262
262
|
|
263
263
|
return sumbx - sumeyx * sumeyx / sumex;
|
264
264
|
}
|
265
|
-
private double calcVe2(double[][][] xi, int sumn) {
|
266
|
-
return calcSe2(xi, sumn) / m;
|
265
|
+
private double calcVe2(double yi[][], double[][] xi, int sumn) {
|
266
|
+
return calcSe2(yi, xi, sumn) / m;
|
267
267
|
}
|
268
|
-
private double calcSe2(double[][][] xi, int sumn) {
|
269
|
-
double sumey = calcSey(
|
270
|
-
double sumbx = calcbx(xi);
|
268
|
+
private double calcSe2(double yi[][], double[][] xi, int sumn) {
|
269
|
+
double sumey = calcSey(yi, sumn);
|
270
|
+
double sumbx = calcbx(yi, xi);
|
271
271
|
|
272
272
|
return sumey - sumbx;
|
273
273
|
}
|
@@ -282,13 +282,13 @@ public class Ancova {
|
|
282
282
|
private class SignificanceTest extends RegressionLine implements HypothesisTest {
|
283
283
|
private int n = 0;
|
284
284
|
private int m = 0;
|
285
|
-
public double calcTestStatistic(double[][][] xi) {
|
285
|
+
public double calcTestStatistic(double yi[][], double[][] xi) {
|
286
286
|
int sumn = calcSumn(xi);
|
287
287
|
n = 1;
|
288
288
|
m = sumn - xi.length - 1;
|
289
289
|
|
290
|
-
double vr = calcVr(xi, sumn);
|
291
|
-
double ve = calcVe(xi, sumn);
|
290
|
+
double vr = calcVr(yi, xi, sumn);
|
291
|
+
double ve = calcVe(yi, xi, sumn);
|
292
292
|
|
293
293
|
return vr / ve;
|
294
294
|
}
|
@@ -298,16 +298,16 @@ public class Ancova {
|
|
298
298
|
|
299
299
|
return (statistic >= f) ? true : false;
|
300
300
|
}
|
301
|
-
private double calcVr(double[][][] xi, int sumn) {
|
302
|
-
double sumeyx = calcSeyx(xi, sumn);
|
301
|
+
private double calcVr(double yi[][], double[][] xi, int sumn) {
|
302
|
+
double sumeyx = calcSeyx(yi, xi, sumn);
|
303
303
|
double sumex = calcSex(xi, sumn);
|
304
304
|
|
305
305
|
return (sumeyx * sumeyx) / sumex;
|
306
306
|
}
|
307
|
-
private double calcVe(double[][][] xi, int sumn) {
|
308
|
-
double sumey = calcSey(
|
307
|
+
private double calcVe(double yi[][], double[][] xi, int sumn) {
|
308
|
+
double sumey = calcSey(yi, sumn);
|
309
309
|
double sumex = calcSex(xi, sumn);
|
310
|
-
double sumeyx = calcSeyx(xi, sumn);
|
310
|
+
double sumeyx = calcSeyx(yi, xi, sumn);
|
311
311
|
|
312
312
|
return (sumey * sumex - sumeyx * sumeyx) / (m * sumex);
|
313
313
|
}
|
@@ -316,13 +316,13 @@ public class Ancova {
|
|
316
316
|
private class DifferenceTest extends RegressionLine implements HypothesisTest {
|
317
317
|
private int n = 0;
|
318
318
|
private int m = 0;
|
319
|
-
public double calcTestStatistic(double[][][] xi) {
|
319
|
+
public double calcTestStatistic(double yi[][], double[][] xi) {
|
320
320
|
int sumn = calcSumn(xi);
|
321
|
-
n =
|
322
|
-
m = sumn -
|
321
|
+
n = yi.length - 1;
|
322
|
+
m = sumn - yi.length - 1;
|
323
323
|
|
324
|
-
double va = calcSa(xi, sumn) / n;
|
325
|
-
double ve = calcVe(xi, sumn);
|
324
|
+
double va = calcSa(yi, xi, sumn) / n;
|
325
|
+
double ve = calcVe(yi, xi, sumn);
|
326
326
|
|
327
327
|
return va / ve;
|
328
328
|
}
|
@@ -332,10 +332,10 @@ public class Ancova {
|
|
332
332
|
|
333
333
|
return (statistic >= f) ? true : false;
|
334
334
|
}
|
335
|
-
private double calcVe(double[][][] xi, int sumn) {
|
336
|
-
double sumey = calcSey(
|
335
|
+
private double calcVe(double yi[][], double[][] xi, int sumn) {
|
336
|
+
double sumey = calcSey(yi, sumn);
|
337
337
|
double sumex = calcSex(xi, sumn);
|
338
|
-
double sumeyx = calcSeyx(xi, sumn);
|
338
|
+
double sumeyx = calcSeyx(yi, xi, sumn);
|
339
339
|
|
340
340
|
return (sumey * sumex - sumeyx * sumeyx) / (m * sumex);
|
341
341
|
}
|
@@ -346,16 +346,16 @@ public class Ancova {
|
|
346
346
|
private int n = 0;
|
347
347
|
private int[] ni = null;
|
348
348
|
private double sumex = 0.0;
|
349
|
-
public Interval[] calcInterval(double[][][] xi, double a) {
|
349
|
+
public Interval[] calcInterval(double yi[][], double[][] xi, double a) {
|
350
350
|
Interval[] ret = new Interval[xi.length];
|
351
|
-
ni = calcNi(
|
351
|
+
ni = calcNi(yi);
|
352
352
|
int sumn = calcSumn(xi);
|
353
353
|
n = sumn - xi.length - 1;
|
354
354
|
sumex = calcSex(xi, sumn);
|
355
|
-
double ve = calcVe(xi, sumn);
|
356
|
-
double b = calcB(xi, sumn);
|
355
|
+
double ve = calcVe(yi, xi, sumn);
|
356
|
+
double b = calcB(yi, xi, sumn);
|
357
357
|
|
358
|
-
double[] meanyi = calcMeanyi(
|
358
|
+
double[] meanyi = calcMeanyi(yi);
|
359
359
|
double[] meanxi = calcMeanxi(xi);
|
360
360
|
double meanx = calcMeanx(xi);
|
361
361
|
|
@@ -372,56 +372,56 @@ public class Ancova {
|
|
372
372
|
|
373
373
|
return ret;
|
374
374
|
}
|
375
|
-
private int[] calcNi(double[][]
|
376
|
-
int[] ni = new int[
|
375
|
+
private int[] calcNi(double[][] yi) {
|
376
|
+
int[] ni = new int[yi.length];
|
377
377
|
|
378
|
-
for(int i = 0; i <
|
379
|
-
ni[i] =
|
378
|
+
for(int i = 0; i < yi.length; i++) {
|
379
|
+
ni[i] = yi[i].length;
|
380
380
|
}
|
381
381
|
return ni;
|
382
382
|
}
|
383
|
-
private double calcVe(double[][][] xi, int sumn) {
|
384
|
-
double sumey = calcSey(
|
385
|
-
double sumeyx = calcSeyx(xi, sumn);
|
383
|
+
private double calcVe(double[][] yi, double[][] xi, int sumn) {
|
384
|
+
double sumey = calcSey(yi, sumn);
|
385
|
+
double sumeyx = calcSeyx(yi, xi, sumn);
|
386
386
|
|
387
387
|
return (sumey * sumex - sumeyx * sumeyx) / (n * sumex);
|
388
388
|
}
|
389
|
-
private double calcB(double[][][] xi, int sumn) {
|
390
|
-
double sumeyx = calcSeyx(xi, sumn);
|
389
|
+
private double calcB(double[][] yi, double[][] xi, int sumn) {
|
390
|
+
double sumeyx = calcSeyx(yi, xi, sumn);
|
391
391
|
double sex = calcSex(xi, sumn);
|
392
392
|
|
393
393
|
return sumeyx / sex;
|
394
394
|
}
|
395
|
-
private double[] calcMeanyi(double[][]
|
396
|
-
double[] meanyi = new double[
|
395
|
+
private double[] calcMeanyi(double[][] yi) {
|
396
|
+
double[] meanyi = new double[yi.length];
|
397
397
|
|
398
|
-
for(int i = 0; i <
|
398
|
+
for(int i = 0; i < yi.length; i++) {
|
399
399
|
double sum = 0.0;
|
400
|
-
for(int j = 0; j <
|
401
|
-
sum +=
|
400
|
+
for(int j = 0; j < yi[i].length; j++) {
|
401
|
+
sum += yi[i][j];
|
402
402
|
}
|
403
|
-
meanyi[i] = sum /
|
403
|
+
meanyi[i] = sum / yi[i].length;
|
404
404
|
}
|
405
405
|
return meanyi;
|
406
406
|
}
|
407
|
-
private double[] calcMeanxi(double[][]
|
407
|
+
private double[] calcMeanxi(double[][] xi) {
|
408
408
|
double[] meanxi = new double[xi.length];
|
409
409
|
|
410
410
|
for(int i = 0; i < xi.length; i++) {
|
411
411
|
double sum = 0.0;
|
412
412
|
for(int j = 0; j < xi[i].length; j++) {
|
413
|
-
sum += xi[i][j]
|
413
|
+
sum += xi[i][j];
|
414
414
|
}
|
415
415
|
meanxi[i] = sum / xi[i].length;
|
416
416
|
}
|
417
417
|
return meanxi;
|
418
418
|
}
|
419
|
-
private double calcMeanx(double[][]
|
419
|
+
private double calcMeanx(double[][] xi) {
|
420
420
|
double sum = 0.0;
|
421
421
|
double n = 0;
|
422
422
|
for(int i = 0; i < xi.length; i++) {
|
423
423
|
for(int j = 0; j < xi[i].length; j++) {
|
424
|
-
sum += xi[i][j]
|
424
|
+
sum += xi[i][j];
|
425
425
|
n++;
|
426
426
|
}
|
427
427
|
}
|
data/lib/num4anova.rb
CHANGED
@@ -306,129 +306,121 @@ module Num4AnovaLib
|
|
306
306
|
end
|
307
307
|
# 回帰直線の平行性検定
|
308
308
|
#
|
309
|
-
# @overload parallel_test(xi, a)
|
310
|
-
# @param [array]
|
309
|
+
# @overload parallel_test(yi, xi, a)
|
310
|
+
# @param [array] yi データ(double[][])
|
311
|
+
# @param [array] xi データ(double[][])
|
311
312
|
# @param [double] a 有意水準
|
312
313
|
# @return [boolean] 検定結果(boolean true:棄却域内 false:棄却域外)
|
313
314
|
# @example
|
315
|
+
# yi = [
|
316
|
+
# [3, 5, 3],
|
317
|
+
# [3, 3, 8],
|
318
|
+
# [2, 2, 2],
|
319
|
+
# [3, 4, 2],
|
320
|
+
# [1, 2, 0],
|
321
|
+
# ]
|
314
322
|
# xi = [
|
315
|
-
# [
|
316
|
-
#
|
317
|
-
# ],
|
318
|
-
# [
|
319
|
-
#
|
320
|
-
# ],
|
321
|
-
# [
|
322
|
-
# [2,40], [2,45], [2,39],
|
323
|
-
# ],
|
324
|
-
# [
|
325
|
-
# [3,47], [4,52], [2,48],
|
326
|
-
# ],
|
327
|
-
# [
|
328
|
-
# [1,64], [2,80], [0,70],
|
329
|
-
# ],
|
323
|
+
# [35, 38, 39],
|
324
|
+
# [36, 39, 54],
|
325
|
+
# [40, 45, 39],
|
326
|
+
# [47, 52, 48],
|
327
|
+
# [64, 80, 70],
|
330
328
|
# ]
|
331
329
|
# ancova = Num4AnovaLib::Num4AncovaLib.new
|
332
|
-
# ancova.parallel_test(xi, 0.05)
|
330
|
+
# ancova.parallel_test(yi, xi, 0.05)
|
333
331
|
# => false
|
334
|
-
def parallel_test(xi, a)
|
335
|
-
@ancova.parallelTest(
|
332
|
+
def parallel_test(yi, xi, a)
|
333
|
+
@ancova.parallelTest(yi.to_java(Java::double[]), xi.to_java(Java::double[]), a)
|
336
334
|
end
|
337
335
|
# 回帰直線の有意性検定
|
338
336
|
#
|
339
|
-
# @overload significance_test(xi, a)
|
340
|
-
# @param [array]
|
337
|
+
# @overload significance_test(yi, xi, a)
|
338
|
+
# @param [array] yi データ(double[][])
|
339
|
+
# @param [array] xi データ(double[][])
|
341
340
|
# @param [double] a 有意水準
|
342
341
|
# @return [boolean] 検定結果(boolean true:棄却域内 false:棄却域外)
|
343
342
|
# @example
|
343
|
+
# yi = [
|
344
|
+
# [3, 5, 3],
|
345
|
+
# [3, 3, 8],
|
346
|
+
# [2, 2, 2],
|
347
|
+
# [3, 4, 2],
|
348
|
+
# [1, 2, 0],
|
349
|
+
# ]
|
344
350
|
# xi = [
|
345
|
-
# [
|
346
|
-
#
|
347
|
-
# ],
|
348
|
-
# [
|
349
|
-
#
|
350
|
-
# ],
|
351
|
-
# [
|
352
|
-
# [2,40], [2,45], [2,39],
|
353
|
-
# ],
|
354
|
-
# [
|
355
|
-
# [3,47], [4,52], [2,48],
|
356
|
-
# ],
|
357
|
-
# [
|
358
|
-
# [1,64], [2,80], [0,70],
|
359
|
-
# ],
|
351
|
+
# [35, 38, 39],
|
352
|
+
# [36, 39, 54],
|
353
|
+
# [40, 45, 39],
|
354
|
+
# [47, 52, 48],
|
355
|
+
# [64, 80, 70],
|
360
356
|
# ]
|
361
357
|
# ancova = Num4AnovaLib::Num4AncovaLib.new
|
362
|
-
# ancova.significance_test(xi, 0.05)
|
358
|
+
# ancova.significance_test(yi, xi, 0.05)
|
363
359
|
# => true
|
364
|
-
def significance_test(xi, a)
|
365
|
-
@ancova.significanceTest(
|
360
|
+
def significance_test(yi, xi, a)
|
361
|
+
@ancova.significanceTest(yi.to_java(Java::double[]), xi.to_java(Java::double[]), a)
|
366
362
|
end
|
367
363
|
# 水準間の差の検定
|
368
364
|
#
|
369
|
-
# @overload difference_test(xi, a)
|
370
|
-
# @param [array]
|
365
|
+
# @overload difference_test(yi, xi, a)
|
366
|
+
# @param [array] yi データ(double[][])
|
367
|
+
# @param [array] xi データ(double[][])
|
371
368
|
# @param [double] a 有意水準
|
372
369
|
# @return [boolean] 検定結果(boolean true:棄却域内 false:棄却域外)
|
373
370
|
# @example
|
371
|
+
# yi = [
|
372
|
+
# [3, 5, 3],
|
373
|
+
# [3, 3, 8],
|
374
|
+
# [2, 2, 2],
|
375
|
+
# [3, 4, 2],
|
376
|
+
# [1, 2, 0],
|
377
|
+
# ]
|
374
378
|
# xi = [
|
375
|
-
# [
|
376
|
-
#
|
377
|
-
# ],
|
378
|
-
# [
|
379
|
-
#
|
380
|
-
# ],
|
381
|
-
# [
|
382
|
-
# [2,40], [2,45], [2,39],
|
383
|
-
# ],
|
384
|
-
# [
|
385
|
-
# [3,47], [4,52], [2,48],
|
386
|
-
# ],
|
387
|
-
# [
|
388
|
-
# [1,64], [2,80], [0,70],
|
389
|
-
# ],
|
379
|
+
# [35, 38, 39],
|
380
|
+
# [36, 39, 54],
|
381
|
+
# [40, 45, 39],
|
382
|
+
# [47, 52, 48],
|
383
|
+
# [64, 80, 70],
|
390
384
|
# ]
|
391
385
|
# ancova = Num4AnovaLib::Num4AncovaLib.new
|
392
|
-
# ancova.difference_test(xi, 0.05)
|
386
|
+
# ancova.difference_test(yi, xi, 0.05)
|
393
387
|
# => true
|
394
|
-
def difference_test(xi, a)
|
395
|
-
@ancova.differenceTest(
|
388
|
+
def difference_test(yi, xi, a)
|
389
|
+
@ancova.differenceTest(yi.to_java(Java::double[]), xi.to_java(Java::double[]), a)
|
396
390
|
end
|
397
391
|
# 区間推定
|
398
392
|
#
|
399
|
-
# @overload interval_estim(xi, a)
|
400
|
-
# @param [array]
|
393
|
+
# @overload interval_estim(yi, xi, a)
|
394
|
+
# @param [array] yi データ(double[][])
|
395
|
+
# @param [array] xi データ(double[][])
|
401
396
|
# @param [double] a 有意水準
|
402
397
|
# @return [Hash] (min:下限信頼区間 max:上限信頼区間)
|
403
398
|
# @example
|
399
|
+
# yi = [
|
400
|
+
# [3, 5, 3],
|
401
|
+
# [3, 3, 8],
|
402
|
+
# [2, 2, 2],
|
403
|
+
# [3, 4, 2],
|
404
|
+
# [1, 2, 0],
|
405
|
+
# ]
|
404
406
|
# xi = [
|
405
|
-
# [
|
406
|
-
#
|
407
|
-
# ],
|
408
|
-
# [
|
409
|
-
#
|
410
|
-
# ],
|
411
|
-
# [
|
412
|
-
# [2,40], [2,45], [2,39],
|
413
|
-
# ],
|
414
|
-
# [
|
415
|
-
# [3,47], [4,52], [2,48],
|
416
|
-
# ],
|
417
|
-
# [
|
418
|
-
# [1,64], [2,80], [0,70],
|
419
|
-
# ],
|
407
|
+
# [35, 38, 39],
|
408
|
+
# [36, 39, 54],
|
409
|
+
# [40, 45, 39],
|
410
|
+
# [47, 52, 48],
|
411
|
+
# [64, 80, 70],
|
420
412
|
# ]
|
421
413
|
# ancova = Num4AnovaLib::Num4AncovaLib.new
|
422
|
-
# ancova.interval_estim(xi, 0.05)
|
414
|
+
# ancova.interval_estim(yi, xi, 0.05)
|
423
415
|
# =>
|
424
416
|
# {:min=>4.466605469341916, :max=>7.1909253948556096}
|
425
417
|
# {:min=>5.05699825110459, :max=>6.386335082228742}
|
426
418
|
# {:min=>2.510804295684195, :max=>4.250430272217034}
|
427
419
|
# {:min=>2.8089257316042135, :max=>2.9566298239513418}
|
428
420
|
# {:min=>-6.303283147572267, :max=>-0.6577045067487104}
|
429
|
-
def interval_estim(xi, a)
|
421
|
+
def interval_estim(yi, xi, a)
|
430
422
|
retRb = []
|
431
|
-
retJava = @ancova.intervalEstim(
|
423
|
+
retJava = @ancova.intervalEstim(yi.to_java(Java::double[]), xi.to_java(Java::double[]), a)
|
432
424
|
sz = retJava.size
|
433
425
|
sz.times do |i|
|
434
426
|
retRb.push(
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4anova
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.1
|
4
|
+
version: 0.2.1
|
5
5
|
platform: java
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-06-17 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|