num4anova 0.0.3-java → 0.0.4-java
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -1
- data/ext/num4anova/MultiComp.java +4 -1
- data/ext/num4anova/OneWayLayout.java +137 -0
- data/lib/num4anova.rb +58 -14
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: ca0164a7092861bfca67f257129332375e90bfae762365194ced78ef75a293a7
|
4
|
+
data.tar.gz: 16f17fb717e3d92c27c4c651e034704cd81609a3adc293555eac54f9209884be
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e14efb373cde03fc5872f3dfb1d4186e5d2263b0b7597970d1629c562cfb6696ecf2cdbfc3325aa2d732e252241de093c156b7d9da21b51a8ea305f3e24e0e0f
|
7
|
+
data.tar.gz: c9b7f310d00d060d1c6fee3e8e9f5c43fce812a65d51b192315c72a378de7e2bc775e1118346373a93047c1cd8880240d03d52309ec0d8f567481923f14e31b4
|
data/CHANGELOG.md
CHANGED
@@ -2,10 +2,15 @@
|
|
2
2
|
|
3
3
|
## Unreleased
|
4
4
|
|
5
|
+
## [0.0.4] - 2024-01-30
|
6
|
+
### add
|
7
|
+
- add function of replicate_plot
|
8
|
+
- add function of replicate_test
|
9
|
+
|
5
10
|
## [0.0.3] - 2024-01-26
|
6
11
|
|
7
12
|
### add
|
8
|
-
- add function of dunnet_test
|
13
|
+
- add function of dunnet_test
|
9
14
|
|
10
15
|
## [0.0.2] - 2024-01-23
|
11
16
|
|
@@ -249,6 +249,7 @@ public class MultiComp {
|
|
249
249
|
private double[] n = null;
|
250
250
|
protected int getK() { return k;}
|
251
251
|
protected int getV() { return v;}
|
252
|
+
|
252
253
|
public double[][] calcTestStatistic(double[][] xi) {
|
253
254
|
k = xi.length;
|
254
255
|
mean = new double[k];
|
@@ -267,8 +268,10 @@ public class MultiComp {
|
|
267
268
|
private double calcVe(double[][] xi) {
|
268
269
|
double sumSq = 0.0;
|
269
270
|
int sumN = 0;
|
271
|
+
|
270
272
|
for(int i = 0; i < k; i++) {
|
271
273
|
DescriptiveStatistics stat = new DescriptiveStatistics();
|
274
|
+
|
272
275
|
Arrays.stream(xi[i]).forEach(stat::addValue);
|
273
276
|
mean[i] = stat.getMean();
|
274
277
|
n[i] = stat.getN();
|
@@ -286,7 +289,7 @@ public class MultiComp {
|
|
286
289
|
int v = super.getV();
|
287
290
|
int k = super.getK();
|
288
291
|
double den = k - 1;
|
289
|
-
|
292
|
+
|
290
293
|
TDistribution tDist = new TDistribution(v);
|
291
294
|
double l_val = tDist.inverseCumulativeProbability(a / den);
|
292
295
|
double r_val = tDist.inverseCumulativeProbability(1.0 - a / den);
|
@@ -28,6 +28,7 @@ import java.util.ArrayList;
|
|
28
28
|
import org.apache.commons.math3.stat.inference.OneWayAnova;
|
29
29
|
import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
|
30
30
|
import org.apache.commons.math3.distribution.ChiSquaredDistribution;
|
31
|
+
import org.apache.commons.math3.distribution.FDistribution;
|
31
32
|
import java.util.Map;
|
32
33
|
public class OneWayLayout {
|
33
34
|
private static OneWayLayout oneWay = new OneWayLayout();
|
@@ -59,6 +60,18 @@ public class OneWayLayout {
|
|
59
60
|
double statistic = oneway.calcTestStatistic(xi);
|
60
61
|
return oneway.test(statistic, a);
|
61
62
|
}
|
63
|
+
public void replicatePlot(String dname, Map<String, double[]> vals) {
|
64
|
+
ChartPlot plot = new ReplicateChartPlot();
|
65
|
+
|
66
|
+
JFreeChart chart = plot.createChart("反復測定", dname, vals);
|
67
|
+
plot.writeJPEG("replicate.jpeg", chart, 800, 500);
|
68
|
+
}
|
69
|
+
public boolean replicateTest(double[][] xi, double a) {
|
70
|
+
OneWayAnovaTest oneway = new ReplicateTest();
|
71
|
+
|
72
|
+
double statistic = oneway.calcTestStatistic(xi);
|
73
|
+
return oneway.test(statistic, a);
|
74
|
+
}
|
62
75
|
/*********************************/
|
63
76
|
/* interface define */
|
64
77
|
/*********************************/
|
@@ -196,6 +209,7 @@ public class OneWayLayout {
|
|
196
209
|
}
|
197
210
|
}
|
198
211
|
}
|
212
|
+
// バートレット検定
|
199
213
|
private class BartletTest implements OneWayAnovaTest {
|
200
214
|
private int n = 0;
|
201
215
|
public double calcTestStatistic(double[][] xi) {
|
@@ -226,6 +240,7 @@ public class OneWayLayout {
|
|
226
240
|
double invSumN = 0.0;
|
227
241
|
int sumN = 0;
|
228
242
|
DescriptiveStatistics stat = new DescriptiveStatistics();
|
243
|
+
|
229
244
|
for(int i = 0; i < n; i++) {
|
230
245
|
Arrays.stream(xi[i]).forEach(stat::addValue);
|
231
246
|
invSumN += 1.0 / (stat.getN() - 1.0);
|
@@ -243,5 +258,127 @@ public class OneWayLayout {
|
|
243
258
|
return (r_val < statistic) ? true : false;
|
244
259
|
}
|
245
260
|
}
|
261
|
+
// 反復測定Plot
|
262
|
+
private class ReplicateChartPlot implements ChartPlot {
|
263
|
+
public JFreeChart createChart(String title, String dname, Map<String, double[]> vals) {
|
264
|
+
CategoryPlot plot = createPlot(dname, vals);
|
265
|
+
ChartFactory.setChartTheme(StandardChartTheme.createLegacyTheme());
|
266
|
+
JFreeChart chart = new JFreeChart(title, plot);
|
267
|
+
|
268
|
+
ChartUtils.applyCurrentTheme(chart);
|
269
|
+
return chart;
|
270
|
+
}
|
271
|
+
private CategoryPlot createPlot( String dname, Map<String, double[]> vals) {
|
272
|
+
CreatePlot plotImpl = new ReplicatePlot();
|
273
|
+
|
274
|
+
return plotImpl.createPlot(dname, vals);
|
275
|
+
}
|
276
|
+
private class ReplicatePlot implements CreatePlot {
|
277
|
+
public CategoryPlot createPlot(String dname, Map<String, double[]> vals) {
|
278
|
+
LineAndShapeRenderer renderer = new LineAndShapeRenderer(true, true);
|
279
|
+
|
280
|
+
renderer.setDefaultToolTipGenerator(
|
281
|
+
new StandardCategoryToolTipGenerator()
|
282
|
+
);
|
283
|
+
CategoryPlot plot = new CategoryPlot();
|
284
|
+
|
285
|
+
plot.setOrientation(PlotOrientation.VERTICAL);
|
286
|
+
plot.mapDatasetToRangeAxis(0,0);
|
287
|
+
plot.setDatasetRenderingOrder(DatasetRenderingOrder.FORWARD);
|
288
|
+
|
289
|
+
/*--- 横軸 ---*/
|
290
|
+
CategoryAxis categoryAxis = new CategoryAxis("因子");
|
291
|
+
plot.setDomainAxis(categoryAxis);
|
292
|
+
|
293
|
+
/*--- 縦軸 ---*/
|
294
|
+
NumberAxis valueAxis0 = new NumberAxis("推定周辺平均");
|
295
|
+
plot.setRangeAxis(valueAxis0);
|
296
|
+
|
297
|
+
plot.setRenderer(0, renderer);
|
298
|
+
plot.setDataset(0, createDataset(dname, vals));
|
299
|
+
return plot;
|
300
|
+
}
|
301
|
+
private CategoryDataset createDataset(String dname, Map<String, double[]> vals) {
|
302
|
+
DefaultCategoryDataset data = new DefaultCategoryDataset();
|
303
|
+
DescriptiveStatistics stat = new DescriptiveStatistics();
|
304
|
+
|
305
|
+
for(Map.Entry<String, double[]> entry : vals.entrySet()) {
|
306
|
+
double[] v = entry.getValue();
|
307
|
+
|
308
|
+
Arrays.stream(v).forEach(stat::addValue);
|
309
|
+
data.addValue(stat.getMean(), dname, entry.getKey());
|
310
|
+
stat.clear();
|
311
|
+
}
|
312
|
+
return data;
|
313
|
+
}
|
314
|
+
}
|
315
|
+
}
|
316
|
+
private class ReplicateTest implements OneWayAnovaTest {
|
317
|
+
private int a1 = 0;
|
318
|
+
private int b1 = 0;
|
319
|
+
public double calcTestStatistic(double[][] xi) {
|
320
|
+
b1 = xi[0].length;
|
321
|
+
a1 = xi.length;
|
322
|
+
double st = calcSt(xi, a1, b1);
|
323
|
+
double sa = calcSa(xi, a1, b1);
|
324
|
+
double sb = calcSb(xi, a1, b1);
|
325
|
+
double se = st - sa - sb;
|
326
|
+
double meanSa = sa / (a1 - 1);
|
327
|
+
double meanSe = se / ((a1 - 1) * (b1 - 1));
|
328
|
+
|
329
|
+
return meanSa / meanSe ;
|
330
|
+
}
|
331
|
+
private double calcSt(double[][] xi, int a, int b) {
|
332
|
+
DescriptiveStatistics stat = new DescriptiveStatistics();
|
333
|
+
double sumSt1 = 0.0;
|
334
|
+
double sumSt2 = 0.0;
|
335
|
+
|
336
|
+
for(int i = 0; i < a; i++) {
|
337
|
+
Arrays.stream(xi[i]).forEach(stat::addValue);
|
338
|
+
sumSt1 += stat.getSumsq();
|
339
|
+
sumSt2 += stat.getSum();
|
340
|
+
stat.clear();
|
341
|
+
}
|
342
|
+
return sumSt1 - sumSt2 * sumSt2 / (a * b);
|
343
|
+
}
|
344
|
+
private double calcSa(double[][] xi, int a, int b) {
|
345
|
+
double sumSa1 = 0.0;
|
346
|
+
double sumSa2 = 0.0;
|
347
|
+
double[] an = new double[a];
|
348
|
+
|
349
|
+
for(int i = 0; i < a; i++) {
|
350
|
+
for(int j = 0; j < b; j++) {
|
351
|
+
an[i] += xi[i][j];
|
352
|
+
sumSa2 += xi[i][j];
|
353
|
+
}
|
354
|
+
}
|
355
|
+
DescriptiveStatistics stat = new DescriptiveStatistics();
|
356
|
+
Arrays.stream(an).forEach(stat::addValue);
|
357
|
+
sumSa1 = stat.getSumsq() / b;
|
358
|
+
return sumSa1 - sumSa2 * sumSa2 / (a * b);
|
359
|
+
}
|
360
|
+
private double calcSb(double[][] xi, int a, int b) {
|
361
|
+
double[] bn = new double[b];
|
362
|
+
double sumSb1 = 0.0;
|
363
|
+
double sumSb2 = 0.0;
|
364
|
+
|
365
|
+
for(int i = 0; i < a; i++) {
|
366
|
+
for(int j = 0; j < b; j++) {
|
367
|
+
bn[j] += xi[i][j];
|
368
|
+
sumSb2 += xi[i][j];
|
369
|
+
}
|
370
|
+
}
|
371
|
+
DescriptiveStatistics stat = new DescriptiveStatistics();
|
372
|
+
Arrays.stream(bn).forEach(stat::addValue);
|
373
|
+
sumSb1 = stat.getSumsq() / a;
|
374
|
+
return sumSb1 - sumSb2 * sumSb2 / (a * b);
|
375
|
+
}
|
376
|
+
public boolean test(double statistic, double a) {
|
377
|
+
FDistribution fDist = new FDistribution(a1 - 1, (a1 - 1) * (b1 - 1));
|
378
|
+
double f = fDist.inverseCumulativeProbability(1.0 - a);
|
379
|
+
|
380
|
+
return (statistic >= f) ? true : false;
|
381
|
+
}
|
382
|
+
}
|
246
383
|
}
|
247
384
|
|
data/lib/num4anova.rb
CHANGED
@@ -72,13 +72,13 @@ module Num4AnovaLib
|
|
72
72
|
# @param [double] a 有意水準
|
73
73
|
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
74
74
|
# @example
|
75
|
-
#
|
76
|
-
#
|
77
|
-
#
|
78
|
-
#
|
79
|
-
#
|
80
|
-
#
|
81
|
-
#
|
75
|
+
# xi = [
|
76
|
+
# [12.2, 18.8, 18.2],
|
77
|
+
# [22.2, 20.5, 14.6],
|
78
|
+
# [20.8, 19.5, 26.3],
|
79
|
+
# [26.4, 32.5, 31.3],
|
80
|
+
# [24.5, 21.2, 22.4],
|
81
|
+
# ]
|
82
82
|
# oneWay = Num4AnovaLib::OneWayLayoutLib.new
|
83
83
|
# oneWay.oneWay.oneway_anova(xi, 0.05)
|
84
84
|
# => true
|
@@ -92,19 +92,63 @@ module Num4AnovaLib
|
|
92
92
|
# @param [double] a 有意水準
|
93
93
|
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
94
94
|
# @example
|
95
|
-
#
|
96
|
-
#
|
97
|
-
#
|
98
|
-
#
|
99
|
-
#
|
100
|
-
#
|
101
|
-
#
|
95
|
+
# xi = [
|
96
|
+
# [12.2, 18.8, 18.2],
|
97
|
+
# [22.2, 20.5, 14.6],
|
98
|
+
# [20.8, 19.5, 26.3],
|
99
|
+
# [26.4, 32.5, 31.3],
|
100
|
+
# [24.5, 21.2, 22.4],
|
101
|
+
# ]
|
102
102
|
# oneWay = Num4AnovaLib::OneWayLayoutLib.new
|
103
103
|
# oneWay.bartlet(xi, 0.05)
|
104
104
|
# => true
|
105
105
|
def bartlet(xi, a)
|
106
106
|
return @oneWay.bartletTest(xi.to_java(Java::double[]), a)
|
107
107
|
end
|
108
|
+
# 反復測定Plot
|
109
|
+
#
|
110
|
+
# @overload replicate_plot(dname, vals)
|
111
|
+
# @param [String] dname データ名
|
112
|
+
# @param [Hash] vals Hash(String, double[])
|
113
|
+
# @return [void] replicate.jpegファイルを出力
|
114
|
+
# @example
|
115
|
+
# vals = {
|
116
|
+
# "stageA1" => [27, 52, 18, 21, 32],
|
117
|
+
# "stageA2" => [52, 72, 31, 50, 45],
|
118
|
+
# "stageA3" => [47, 54, 29, 43, 32],
|
119
|
+
# "stageA4" => [28, 50, 22, 26, 29],
|
120
|
+
# }
|
121
|
+
# oneWay = Num4AnovaLib::OneWayLayoutLib.new
|
122
|
+
# oneWay.replicate_plot("LDH", vals)
|
123
|
+
# => replicate.jpeg
|
124
|
+
# @note
|
125
|
+
# グラフは、jfreechartを使用
|
126
|
+
def replicate_plot(dname, vals)
|
127
|
+
o = HashMap.new
|
128
|
+
vals.each{|k, v|
|
129
|
+
o[k] = v.to_java(Java::double)
|
130
|
+
}
|
131
|
+
return @oneWay.replicatePlot(dname, o)
|
132
|
+
end
|
133
|
+
# 反復測定検定
|
134
|
+
#
|
135
|
+
# @overload replicate_test(xi, a)
|
136
|
+
# @param [array] xi データ(double[][])
|
137
|
+
# @param [double] a 有意水準
|
138
|
+
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
139
|
+
# @example
|
140
|
+
# xi = [
|
141
|
+
# [27, 52, 18, 21, 32],
|
142
|
+
# [52, 72, 31, 50, 45],
|
143
|
+
# [47, 54, 29, 43, 32],
|
144
|
+
# [28, 50, 22, 26, 29],
|
145
|
+
# ]
|
146
|
+
# oneWay = Num4AnovaLib::OneWayLayoutLib.new
|
147
|
+
# oneWay.replicate_test("LDH", vals)
|
148
|
+
# => true
|
149
|
+
def replicate_test(xi, a)
|
150
|
+
return @oneWay.replicateTest(xi.to_java(Java::double[]), a)
|
151
|
+
end
|
108
152
|
end
|
109
153
|
end
|
110
154
|
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4anova
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.4
|
5
5
|
platform: java
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-01-
|
11
|
+
date: 2024-01-30 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|